start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=1338669 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240129 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tetrathionate hydrolase from the acidophilic microorganisms en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tetrathionate hydrolase (TTH) is a unique enzyme found in acidophilic sulfur-oxidizing microorganisms, such as bacteria and archaea. This enzyme catalyzes the hydrolysis of tetrathionate to thiosulfate, elemental sulfur, and sulfate. It is also involved in dissimilatory sulfur oxidation metabolism, the S-4-intermediate pathway. TTHs have been purified and characterized from acidophilic autotrophic sulfur-oxidizing microorganisms. All purified TTHs show an optimum pH in the acidic range, suggesting that they are localized in the periplasmic space or outer membrane. In particular, the gene encoding TTH from Acidithiobacillus ferrooxidans (Af-tth) was identified and recombinantly expressed in Escherichia coli cells. TTH activity could be recovered from the recombinant inclusion bodies by acid refolding treatment for crystallization. The mechanism of tetrathionate hydrolysis was then elucidated by X-ray crystal structure analysis. Af-tth is highly expressed in tetrathionate-grown cells but not in iron-grown cells. These unique structural properties, reaction mechanisms, gene expression, and regulatory mechanisms are discussed in this review. en-copyright= kn-copyright= en-aut-name=KanaoTadayoshi en-aut-sei=Kanao en-aut-mei=Tadayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Agricultural and Biological Chemistry, Graduate School of Environment, Life, Natural Science, and Technology, Okayama University kn-affil= en-keyword=tetrathionate hydrolase kn-keyword=tetrathionate hydrolase en-keyword=reduced inorganic sulfur compounds kn-keyword=reduced inorganic sulfur compounds en-keyword=dissimilatory sulfur metabolism kn-keyword=dissimilatory sulfur metabolism en-keyword=S4-intermediate pathway kn-keyword=S4-intermediate pathway en-keyword=acidophiles kn-keyword=acidophiles en-keyword=chemoautotroph kn-keyword=chemoautotroph END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue= article-no= start-page=1215500 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231109 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sustainable development goals in teacher education: comparing syllabi in a Japanese and a Slovenian university en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: This research aims to explore the integration of Sustainable Development Goals (SDGs) within teacher education programs, focusing on the Faculty of Education at Okayama University, Japan and the University of Ljubljana, Slovenia.
Methods: We employed a qualitative content analysis of the syllabi (n = 2,079 from Okayama University; n = 504 from University of Ljubljana) and combined it with insights from semi-structured interviews.
Results: The analysis illuminated a strong emphasis on Quality Education (SDG 4) in both institutions. However, certain SDGs, like Climate Action (SDG 13), were less represented, marking potential areas for enhancement. Differences were also identified in the distribution of SDGs-related content between compulsory and elective courses, indicating institutional priorities. Interview reflections emphasized the pivotal role of educators in realizing SDGs and highlighted the necessity of collaboration to achieve these global objectives.
Discussion: The insights from interviews and syllabi content analysis underscore the urgency to bridge the identified gaps in SDG coverage. Disparities in emphasis between the two Education for Sustainable Development (ESD)-committed universities were noted, suggesting the importance of fostering strategy exchange and partnerships across institutions.
Conclusion: Enhancing the alignment of teacher education programs with SDGs requires collective efforts. By addressing the gaps and promoting effective collaboration, these programs can achieve greater relevance and efficacy in promoting the SDGs. en-copyright= kn-copyright= en-aut-name=Fiel'ardhKhalifatulloh en-aut-sei=Fiel'ardh en-aut-mei=Khalifatulloh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TorkarGregor en-aut-sei=Torkar en-aut-mei=Gregor kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Ro?manHana en-aut-sei=Ro?man en-aut-mei=Hana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiHiroki en-aut-sei=Fujii en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Education, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Education, University of Ljubljana kn-affil= affil-num=3 en-affil=Faculty of Education, University of Ljubljana kn-affil= affil-num=4 en-affil=Graduate School of Education, Okayama University kn-affil= en-keyword=sustainable development goals kn-keyword=sustainable development goals en-keyword=teacher education curricula kn-keyword=teacher education curricula en-keyword=qualitative content analysis kn-keyword=qualitative content analysis en-keyword=semi-structured interview kn-keyword=semi-structured interview en-keyword=Japan kn-keyword=Japan en-keyword=Slovenia kn-keyword=Slovenia END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1239598 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=gInput/output cytokinesh in epidermal keratinocytes and the involvement in inflammatory skin diseases en-subtitle= kn-subtitle= en-abstract= kn-abstract=Considering the role of epidermal keratinocytes, they occupy more than 90% of the epidermis, form a physical barrier, and also function as innate immune barrier. For example, epidermal keratinocytes are capable of recognizing various cytokines and pathogen-associated molecular pattern, and producing a wide variety of inflammatory cytokines, chemokines, and antimicrobial peptides. Previous basic studies have shown that the immune response of epidermal keratinocytes has a significant impact on inflammatory skin diseases. The purpose of this review is to provide foundation of knowledge on the cytokines which are recognized or produced by epidermal keratinocytes. Since a number of biologics for skin diseases have appeared, it is necessary to fully understand the relationship between epidermal keratinocytes and the cytokines. In this review, the cytokines recognized by epidermal keratinocytes are specifically introduced as "input cytokines", and the produced cytokines as "output cytokines". Furthermore, we also refer to the existence of biologics against those input and output cytokines, and the target skin diseases. These use results demonstrate how important targeted cytokines are in real skin diseases, and enhance our understanding of the cytokines. en-copyright= kn-copyright= en-aut-name=MorizaneShin en-aut-sei=Morizane en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MukaiTomoyuki en-aut-sei=Mukai en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SunagawaKo en-aut-sei=Sunagawa en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawakamiYoshio en-aut-sei=Kawakami en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OuchidaMamoru en-aut-sei=Ouchida en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Immunology and Molecular Genetics, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=epidermal keratinocytes kn-keyword=epidermal keratinocytes en-keyword=input cytokines kn-keyword=input cytokines en-keyword=output cytokines kn-keyword=output cytokines en-keyword=biologics kn-keyword=biologics en-keyword=inflammatory skin diseases kn-keyword=inflammatory skin diseases END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1279699 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230928 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=FZL, a dynamin-like protein localized to curved grana edges, is required for efficient photosynthetic electron transfer in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic electron transfer and its regulation processes take place on thylakoid membranes, and the thylakoid of vascular plants exhibits particularly intricate structure consisting of stacked grana and flat stroma lamellae. It is known that several membrane remodeling proteins contribute to maintain the thylakoid structure, and one putative example is FUZZY ONION LIKE (FZL). In this study, we re-evaluated the controversial function of FZL in thylakoid membrane remodeling and in photosynthesis. We investigated the sub-membrane localization of FZL and found that it is enriched on curved grana edges of thylakoid membranes, consistent with the previously proposed model that FZL mediates fusion of grana and stroma lamellae at the interfaces. The mature fzl thylakoid morphology characterized with the staggered and less connected grana seems to agree with this model as well. In the photosynthetic analysis, the fzl knockout mutants in Arabidopsis displayed reduced electron flow, likely resulting in higher oxidative levels of Photosystem I (PSI) and smaller proton motive force (pmf). However, nonphotochemical quenching (NPQ) of chlorophyll fluorescence was excessively enhanced considering the pmf levels in fzl, and we found that introducing kea3-1 mutation, lowering pH in thylakoid lumen, synergistically reinforced the photosynthetic disorder in the fzl mutant background. We also showed that state transitions normally occurred in fzl, and that they were not involved in the photosynthetic disorders in fzl. We discuss the possible mechanisms by which the altered thylakoid morphology in fzl leads to the photosynthetic modifications. en-copyright= kn-copyright= en-aut-name=OgawaYu en-aut-sei=Ogawa en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwanoMegumi en-aut-sei=Iwano en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShikanaiToshiharu en-aut-sei=Shikanai en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Biostudies, Kyoto University kn-affil= affil-num=3 en-affil=Department of Botany, Graduate School of Science, Kyoto University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=FUZZY ONION LIKE (FZL) kn-keyword=FUZZY ONION LIKE (FZL) en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=chloroplast kn-keyword=chloroplast en-keyword=thylakoid kn-keyword=thylakoid en-keyword=thylakoid structure kn-keyword=thylakoid structure en-keyword=photosynthetic electron transfer kn-keyword=photosynthetic electron transfer END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=1261330 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In vivo tracking transplanted cardiomyocytes derived from human induced pluripotent stem cells using nuclear medicine imaging en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Transplantation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is a promising treatment for heart failure. Information on long-term cell engraftment after transplantation is clinically important. However, clinically applicable evaluation methods have not yet been established.
Methods: In this study, to noninvasively assess transplanted cell engraftment, human SLC5A5, which encodes a sodium/iodide symporter (NIS) that transports radioactive tracers such as 125I, 18F-tetrafluoroborate (TFB), and 99mTc-pertechnetate (99mTcO4?), was transduced into human induced pluripotent stem cells (iPSCs), and nuclear medicine imaging was used to track engrafted human iPSC-CMs.
