このエントリーをはてなブックマークに追加
ID 14816
Eprint ID
14816
フルテキストURL
著者
Yamaguchi Takashi Tokyo University of Information Sciences
Ichimura Takumi Hiroshima City University
Kenneth J. Mackin Tokyo University of Information Sciences
抄録
It is known that the classification of medical data is difficult problem because the medical data has ambiguous information or missing data. As a result, the classification method that can handle ambiguous information or missing data is necessity. In this paper we proposed an adaptive tree structure clustering method in order to clarify clustering result of selforganizing feature maps. For the evaluating effectiveness of proposed clustering method for the data set with ambiguous information, we applied an adaptive tree structured clustering method for classification of coronary heart disease database. Through the computer simulation we showed that the proposed clustering method was effective for the ambiguous data set.
発行日
2008-12-11
出版物タイトル
Proceedings : Fourth International Workshop on Computational Intelligence & Applications
2008巻
1号
出版者
IEEE SMC Hiroshima Chapter
開始ページ
139
終了ページ
144
ISSN
1883-3977
資料タイプ
会議発表論文
言語
English
イベント
Fourth International Workshop on Computational Intelligence & Applications IEEE SMC Hiroshima Chapter : IWCIA 2008
イベント地
東広島市
イベント地の別言語
Higashi-Hiroshima City
論文のバージョン
publisher
査読
有り
Eprints Journal Name
IWCIA