Results: To evaluate the pluripotency of NIS-expressing human iPSCs, they were subcutaneously transplanted into immunodeficient rats. Teratomas were detected by 99mTcO4? single photon emission computed tomography (SPECT/CT) imaging. NIS expression and the uptake ability of 125I were maintained in purified human iPSC-CMs. NIS-expressing human iPSC-CMs transplanted into immunodeficient rats could be detected over time using 99mTcO4? SPECT/CT imaging. Unexpectedly, NIS expression affected cell proliferation of human iPSCs and iPSC-derived cells.
Discussion: Such functionally designed iPSC-CMs have potential clinical applications as a noninvasive method of grafted cell evaluation, but further studies are needed to determine the effects of NIS transduction on cellular characteristics and functions. en-copyright= kn-copyright= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NoseNaoko en-aut-sei=Nose en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IidaToshihiro en-aut-sei=Iida en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkazawaKaoru en-aut-sei=Akazawa en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KannoTakayuki en-aut-sei=Kanno en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujimotoYuki en-aut-sei=Fujimoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SasakiTakanori en-aut-sei=Sasaki en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkehiMasaru en-aut-sei=Akehi en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiguchiTakahiro en-aut-sei=Higuchi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Okayama Medical Innovation Center, Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Okayama Medical Innovation Center, Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School kn-affil= affil-num=14 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=sodium/iodide symporter kn-keyword=sodium/iodide symporter en-keyword=human induced pluripotent stem cell-derived cardiomyocytes kn-keyword=human induced pluripotent stem cell-derived cardiomyocytes en-keyword=single photon emission computed tomography kn-keyword=single photon emission computed tomography en-keyword=cell-based therapy kn-keyword=cell-based therapy en-keyword=in vivo imaging kn-keyword=in vivo imaging END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue= article-no= start-page=918273 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sea Surface Temperature and Salinity in Lombok Strait Reconstructed From Coral Sr/Ca and 18O, 1962?2012 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Coral geochemical tracers have been used in studies of the paleoclimatology and paleoceanography of the tropics and subtropics. We measured Sr/Ca and oxygen isotope ratios (18O) in a coral sample collected from the southern part of Lombok Strait, a significant outlet of the Indonesian Throughflow (ITF) to the Indian Ocean, to reconstruct the historical record of sea surface temperature (SST) and seawater 18O. Seawater 18O can be used to approximate sea surface salinity (SSS) because it reflects the balance of evaporation and precipitation. The resulting time series reconstructed SST and SSS, covering the period 1962?2012, shows no clear trend of global warming, although the record includes a large cooling event (~4C) during 1996?1997. Although neither SST nor SSS shows a systematic relationship with El Ni?o?Southern Oscillation and Indian Ocean Dipole (IOD), weak but significant correlations are found partly. In addition, the coral data show signals of major IOD and El Ni?o events in 1994 and 1997, respectively, although climatic trends recorded in the coral are not consistent with those found along the Java-Sumatra coast. To evaluate other influences on the ITF in Lombok Strait, we compared our coral record with coral records from sites in the Java Sea, the southern part of Makassar Strait, and Ombai Strait. During the northwest monsoon (December?January?February), variations in SST and SSS at Lombok Strait site are similar to those at the Java Sea and southern Makassar sites for the period 1962?1995, which suggests that low-salinity water from the Java Sea is carried at least to the southern part of Makassar Strait where it suppresses the ITF upstream from Lombok Strait. However, the SST and SSS records differ at the three sites during the southeast monsoon (June?July?August), indicating that surface conditions in Lombok Strait vary separately from those in the Java Sea. In the longer term, although global warming has been widely identified in the Indonesian Seas, the coral record shows no clear warming trend in the southern part of Lombok Strait, where fluctuations in the ITF may be modulating the distribution of heat in the surface waters of the western Pacific and eastern Indian Ocean. en-copyright= kn-copyright= en-aut-name=GendaAi en-aut-sei=Genda en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkeharaMinoru en-aut-sei=Ikehara en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiAtsushi en-aut-sei=Suzuki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArmanAli en-aut-sei=Arman en-aut-mei=Ali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=InoueMayuri en-aut-sei=Inoue en-aut-mei=Mayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Center for Advanced Marine Core Research, Kochi University kn-affil= affil-num=3 en-affil=Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=4 en-affil=Research and Technology Center for Application of Isotope and Radiation, National Research and Innovation Agency kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=coral kn-keyword=coral en-keyword=geochemical tracers kn-keyword=geochemical tracers en-keyword=Sr/Ca kn-keyword=Sr/Ca en-keyword= 18O kn-keyword= 18O en-keyword=sea surface temperature kn-keyword=sea surface temperature en-keyword=salinity kn-keyword=salinity en-keyword=Lombok Strait kn-keyword=Lombok Strait END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1187479 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230518 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Etiology of recurrent cystitis in postmenopausal women based on vaginal microbiota and the role of Lactobacillus vaginal suppository en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The vaginal microbiota can be altered by uropathogenic bacteria associated with recurrent cystitis (RC), and the vaginal administration of Lactobacillus have suggested certain effects to prevent RC. The relationship between vaginal microbiota and the development of RC has not been elucidated. We aimed to clarify the etiology of RC from vaginal microbiota and importance of vaginal Lactobacillus.
Methods: Vaginal samples obtained from 39 postmenopausal women were classified into four groups: healthy controls; uncomplicated cystitis; RC; and prevention (prevented RC by Lactobacillus crispatus-containing vaginal suppositories). Principal coordinate analysis and beta-diversity analysis was used to assess 16S rRNA gene sequencing data from the vaginal microbiome.
Results: Cluster analysis divided the vaginal bacterial communities among 129 vaginal samples into three clusters (A, B, and C). Fourteen of 14 (100%) samples from the RC group and 51 of 53 (96%) samples from the prevention group were in clusters B and C, while 29 of 38 (76%) samples from the healthy group and 14 of 24 (58%) samples from the uncomplicated cystitis group were in cluster A. The principal coordinate analysis showed that plots in the uncomplicated cystitis group were similar to the healthy group, indicating a large separation between the RC group and the uncomplicated cystitis group. On beta-diversity analysis, there were significant differences between the healthy group and the uncomplicated cystitis group (p = 0.045), and between the RC group and the uncomplicated cystitis group or the healthy group (p = 0.001, p = 0.001, respectively). There were no significant differences between the RC group and the prevention group (p = 0.446). The top six taxa were as follows: Prevotella, Lactobacillus, Streptococcus, Enterobacteriaceae, Anaerococcus, and Bifidobacterium. Among patients with RC, Lactobacillus was undetectable before administration of suppositories, while the median relative abundance of Lactobacillus was 19% during administration of suppositories (p = 0.0211), reducing the average cystitis episodes per year (6.3 vs. 2.4, p = 0.0015).
Conclusion: The vaginal microbiota of postmenopausal women with RC is differed from healthy controls and uncomplicated cystitis in terms of lack of Lactobacillus and relatively dominant of Enterobacteriaceae. Vaginal administration of Lactobacillus-containing suppositories can prevent RC by stabilizing vaginal dysbiosis and causing a loss of pathogenic bacteria virulence. en-copyright= kn-copyright= en-aut-name=SekitoTakanori en-aut-sei=Sekito en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshiiAyano en-aut-sei=Ishii en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsubaraTakehiro en-aut-sei=Matsubara en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Urology, Shimane University Faculty of Medicine kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Okayama University Hospital Biobank, Okayama University Hospital kn-affil= affil-num=6 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=cystitis kn-keyword=cystitis en-keyword=vagina kn-keyword=vagina en-keyword=microbiota kn-keyword=microbiota en-keyword=Lactobacillus kn-keyword=Lactobacillus en-keyword=urinary tract infection kn-keyword=urinary tract infection END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1052216 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230426 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Home literacy environment and early reading skills in Japanese Hiragana and Kanji during the transition from kindergarten to primary school en-subtitle= kn-subtitle= en-abstract= kn-abstract=We examined the reciprocal associations between home literacy environment (HLE) and children's early reading skills in syllabic Hiragana and morphographic Kanji in a sample of Japanese parent-child dyads. Eighty-three children were followed from kindergarten to Grade 3 and tested on Hiragana reading accuracy in kindergarten, Hiragana word reading fluency in kindergarten and Grade 1, and Kanji reading accuracy in Grade 1 to Grade 3. Their parents answered a questionnaire about HLE [parent teaching (PT) in Hiragana and Kanji, shared book reading (SBR), and access to literacy resources (ALR)], parents' needs for early literacy support by teachers, parents' expectations for children's reading skills, parents' worry about children's homework, and mother's education level. Results showed first that ALR, but not PT and SBR, was associated with reading skills in Hiragana and Kanji. Second, whereas Hiragana reading in kindergarten was not associated with PT in Hiragana in kindergarten, it negatively predicted PT in Hiragana in Grade 1. However, Kanji reading accuracy was not associated with PT in Kanji across Grades 1 to 3. Third, parents' worry was negatively associated with children's reading performance across Grades 1 to 3 but positively associated with PT in Hiragana and Kanji. Finally, while parents' expectations were positively associated with children's reading performance across Grades 1 to 3, they were negatively associated with PT in Hiragana and Kanji in Grades 1 and 2. These results suggest that Japanese parents may be sensitive to both their children's reading performance and social expectations for school achievement and adjust their involvement accordingly during the transition period from kindergarten to early primary grades. ALR may be associated with early reading development in both Hiragana and Kanji. en-copyright= kn-copyright= en-aut-name=TanjiTakayuki en-aut-sei=Tanji en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InoueTomohiro en-aut-sei=Inoue en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=The Chinese University of Hong Kong kn-affil= en-keyword=home literacy environment kn-keyword=home literacy environment en-keyword=early literacy skills kn-keyword=early literacy skills en-keyword=Japanese Hiragana and Kanji kn-keyword=Japanese Hiragana and Kanji en-keyword=parent expectation kn-keyword=parent expectation en-keyword=parent affect kn-keyword=parent affect END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=1138019 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230329 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Parameter search of a CPG network using a genetic algorithm for a snake robot with tactile sensors moving on a soft floor en-subtitle= kn-subtitle= en-abstract= kn-abstract=When a snake robot explores a collapsed house as a rescue robot, it needs to move through various obstacles, some of which may be made of soft materials, such as mattresses. In this study, we call mattress-like environment as a soft floor, which deforms when some force is added to it. We focused on the central pattern generator (CPG) network as a control for the snake robot to propel itself on the soft floor and constructed a CPG network that feeds back contact information between the robot and the floor. A genetic algorithm was used to determine the parameters of the CPG network suitable for the soft floor. To verify the obtained parameters, comparative simulations were conducted using the parameters obtained for the soft and hard floor, and the parameters were confirmed to be appropriate for each environment. By observing the difference in snake robot's propulsion depending on the presence or absence of the tactile sensor feedback signal, we confirmed the effectiveness of the tactile sensor considered in the parameter search. en-copyright= kn-copyright= en-aut-name=TamuraHajime en-aut-sei=Tamura en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KamegawaTetsushi en-aut-sei=Kamegawa en-aut-mei=Tetsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=snake robot kn-keyword=snake robot en-keyword=tactile sensor kn-keyword=tactile sensor en-keyword=CPG network kn-keyword=CPG network en-keyword=soft floor kn-keyword=soft floor en-keyword=genetic algorithm kn-keyword=genetic algorithm END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=1142907 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lysyl oxidase-like 4 exerts an atypical role in breast cancer progression that is dependent on the enzymatic activity that targets the cell-surface annexin A2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: LOX family members are reported to play pivotal roles in cancer. Unlike their enzymatic activities in collagen cross-linking, their precise cancer functions are unclear. We revealed that LOXL4 is highly upregulated in breast cancer cells, and we thus sought to define an unidentified role of LOXL4 in breast cancer.
Methods: We established the MDA-MB-231 sublines MDA-MB-231-LOXL4 mutCA and -LOXL4 KO, which stably overexpress mutant LOXL4 that loses its catalytic activity and genetically ablates the intrinsic LOXL4 gene, respectively. In vitro and in vivo evaluations of these cellsf activities of cancer outgrowth were conducted by cell-based assays in cultures and an orthotopic xenograft model, respectively. The new target (s) of LOXL4 were explored by the MS/MS analytic approach.
Results: Our in vitro results revealed that both the overexpression of mutCA and the KO of LOXL4 in cells resulted in a marked reduction of cell growth and invasion. Interestingly, the lowered cellular activities observed in the engineered cells were also reflected in the mouse model. We identified a novel binding partner of LOXL4, i.e., annexin A2. LOXL4 catalyzes cell surface annexin A2 to achieve a cross-linked multimerization of annexin A2, which in turn prevents the internalization of integrin -1, resulting in the locking of integrin -1 on the cell surface. These events enhance the promotion of cancer cell outgrowth.
Conclusions: LOXL4 has a new role in breast cancer progression that occurs via an interaction with annexin A2 and integrin -1 on the cell surface.
en-copyright= kn-copyright= en-aut-name=KomalasariNi Luh Gede Yoni en-aut-sei=Komalasari en-aut-mei=Ni Luh Gede Yoni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaguchiYoshihiko en-aut-sei=Sakaguchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GoharaYuma en-aut-sei=Gohara en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoKen-Ich en-aut-sei=Yamamoto en-aut-mei=Ken-Ich kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=RumaI Made Winarsa en-aut-sei=Ruma en-aut-mei=I Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SumardikaI Wayan en-aut-sei=Sumardika en-aut-mei=I Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ZhouJin en-aut-sei=Zhou en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KuribayashiFutoshi en-aut-sei=Kuribayashi en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Surgery & Bio-Bank of General Surgery, TheFourth Affiliated Hospital of Harbin Medical University kn-affil= affil-num=5 en-affil=Department of Microbiology, Kitasato University School of Medicine kn-affil= affil-num=6 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=11 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=12 en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology kn-affil= affil-num=13 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=14 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=15 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=16 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=lysyl oxidase kn-keyword=lysyl oxidase en-keyword=annexin A2 kn-keyword=annexin A2 en-keyword=integrin kn-keyword=integrin en-keyword=cancer microenvironment kn-keyword=cancer microenvironment END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=1105460 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230316 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mutagenic analysis of actin reveals the mechanism of His161 flipping that triggers ATP hydrolysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The dynamic assembly of actin is controlled by the hydrolysis of ATP, bound to the center of the molecule. Upon polymerization, actin undergoes a conformational change from the monomeric G-form to the fibrous F-form, which is associated with the flipping of the side chain of His161 toward ATP. His161 flipping from the gauche-minus to gauche-plus conformation leads to a rearrangement of the active site water molecules, including ATP attacking water (W1), into an orientation capable of hydrolysis. We previously showed that by using a human cardiac muscle a-actin expression system, mutations in the Pro-rich loop residues (A108G and P109A) and in a residue that was hydrogen-bonded to W1 (Q137A) affect the rate of polymerization and ATP hydrolysis. Here, we report the crystal structures of the three mutant actins bound to AMPPNP or ADP-P-i determined at a resolution of 1.35-1.55( )angstrom, which are stabilized in the F-form conformation with the aid of the fragmin F1 domain. In A108G, His161 remained non-flipped despite the global actin conformation adopting the F-form, demonstrating that the side chain of His161 is flipped to avoid a steric clash with the methyl group of A108. Because of the non-flipped His161, W1 was located away from ATP, similar to G-actin, which was accompanied by incomplete hydrolysis. In P109A, the absence of the bulky proline ring allowed His161 to be positioned near the Pro-rich loop, with a minor influence on ATPase activity. In Q137A, two water molecules replaced the side-chain oxygen and nitrogen of Gln137 almost exactly at their positions; consequently, the active site structure, including the W1 position, is essentially conserved. This seemingly contradictory observation to the reported low ATPase activity of the Q137A filament could be attributed to a high fluctuation of the active site water. Together, our results suggest that the elaborate structural design of the active site residues ensures the precise control of the ATPase activity of actin. en-copyright= kn-copyright= en-aut-name=IwasaMitsusada en-aut-sei=Iwasa en-aut-mei=Mitsusada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakedaShuichi en-aut-sei=Takeda en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaritaAkihiro en-aut-sei=Narita en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaYuichiro en-aut-sei=Maeda en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OdaToshiro en-aut-sei=Oda en-aut-mei=Toshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Informatics, Nagoya University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=3 en-affil=Structural Biology Research Center, Graduate School of Science, Nagoya University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=5 en-affil=Faculty of Health and Welfare, Tokai Gakuin University kn-affil= en-keyword=MD simulation kn-keyword=MD simulation en-keyword=actin kn-keyword=actin en-keyword=water dynamics kn-keyword=water dynamics en-keyword=ATP hydrolysis kn-keyword=ATP hydrolysis en-keyword=X-ray structure kn-keyword=X-ray structure en-keyword=baculovirus expression kn-keyword=baculovirus expression END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=1072106 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230316 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of cancer-associated fibroblasts on survival of patients with ampullary carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Cancer-associated fibroblasts (CAFs) reportedly enhance the progression of gastrointestinal surgery; however, the role of CAFs in ampullary carcinomas remains poorly examined. This study aimed to investigate the effect of CAFs on the survival of patients with ampullary carcinoma.
Materials and methods: A retrospective analysis of 67 patients who underwent pancreatoduodenectomy between January 2000 and December 2021 was performed. CAFs were defined as spindle-shaped cells that expressed alpha-smooth muscle actin (alpha-SMA) and fibroblast activation protein (FAP). The impact of CAFs on survival, including recurrence-free (RFS) and disease-specific survival (DSS), as well as prognostic factors associated with survival, was analyzed.
Results: The high-alpha-SMA group had significantly worse 5-year RFS (47.6% vs. 82.2%, p = 0.003) and 5-year DSS (67.5% vs. 93.3%, p = 0.01) than the low-alpha-SMA group. RFS (p = 0.04) and DSS (p = 0.02) in the high-FAP group were significantly worse than those in the low-FAP group. Multivariable analyses found that high alpha-SMA expression was an independent predictor of RFS [hazard ratio (HR): 3.68; 95% confidence intervals (CI): 1.21-12.4; p = 0.02] and DSS (HR: 8.54; 95% CI: 1.21-170; p = 0.03).
Conclusions: CAFs, particularly alpha-SMA, can be useful predictors of survival in patients undergoing radical resection for ampullary carcinomas. en-copyright= kn-copyright= en-aut-name=TakagiKosei en-aut-sei=Takagi en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaiYasuo en-aut-sei=Nagai en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaRyuichi en-aut-sei=Yoshida en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiTomokazu en-aut-sei=Fuji en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YasuiKazuya en-aut-sei=Yasui en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KashimaHajime en-aut-sei=Kashima en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YagiTakahito en-aut-sei=Yagi en-aut-mei=Takahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=ampullary carcinoma kn-keyword=ampullary carcinoma en-keyword=carcinomas of the papilla of Vater kn-keyword=carcinomas of the papilla of Vater en-keyword=cancer-associated fibroblast kn-keyword=cancer-associated fibroblast en-keyword=outcome kn-keyword=outcome en-keyword=survival kn-keyword=survival en-keyword=recurrence kn-keyword=recurrence END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=1127053 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230328 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of the association of birth order and group childcare attendance with Kawasaki disease using data from a nationwide longitudinal survey en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Kawasaki disease (KD) is a form of pediatric systemic vasculitis. Although the etiology remains unclear, infections have been identified as possible triggers. Children with a later birth order and those who attend childcare are at a higher risk of infections due to exposure to pathogens from their older siblings and other childcare attendees. However, longitudinal studies exploring these associations are limited. Thus, we aimed to elucidate the relationship between birth order, group childcare attendance, and KD, using a nationwide longitudinal survey in Japan.
Methods: In total, 36,885 children born in Japan in 2010 were included. The survey used questionnaires to identify hospitalized cases of KD. We evaluated the relationship between birth order classification, group childcare attendance, and KD prevalence every year, from 6 to 66 months of age. For each outcome, odds ratios (ORs), and 95% confidence intervals (CIs) were estimated after adjusting for child factors, parental factors, and region of residence.
Results: Children with higher birth orders were more likely to be hospitalized with KD at 6-18 months of age (second child OR: 1.77, 95% CI: 1.25-2.51; third child OR: 1.70, 95% CI: 1.08-2.65). This trend was stronger for children who did not attend group childcare (second child OR: 2.51, 95% CI: 1.57-4.01; third child OR: 2.41, 95% CI: 1.30-4.43). An increased risk of KD hospitalization owing to the birth order was not observed in any age group for children in the childcare group.
Conclusions: Children with higher birth orders were at high risk for hospitalization due to KD at 6-18 months of age. The effect of birth order was more prominent among the children who did not attend group childcare. en-copyright= kn-copyright= en-aut-name=NambaTakahiro en-aut-sei=Namba en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiAkihito en-aut-sei=Takeuchi en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neonatology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=3 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Kawasaki disease (KD) kn-keyword=Kawasaki disease (KD) en-keyword=birth order kn-keyword=birth order en-keyword=group childcare kn-keyword=group childcare en-keyword=infectious diseases kn-keyword=infectious diseases en-keyword=vasculitis kn-keyword=vasculitis END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1132983 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230309 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of oral microbiota on pathophysiology of GVHD en-subtitle= kn-subtitle= en-abstract= kn-abstract=Allogeneic transplantation of hematopoietic cells is the only curative therapy for several hematopoietic disease in which patients receive cytotoxic conditioning regimens followed by infusion of hematopoietic stem cells. Although the outcomes have improved over the past decades, graft-versus-host-disease (GVHD), the most common life-threatening complication, remains a major cause of non-relapse morbidity and mortality. Pathophysiology of acute GVHD characterized by host antigen-presenting cells after tissue damage and donor T-cells is well studied, and additionally the importance of recipient microbiota in the intestine is elucidated in the GVHD setting. Oral microbiota is the second most abundant bacterial flora in the body after the intestinal tract, and it is related to chronic inflammation and carcinogenesis. Recently, composition of the oral microbiome in GVHD related to transplantation has been characterized and several common patterns, dysbiosis and enrichment of the specific bacterial groups, have been reported. This review focuses on the role of the oral microbiota in the context of GVHD. en-copyright= kn-copyright= en-aut-name=YamamotoAkira en-aut-sei=Yamamoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KambaraYui en-aut-sei=Kambara en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= en-keyword=oral microbiota kn-keyword=oral microbiota en-keyword=GvHD kn-keyword=GvHD en-keyword=dysbiosis kn-keyword=dysbiosis en-keyword=allogeneic transplantation of hematopoietic cells kn-keyword=allogeneic transplantation of hematopoietic cells en-keyword=prediction kn-keyword=prediction en-keyword=HSCT kn-keyword=HSCT END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=1142886 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230223 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LOXL1 and LOXL4 are novel target genes of the Zn2+-bound form of ZEB1 and play a crucial role in the acceleration of invasive events in triple-negative breast cancer cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: EMT has been proposed to be a crucial early event in cancer metastasis. EMT is rigidly regulated by the action of several EMT-core transcription factors, particularly ZEB1. We previously revealed an unusual role of ZEB1 in the S100A8/A9-mediated metastasis in breast cancer cells that expressed ZEB1 at a significant level and showed that the ZEB1 was activated on the MCAM-downstream pathway upon S100A8/A9 binding. ZEB1 is well known to require Zn2+ for its activation based on the presence of several Zn-finger motifs in the transcription factor. However, how Zn2+-binding works on the pleiotropic role of ZEB1 through cancer progression has not been fully elucidated.
Methods: We established the engineered cells, MDA-MB-231 MutZEB1 (MDA-MutZEB1), that stably express MutZEB1 (Delta Zn). The cells were then evaluated in vitro for their invasion activities. Finally, an RNA-Seq analysis was performed to compare the gene alteration profiles of the established cells comprehensively.
Results: MDA-MutZEB1 showed a significant loss of the EMT, ultimately stalling the invasion. Inclusive analysis of the transcription changes after the expression of MutZEB1 (Delta Zn) in MDA-MB-231 cells revealed the significant downregulation of LOX family genes, which are known to play a critical role in cancer metastasis. We found that LOXL1 and LOXL4 remarkably enhanced cancer invasiveness among the LOX family genes with altered expression.
Conclusions: These findings indicate that ZEB1 potentiates Zn2+-mediated transcription of plural EMT-relevant factors, including LOXL1 and LOXL4, whose upregulation plays a critical role in the invasive dissemination of breast cancer cells. en-copyright= kn-copyright= en-aut-name=HirabayashiDaisuke en-aut-sei=Hirabayashi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoKen-ichi en-aut-sei=Yamamoto en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaruyamaAkihiro en-aut-sei=Maruyama en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KomalasariNi Luh Gede Yoni en-aut-sei=Komalasari en-aut-mei=Ni Luh Gede Yoni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=GoharaYuma en-aut-sei=Gohara en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ZhouJin en-aut-sei=Zhou en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=RumaI. Made Winarsa en-aut-sei=Ruma en-aut-mei=I. Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SumardikaI. Wayan en-aut-sei=Sumardika en-aut-mei=I. Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KuribayashiFutoshi en-aut-sei=Kuribayashi en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University kn-affil= affil-num=7 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology kn-affil= affil-num=12 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=13 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=14 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=15 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=16 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=18 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=epithelial-to-mesenchymal transition kn-keyword=epithelial-to-mesenchymal transition en-keyword=triple-negative breast cancer kn-keyword=triple-negative breast cancer en-keyword=zinc kn-keyword=zinc en-keyword=ZEB1 kn-keyword=ZEB1 en-keyword=metastasis kn-keyword=metastasis END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1120710 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230223 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=E3-ubiquitin ligases and recent progress in osteoimmunology en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ubiquitin-mediated proteasomal degradation is a post-transcriptional protein modification that is comprised of various components including the 76-amino acid protein ubiquitin (Ub), Ub-activating enzyme (E1), Ub-conjugating enzyme (E2), ubiquitin ligase (E3), deubiquitinating enzyme (DUB) and proteasome. We and others have recently provided genetic evidence showing that E3-ubiquitin ligases are associated with bone metabolism, the immune system and inflammation through ubiquitylation and subsequent degradation of their substrates. Dysregulation of the E3-ubiquitin ligase RNF146-mediated degradation of the adaptor protein 3BP2 (SH3 domain-binding protein 2) causes cherubism, an autosomal dominant disorder associated with severe inflammatory craniofacial dysmorphia syndrome in children. In this review, on the basis of our discoveries in cherubism, we summarize new insights into the roles of E3-ubiquitin ligases in the development of human disorders caused by an abnormal osteoimmune system by highlighting recent genetic evidence obtained in both human and animal model studies. en-copyright= kn-copyright= en-aut-name=AsanoYosuke en-aut-sei=Asano en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RottapelRobert en-aut-sei=Rottapel en-aut-mei=Robert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Princess Margaret Cancer Center, University Health Network, University of Toronto kn-affil= en-keyword=E3-ubiquitin ligases kn-keyword=E3-ubiquitin ligases en-keyword=ubiquitylation kn-keyword=ubiquitylation en-keyword=proteasomal degradation kn-keyword=proteasomal degradation en-keyword=osteoimmunology kn-keyword=osteoimmunology en-keyword=cherubism kn-keyword=cherubism END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue= article-no= start-page=960607 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A method for reconstruction of interpretable brain networks from transient synchronization in resting-state BOLD fluctuations en-subtitle= kn-subtitle= en-abstract= kn-abstract=Resting-state (rs) fMRI has been widely used to examine brain-wide large-scale spatiotemporal architectures, known as resting-state networks (RSNs). Recent studies have focused on the temporally evolving characteristics of RSNs, but it is unclear what temporal characteristics are reflected in the networks. To address this issue, we devised a novel method for voxel-based visualization of spatiotemporal characteristics of rs-fMRI with a time scale of tens of seconds. We first extracted clusters of dominant activity-patterns using a region-of-interest approach and then used these temporal patterns of the clusters to obtain voxel-based activation patterns related to the clusters. We found that activation patterns related to the clusters temporally evolved with a characteristic temporal structure and showed mutual temporal alternations over minutes. The voxel-based representation allowed the decoding of activation patterns of the clusters in rs-fMRI using a meta-analysis of functional activations. The activation patterns of the clusters were correlated with behavioral measures. Taken together, our analysis highlights a novel approach to examine brain activity dynamics during rest. en-copyright= kn-copyright= en-aut-name=NoroYusuke en-aut-sei=Noro en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiRuixiang en-aut-sei=Li en-aut-mei=Ruixiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiTeppei en-aut-sei=Matsui en-aut-mei=Teppei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=JimuraKoji en-aut-sei=Jimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biosciences and Informatics, Keio University kn-affil= affil-num=2 en-affil=Department of Physiology, The University of Tokyo School of Medicine kn-affil= affil-num=3 en-affil=Department of Biology, Okayama University kn-affil= affil-num=4 en-affil=Department of Informatics, Gunma University kn-affil= en-keyword=resting-state fMRI kn-keyword=resting-state fMRI en-keyword=task fMRI kn-keyword=task fMRI en-keyword=temporal dynamics kn-keyword=temporal dynamics en-keyword=individual difference kn-keyword=individual difference en-keyword=Human Connectome Project kn-keyword=Human Connectome Project END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=977049 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Does ESG investment reduce carbon emissions in China? en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study explores the relationship between ESG investments and carbon emissions in China. Our results show that 1% increase in environmental investments would cause 0.246% decrease in CO2 emissions and 0.558% decrease in carbon emission intensity. The impact of ESG investment is heterogeneous across the developed and underdeveloped regions. Environmental investments in the advanced eastern region have significantly improved carbon productivity. In contrast, environmental investments in the central and western regions significantly reduced carbon emissions, but they have little impact on carbon productivity. en-copyright= kn-copyright= en-aut-name=CongYingnan en-aut-sei=Cong en-aut-mei=Yingnan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhuChen en-aut-sei=Zhu en-aut-mei=Chen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HouYufei en-aut-sei=Hou en-aut-mei=Yufei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TianShuairu en-aut-sei=Tian en-aut-mei=Shuairu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=CaiXiaojing en-aut-sei=Cai en-aut-mei=Xiaojing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Business School, China University of Political Science and Law kn-affil= affil-num=2 en-affil=Business School, China University of Political Science and Law kn-affil= affil-num=3 en-affil=Business School, China University of Political Science and Law kn-affil= affil-num=4 en-affil=Research Center of Finance, Shanghai Business School kn-affil= affil-num=5 en-affil=Graduate School of Humanities and Social Sciences, Okayama University kn-affil= en-keyword=ESG investment kn-keyword=ESG investment en-keyword=carbon emission kn-keyword=carbon emission en-keyword=carbon productivity kn-keyword=carbon productivity en-keyword=regional effect kn-keyword=regional effect en-keyword=green transition kn-keyword=green transition END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=992198 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220909 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recruitment of Irgb6 to the membrane is a direct trigger for membrane deformation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Irgb6 is a member of interferon gamma-induced immunity related GTPase (IRG), and one of twenty "effector" IRGs, which coordinately attack parasitophorous vacuole membrane (PVM), causing death of intracellular pathogen. Although Irgb6 plays a pivotal role as a pioneer in the process of PVM disruption, the direct effect of Irgb6 on membrane remained to be elucidated. Here, we utilized artificial lipid membranes to reconstitute Irgb6-membrane interaction in vitro, and revealed that Irgb6 directly deformed the membranes. Liposomes incubated with recombinant Irgb6 were drastically deformed generating massive tubular protrusions in the absence of guanine nucleotide, or with GMP-PNP. Liposome deformation was abolished by incubating with Irgb6-K275A/R371A, point mutations at membrane targeting residues. The membrane tubules generated by Irgb6 were mostly disappeared by the addition of GTP or GDP, which are caused by detachment of Irgb6 from membrane. Binding of Irgb6 to the membrane, which was reconstituted in vitro using lipid monolayer, was stimulated at GTP-bound state. Irgb6 GTPase activity was stimulated by the presence of liposomes more than eightfold. Irgb6 GTPase activity in the absence of membrane was also slightly stimulated, by lowering ionic strength, or by increasing protein concentration, indicating synergistic stimulation of the GTPase activity. These results suggest that membrane targeting of Irgb6 and resulting membrane deformation does not require GTP, but converting into GTP-bound state is crucial for detaching Irgb6 from the membrane, which might coincident with local membrane disruption. en-copyright= kn-copyright= en-aut-name=YamadaHiroshi en-aut-sei=Yamada en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbeTadashi en-aut-sei=Abe en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaokaHikaru en-aut-sei=Nagaoka en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakashimaEizo en-aut-sei=Takashima en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NittaRyo en-aut-sei=Nitta en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoMasahiro en-aut-sei=Yamamoto en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakeiKohji en-aut-sei=Takei en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University kn-affil= affil-num=4 en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University kn-affil= affil-num=5 en-affil=Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University kn-affil= affil-num=7 en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=IFN-inducible GTPase kn-keyword=IFN-inducible GTPase en-keyword=Irgb6 kn-keyword=Irgb6 en-keyword=GTPase kn-keyword=GTPase en-keyword=membrane kn-keyword=membrane en-keyword=T kn-keyword=T en-keyword=gondii kn-keyword=gondii END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=891925 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Responses of regulatory and effector T-cells to low-dose interleukin-2 differ depending on the immune environment after allogeneic stem cell transplantation en-subtitle= kn-subtitle= en-abstract= kn-abstract=CD4(+)Foxp3(+) regulatory T cells (Tregs) play a central role in the maintenance of immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT). Tregs promptly respond to low concentrations of IL-2 through the constitutive expression of high-affinity IL-2 receptors. It has been reported that low-dose IL-2 therapy increased circulating Tregs and improved clinical symptoms of chronic GVHD. Clinical studies of IL-2 therapy so far have mainly targeted patients in the chronic phase of transplantation when acute immune responses has subsided. However, the biological and clinical effects of exogenous IL-2 in an acute immune environment have not been well investigated. In the current study, we investigated the impact of exogenous IL-2 therapy on the post-transplant homeostasis of T cell subsets which influence the balance between GVHD and GVL in the acute phase, by setting the various immune environments early after HSCT in murine model. We initially found that 5,000 IU of IL-2 was enough to induce the active proliferation of Treg without influencing other conventional T cells (Tcons) when administered to normal mice. However, activated Tcons showed the response to the same dose of IL-2 in recipients after allogeneic HSCT. In a mild inflammatory environment within a threshold, exogenous IL-2 could effectively modulate Treg homeostasis with just limited influence to activated T cells, which resulted in an efficient GVHD suppression. In contrast, in a severely inflammatory environment, exogenous IL-2 enhanced activated T cells rather than Tregs, which resulted in the exacerbation of GVHD. Of interest, in an immune-tolerant state after transplant, exogenous IL-2 triggered effector T-cells to exert an anti-tumor effect with maintaining GVHD suppression. These data suggested that the responses of Tregs and effector T cells to exogenous IL-2 differ depending on the immune environment in the host, and the mutual balance of the response to IL-2 between T-cell subsets modulates GVHD and GVL after HSCT. Our findings may provide useful information in the optimization of IL-2 therapy, which may be personalized for each patient having different immune status. en-copyright= kn-copyright= en-aut-name=MeguriYusuke en-aut-sei=Meguri en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsanoTakeru en-aut-sei=Asano en-aut-mei=Takeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiokaTakanori en-aut-sei=Yoshioka en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwamotoMiki en-aut-sei=Iwamoto en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkegawaShuntaro en-aut-sei=Ikegawa en-aut-mei=Shuntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugiuraHiroyuki en-aut-sei=Sugiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KishiYuriko en-aut-sei=Kishi en-aut-mei=Yuriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraMakoto en-aut-sei=Nakamura en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SandoYasuhisa en-aut-sei=Sando en-aut-mei=Yasuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SumiiYuichi en-aut-sei=Sumii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MatsuokaKen-Ichi en-aut-sei=Matsuoka en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=regulatory T cell kn-keyword=regulatory T cell en-keyword=low-dose interleukin-2 therapy kn-keyword=low-dose interleukin-2 therapy en-keyword=graft-versus-host disease kn-keyword=graft-versus-host disease en-keyword=graft-versus-leukemia effect kn-keyword=graft-versus-leukemia effect en-keyword=transplantation tolerance kn-keyword=transplantation tolerance END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=802938 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220316 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Counterfactual Explanation of Brain Activity Classifiers Using Image-To-Image Transfer by Generative Adversarial Network en-subtitle= kn-subtitle= en-abstract= kn-abstract=Deep neural networks (DNNs) can accurately decode task-related information from brain activations. However, because of the non-linearity of DNNs, it is generally difficult to explain how and why they assign certain behavioral tasks to given brain activations, either correctly or incorrectly. One of the promising approaches for explaining such a black-box system is counterfactual explanation. In this framework, the behavior of a black-box system is explained by comparing real data and realistic synthetic data that are specifically generated such that the black-box system outputs an unreal outcome. The explanation of the system's decision can be explained by directly comparing the real and synthetic data. Recently, by taking advantage of advances in DNN-based image-to-image translation, several studies successfully applied counterfactual explanation to image domains. In principle, the same approach could be used in functional magnetic resonance imaging (fMRI) data. Because fMRI datasets often contain multiple classes (e.g., multiple behavioral tasks), the image-to-image transformation applicable to counterfactual explanation needs to learn mapping among multiple classes simultaneously. Recently, a new generative neural network (StarGAN) that enables image-to-image transformation among multiple classes has been developed. By adapting StarGAN with some modifications, here, we introduce a novel generative DNN (counterfactual activation generator, CAG) that can provide counterfactual explanations for DNN-based classifiers of brain activations. Importantly, CAG can simultaneously handle image transformation among all the seven classes in a publicly available fMRI dataset. Thus, CAG could provide a counterfactual explanation of DNN-based multiclass classifiers of brain activations. Furthermore, iterative applications of CAG were able to enhance and extract subtle spatial brain activity patterns that affected the classifier's decisions. Together, these results demonstrate that the counterfactual explanation based on image-to-image transformation would be a promising approach to understand and extend the current application of DNNs in fMRI analyses. en-copyright= kn-copyright= en-aut-name=MatsuiTeppei en-aut-sei=Matsui en-aut-mei=Teppei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakiMasato en-aut-sei=Taki en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PhamTrung Quang en-aut-sei=Pham en-aut-mei=Trung Quang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChikazoeJunichi en-aut-sei=Chikazoe en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=JimuraKoji en-aut-sei=Jimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Biology, Okayama University kn-affil= affil-num=2 en-affil= Graduate School of Artificial Intelligence and Science, Rikkyo University kn-affil= affil-num=3 en-affil=Supportive Center for Brain Research, National Institute for Physiological Sciences kn-affil= affil-num=4 en-affil=Supportive Center for Brain Research, National Institute for Physiological Sciences kn-affil= affil-num=5 en-affil=Department of Biosciences and Informatics, Keio University kn-affil= en-keyword=fMRI kn-keyword=fMRI en-keyword=deep learning kn-keyword=deep learning en-keyword=explainable AI kn-keyword=explainable AI en-keyword=decoding kn-keyword=decoding en-keyword=generative neural network kn-keyword=generative neural network en-keyword=counterfactual explanation kn-keyword=counterfactual explanation END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=740610 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211006 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comprehensive Comparative Genomics and Phenotyping of Methylobacterium Species en-subtitle= kn-subtitle= en-abstract= kn-abstract=The pink-pigmented facultative methylotrophs (PPFMs), a major bacterial group found in the plant phyllosphere, comprise two genera: Methylobacterium and Methylorubrum. They have been separated into three major clades: A, B (Methylorubrum), and C. Within these genera, however, some species lack either pigmentation or methylotrophy, which raises the question of what actually defines the PPFMs. The present study employed a comprehensive comparative genomics approach to reveal the phylogenetic relationship among the PPFMs and to explain the genotypic differences that confer their different phenotypes. We newly sequenced the genomes of 29 relevant-type strains to complete a dataset for almost all validly published species in the genera. Through comparative analysis, we revealed that methylotrophy, nitrate utilization, and anoxygenic photosynthesis are hallmarks differentiating the PPFMs from the other Methylobacteriaceae. The Methylobacterium species in clade A, including the type species Methylobacterium organophilum, were phylogenetically classified into six subclades, each possessing relatively high genomic homology and shared phenotypic characteristics. One of these subclades is phylogenetically close to Methylorubrum species; this finding led us to reunite the two genera into a single genus Methylobacterium. Clade C, meanwhile, is composed of phylogenetically distinct species that share relatively higher percent G+C content and larger genome sizes, including larger numbers of secondary metabolite clusters. Most species of clade C and some of clade A have the glutathione-dependent pathway for formaldehyde oxidation in addition to the H4MPT pathway. Some species cannot utilize methanol due to their lack of MxaF-type methanol dehydrogenase (MDH), but most harbor an XoxF-type MDH that enables growth on methanol in the presence of lanthanum. The genomes of PPFMs encode between two and seven (average 3.7) genes for pyrroloquinoline quinone-dependent alcohol dehydrogenases, and their phylogeny is distinctly correlated with their genomic phylogeny. All PPFMs were capable of synthesizing auxin and did not induce any immune response in rice cells. Other phenotypes including sugar utilization, antibiotic resistance, and antifungal activity correlated with their phylogenetic relationship. This study provides the first inclusive genotypic insight into the phylogeny and phenotypes of PPFMs. en-copyright= kn-copyright= en-aut-name=AlessaOla en-aut-sei=Alessa en-aut-mei=Ola kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OguraYoshitoshi en-aut-sei=Ogura en-aut-mei=Yoshitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujitaniYoshiko en-aut-sei=Fujitani en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakamiHideto en-aut-sei=Takami en-aut-mei=Hideto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HayashiTetsuya en-aut-sei=Hayashi en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SahinNurettin en-aut-sei=Sahin en-aut-mei=Nurettin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=6 en-affil=Egitim Fakultesi, Mugla Sitki Kocman University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Methylobacterium kn-keyword=Methylobacterium en-keyword=comparative genomics kn-keyword=comparative genomics en-keyword=methylotroph kn-keyword=methylotroph en-keyword=methanol dehydrogenase kn-keyword=methanol dehydrogenase en-keyword=Methylorubrum kn-keyword=Methylorubrum END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=571369 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210127 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stimulus Intervals Modulate the Balance of Brain Activity in the Human Primary Somatosensory Cortex: An ERP Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Neuronal excitation and inhibition occur in the brain at the same time, and brain activation reflects changes in the sum of excitation and inhibition. This principle has been well-established in lower-level sensory systems, including vision and touch, based on animal studies. However, it is unclear how the somatosensory system processes the balance between excitation and inhibition. In the present ERP study, we modified the traditional spatial attention paradigm by adding double stimuli presentations at short intervals (i.e., 10, 30, and 100 ms). Seventeen subjects participated in the experiment. Five types of stimulation were used in the experiment: a single stimulus (one raised pin for 40 ms), standard stimulus (eight pins for 40 ms), and double stimuli presented at intervals of 10, 30, and 100 ms. The subjects were asked to attend to a particular finger and detect whether the standard stimulus was presented to that finger. The results showed a clear attention-related ERP component in the single stimulus condition, but the suppression components associated with the three interval conditions seemed to be dominant in somatosensory areas. In particular, we found the strongest suppression effect in the ISI-30 condition (interval of 30 ms) and that the suppression and enhancement effects seemed to be counterbalanced in both the ISI-10 and ISI-100 conditions (intervals of 10 and 100 ms, respectively). This type of processing may allow humans to easily discriminate between multiple stimuli on the same body part. en-copyright= kn-copyright= en-aut-name=LiuYang en-aut-sei=Liu en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DongBo en-aut-sei=Dong en-aut-mei=Bo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YangJiajia en-aut-sei=Yang en-aut-mei=Jiajia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EjimaYoshimichi en-aut-sei=Ejima en-aut-mei=Yoshimichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WuJinglong en-aut-sei=Wu en-aut-mei=Jinglong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WuQiong en-aut-sei=Wu en-aut-mei=Qiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangMing en-aut-sei=Zhang en-aut-mei=Ming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Psychology, Suzhou University of Science and Technology kn-affil= affil-num=2 en-affil=Department of Psychology, Suzhou University of Science and Technology kn-affil= affil-num=3 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=traditional spatial attention paradigm kn-keyword=traditional spatial attention paradigm en-keyword=ERP kn-keyword=ERP en-keyword=interstimulus interval kn-keyword=interstimulus interval en-keyword=enhancement and suppression kn-keyword=enhancement and suppression en-keyword=primary somatosensory cortex kn-keyword=primary somatosensory cortex END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=616141 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210126 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deletion of Mir223 Exacerbates Lupus Nephritis by Targeting S1pr1 in Fas(lpr/lpr) Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: The micro RNAs (miRNAs) and their target mRNAs are differentially expressed in various immune-mediated cells. Here, we investigated the role of Mir223 and sphingosine-1-phosphate receptor 1 (S1pr1) in the pathogenesis of systemic lupus erythematosus.
Methods: We analyzed miRNA and mRNA profiling data of CD4+ splenic T cells derived from MRL/MpJ-Faslpr/J mice. We performed 3 untranslated region (UTR) luciferase reporter gene assay using human umbilical vein endothelial cells (HUVECs). We generated the B6-Mir223?/?Faslpr/lpr mice and the lupus phenotypes were analyzed.
Results: In CD4+ splenic T cells, we identified upregulation of miR-223-3p and downregulation of the possible target, S1pr1 by RNA sequencing of MRL/MpJ-Faslpr/J mice. The transfection with miR-223-3p mimic significantly suppressed a luciferase activity in HUVEC treated with a Lentivirus vector containing 3 UTR of S1pr1. The mRNA levels of S1pr1 were significantly decreased after miR-223-3p overexpression. In B6-Mir223?/?Faslpr/lpr mice, the proportion of CD3+ T cells, CD3+CD4-CD8? cells, B cells, plasma cells, and S1PR1+CD4+ T cells in the spleen was significantly increased compared with that in B6-Mir223+/+Faslpr/lpr mice by flow cytometry. B6-Mir223?/?Faslpr/lpr mice demonstrated the elevation of glomerular and renal vascular scores associated with enhanced intraglomerular infiltration of S1PR1+CD4+ T cells.
Conclusion: Unexpectedly, the deletion of Mir223 exacerbated the lupus phenotypes associated with increased population of S1PR1+CD4+ T in spleen and the enhanced infiltration of S1PR1+CD4+ T cells in inflamed kidney tissues, suggesting compensatory role of Mir223 in the pathogenesis of lupus nephritis. en-copyright= kn-copyright= en-aut-name=Hiramatsu-AsanoSumie en-aut-sei=Hiramatsu-Asano en-aut-mei=Sumie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Sunahori-WatanabeKatsue en-aut-sei=Sunahori-Watanabe en-aut-mei=Katsue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZeggarSonia en-aut-sei=Zeggar en-aut-mei=Sonia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuyamaEri en-aut-sei=Katsuyama en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MukaiTomoyuki en-aut-sei=Mukai en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoritaYoshitaka en-aut-sei=Morita en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Rheumatology, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Rheumatology, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=miR-223-3p kn-keyword=miR-223-3p en-keyword=S1pr1 kn-keyword=S1pr1 en-keyword=S1PR1(+)CD4(+) T cells kn-keyword=S1PR1(+)CD4(+) T cells en-keyword=lupus nephritis kn-keyword=lupus nephritis en-keyword=MRL/MpJ-Faslpr/J mice kn-keyword=MRL/MpJ-Faslpr/J mice END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=610124 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cytosolic Free N-Glycans Are Retro-Transported Into the Endoplasmic Reticulum in Plant Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=During endoplasmic reticulum (ER)-associated degradation, free N-glycans (FNGs) are produced from misfolded nascent glycoproteins via the combination of the cytosolic peptide N-glycanase (cPNGase) and endo-beta-N-acetylglucosaminidase (ENGase) in the plant cytosol. The resulting high-mannose type (HMT)-FNGs, which carry one GlcNAc residue at the reducing end (GN1-FNGs), are ubiquitously found in developing plant cells. In a previous study, we found that HMT-FNGs assisted in protein folding and inhibited beta-amyloid fibril formation, suggesting a possible biofunction of FNGs involved in the protein folding system. However, whether these HMT-FNGs occur in the ER, an organelle involved in protein folding, remained unclear. On the contrary, we also reported the presence of plant complex type (PCT)-GN1-FNGs, which carry the Lewis(a) epitope at the non-reducing end, indicating that these FNGs had been fully processed in the Golgi apparatus. Since plant ENGase was active toward HMT-N-glycans but not PCT-N-glycans that carry beta 1-2xylosyl and/or alpha 1-3 fucosyl residue(s), these PCT-GN1-FNGs did not appear to be produced from fully processed glycoproteins that harbored PCT-N-glycans via ENGase activity. Interestingly, PCT-GN1-FNGs were found in the extracellular space, suggesting that HMT-GN1-FNGs formed in the cytosol might be transported back to the ER and processed in the Golgi apparatus through the protein secretion pathway. As the first step in elucidating the production mechanism of PCT-GN1-FNGs, we analyzed the structures of free oligosaccharides in plant microsomes and proved that HMT-FNGs (Man(9-7)GlcNAc(1) and Man(9-8)GlcNAc(2)) could be found in microsomes, which almost consist of the ER compartments. en-copyright= kn-copyright= en-aut-name=KatsubeMakoto en-aut-sei=Katsube en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EbaraNatsuki en-aut-sei=Ebara en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaedaMegumi en-aut-sei=Maeda en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KimuraYoshinobu en-aut-sei=Kimura en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=free N-glycans kn-keyword=free N-glycans en-keyword=ER-associated degradation kn-keyword=ER-associated degradation en-keyword=peptide:N-glycanase kn-keyword=peptide:N-glycanase en-keyword=endo-beta-N-acetylglucosaminidase kn-keyword=endo-beta-N-acetylglucosaminidase en-keyword=plant glycoproteins kn-keyword=plant glycoproteins END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=567249 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular Mechanism Underlying Derepressed Male Production in Hexaploid Persimmon en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sex expression in plants is often flexible and contributes to the maintenance of genetic diversity within a species. In diploid persimmons (the genus Diospyros), the sexuality is controlled by the Y chromosome-encoded small-RNA gene, OGI, and its autosomal counterpart, MeGI. Hexaploid Oriental persimmon (Diospyros kaki) evolved more flexible sex expression, where genetically male individuals carrying OGI can produce both male and female flowers (monoecy). This is due to (semi-)inactivation of OGI by the Kali-SINE retrotransposon insertion on the promoter region and the resultant DNA methylations. Instead, flower sex determination in Oriental persimmon is also dependent on DNA methylation states of MeGI. Here, we focused on a cultivar, Kumemaru, which shows stable male flower production. Our results demonstrated that cv. Kumemaru carries OGI with Kali-SINE, which was highly methylated as well as in other monoecious cultivars; nevertheless, OGI gene could have a basal expression level. Transcriptomic analysis between cv. Kumemaru and 14 cultivars that predominantly produce female flowers showed differentially expressed genes (DEGs) specific to cv. Kumemaru, which is mainly involved in stress responses. Co-expression gene networks focusing on the DEGs also suggested the involvement of stress signals, mainly via gibberellin (GA), salicylic acid (SA), and especially jasmonic acid (JA) signal pathways. We also identified potential regulators of this co-expression module, represented by the TCP4 transcription factor. Furthermore, we attempted to identify cv. Kumemaru-specific transcript polymorphisms potentially contributing to derepressed OGI expression by cataloging subsequences (k-mers) in the transcriptomic reads from cv. Kumemaru and the other 14 female cultivars. Overall, although the direct genetic factor to activate OGI remains to be solved, our results implied the involvement of stress signals in the release of silenced OGI and the resultant continuous male production. en-copyright= kn-copyright= en-aut-name=MasudaKanae en-aut-sei=Masuda en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujitaNaoko en-aut-sei=Fujita en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YangHo-Wen en-aut-sei=Yang en-aut-mei=Ho-Wen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuboYasutaka en-aut-sei=Kubo en-aut-mei=Yasutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaoRyutaro en-aut-sei=Tao en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagiTakashi en-aut-sei=Akagi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Crop Sciences, University of Illinois at Urbana-Champaign kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=monoecious kn-keyword=monoecious en-keyword=sex expression kn-keyword=sex expression en-keyword=polyploidy kn-keyword=polyploidy en-keyword=Oriental persimmon kn-keyword=Oriental persimmon en-keyword=co-expression network kn-keyword=co-expression network END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=574189 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of a Non-invasive Deep Brain Stimulator With Precise Positioning and Real-Time Monitoring of Bioimpedance en-subtitle= kn-subtitle= en-abstract= kn-abstract=Methods by which to achieve non-invasive deep brain stimulation via temporally interfering with electric fields have been proposed, but the precision of the positioning of the stimulation and the reliability and stability of the outputs require improvement. In this study, a temporally interfering electrical stimulator was developed based on a neuromodulation technique using the interference modulation waveform produced by several high-frequency electrical stimuli to treat neurodegenerative diseases. The device and auxiliary software constitute a non-invasive neuromodulation system. The technical problems related to the multichannel high-precision output of the device were solved by an analog phase accumulator and a special driving circuit to reduce crosstalk. The function of measuring bioimpedance in real time was integrated into the stimulator to improve effectiveness. Finite element simulation and phantom measurements were performed to find the functional relations among the target coordinates, current ratio, and electrode position in the simplified model. Then, an appropriate approach was proposed to find electrode configurations for desired target locations in a detailed and realistic mouse model. A mouse validation experiment was carried out under the guidance of a simulation, and the reliability and positioning accuracy of temporally interfering electric stimulators were verified. Stimulator improvement and precision positioning solutions promise opportunities for further studies of temporally interfering electrical stimulation. en-copyright= kn-copyright= en-aut-name=WangHeng en-aut-sei=Wang en-aut-mei=Heng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShiZhongyan en-aut-sei=Shi en-aut-mei=Zhongyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SunWeiqian en-aut-sei=Sun en-aut-mei=Weiqian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhangJianxu en-aut-sei=Zhang en-aut-mei=Jianxu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangJing en-aut-sei=Wang en-aut-mei=Jing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShiYue en-aut-sei=Shi en-aut-mei=Yue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YangRuoshui en-aut-sei=Yang en-aut-mei=Ruoshui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LiChunlin en-aut-sei=Li en-aut-mei=Chunlin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ChenDuanduan en-aut-sei=Chen en-aut-mei=Duanduan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WuJinglong en-aut-sei=Wu en-aut-mei=Jinglong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=GongyaoGuo en-aut-sei=Gongyao en-aut-mei=Guo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=XuYifei en-aut-sei=Xu en-aut-mei=Yifei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=School of Mechatronic Engineering, Beijing Institute of Technology kn-affil= affil-num=2 en-affil=School of Life Science, Beijing Institute of Technology kn-affil= affil-num=3 en-affil=School of Life Science, Beijing Institute of Technology kn-affil= affil-num=4 en-affil=School of Mechatronic Engineering, Beijing Institute of Technology kn-affil= affil-num=5 en-affil=Department of Health Management, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine kn-affil= affil-num=6 en-affil=Beijing Big-IQ Medical Equipment Co., Ltd. kn-affil= affil-num=7 en-affil=School of Mechatronic Engineering, Beijing Institute of Technology kn-affil= affil-num=8 en-affil=School of Biomedical Engineering, Capital Medical University kn-affil= affil-num=9 en-affil=School of Life Science, Beijing Institute of Technology kn-affil= affil-num=10 en-affil=School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=11 en-affil=School of Life Science, Beijing Institute of Technology kn-affil= affil-num=12 en-affil=School of Life Science, Beijing Institute of Technology kn-affil= en-keyword=electrical stimulation kn-keyword=electrical stimulation en-keyword=temporally interfering kn-keyword=temporally interfering en-keyword=finite element method kn-keyword=finite element method en-keyword=simulation kn-keyword=simulation en-keyword=mouse kn-keyword=mouse END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=554158 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201126 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Postharvest Properties of Ultra-Late Maturing Peach Cultivars and Their Attributions to Melting Flesh (M) Locus: Re-evaluation of M Locus in Association With Flesh Texture en-subtitle= kn-subtitle= en-abstract= kn-abstract=The postharvest properties of two ultra-late maturing peach cultivars, "Tobihaku" (TH) and "Daijumitsuto" (DJ), were investigated. Fruit were harvested at commercial maturity and held at 25 degrees C. TH exhibited the characteristics of normal melting flesh (MF) peach, including rapid fruit softening associated with appropriate level of endogenous ethylene production In contrast, DJ did not soften at all during 3 weeks experimental period even though considerable ethylene production was observed. Fruit of TH and DJ were treated with 5,000 ppm of propylene, an ethylene analog, continuously for 7 days. TH softened rapidly whereas DJ maintained high flesh firmness in spite of an increase in endogenous ethylene production, suggesting that DJ but not TH lacked the ability to be softened in response to endogenous and exogenous ethylene/propylene. DNA-seq analysis showed that tandem endo-polygalacturonase (endoPG) genes located at melting flesh (M) locus, Pp-endoPGM (PGM), and Pp-endoPGF (PGF), were deleted in DJ. The endoPG genes at M locus are known to control flesh texture of peach fruit, and it was suggested that the non-softening property of DJ is due to the lack of endoPG genes. On the other hand, TH possessed an unidentified M haplotype that is involved in determination of MF phenotype. Structural identification of the unknown M haplotype, designated as M-0, through comparison with previously reported M haplotypes revealed distinct differences between PGM on M-0 haplotype (PGM-M-0) and PGM on other haplotypes (PGM-M-1). Peach M haplotypes were classified into four main haplotypes: M-0 with PGM-M-0; M-1 with both PGM-M-1 and PGF; M-2 with PGM-M-1; and M-3 lacking both PGM and PGF. Re-evaluation of M locus in association with MF/non-melting flesh (NMF) phenotypes in more than 400 accessions by using whole genome shotgun sequencing data on database and/or by PCR genotyping demonstrated that M-0 haplotype was the common haplotype in MF accessions, and M-0 and M-1 haplotypes were dominant over M-2 and M-3 haplotypes and co-dominantly determined the MF trait. It was also assumed on the basis of structural comparison of M haplotypes among Prunus species that the ancestral haplotype of M-0 diverged from those of the other haplotypes before the speciation of Prunus persica. en-copyright= kn-copyright= en-aut-name=NakanoRyohei en-aut-sei=Nakano en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiTakashi en-aut-sei=Kawai en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukamatsuYosuke en-aut-sei=Fukamatsu en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkitaKagari en-aut-sei=Akita en-aut-mei=Kagari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeSakine en-aut-sei=Watanabe en-aut-mei=Sakine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AsanoTakahiro en-aut-sei=Asano en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakataDaisuke en-aut-sei=Takata en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SatoMamoru en-aut-sei=Sato en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FukudaFumio en-aut-sei=Fukuda en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Experimental Farm of Graduate School of Agriculture, Kyoto University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Food and Agricultural Sciences, Fukushima University kn-affil= affil-num=8 en-affil=Faculty of Food and Agricultural Sciences, Fukushima University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=fruit kn-keyword=fruit en-keyword=softening kn-keyword=softening en-keyword=ethylene kn-keyword=ethylene en-keyword=Prunus persica kn-keyword=Prunus persica en-keyword=melting flesh locus kn-keyword=melting flesh locus en-keyword=endoPG kn-keyword=endoPG en-keyword=postharvest kn-keyword=postharvest END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=592789 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201020 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular Characterization of a Novel Polymycovirus From Penicillium janthinellum With a Focus on Its Genome-Associated PASrp en-subtitle= kn-subtitle= en-abstract= kn-abstract=The genus Polymycovirus of the family Polymycoviridae accommodates fungal RNA viruses with different genomic segment numbers (four, five, or eight). It is suggested that four members form no true capsids and one forms filamentous virus particles enclosing double-stranded RNA (dsRNA). In both cases, viral dsRNA is associated with a viral protein termed "proline-alanine-serine-rich protein" (PASrp). These forms are assumed to be the infectious entity. However, the detailed molecular characteristics of PASrps remain unclear. Here, we identified a novel five-segmented polymycovirus, Penicillium janthinellum polymycovirus 1 (PjPmV1), and characterized its purified fraction form in detail. The PjPmV1 had five dsRNA segments associated with PASrp. Density gradient ultracentrifugation of the PASrp-associated PjPmV1 dsRNA revealed its uneven structure and a broad fractionation profile distinct from that of typical encapsidated viruses. Moreover, PjPmV1-PASrp interacted in vitro with various nucleic acids in a sequence-non-specific manner. These PjPmV1 features are discussed in view of the diversification of genomic segment numbers of the genus Polymycovirus. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JamalAtif en-aut-sei=Jamal en-aut-mei=Atif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Crop Diseases Research Institute, National Agricultural Research Centre kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=fungal virus kn-keyword=fungal virus en-keyword=RNA virus kn-keyword=RNA virus en-keyword=polymycovirus kn-keyword=polymycovirus en-keyword=Penicillium janthinellum kn-keyword=Penicillium janthinellum en-keyword=capsidless kn-keyword=capsidless en-keyword=multi-segmented kn-keyword=multi-segmented en-keyword=proline-alanine-serine rich protein kn-keyword=proline-alanine-serine rich protein END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=263 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200929 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhancing Working Memory Based on Mismatch Negativity Neurofeedback in Subjective Cognitive Decline Patients: A Preliminary Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mismatch negativity (MMN) is suitable for studies of preattentive auditory discriminability and the auditory memory trace. Subjective cognitive decline (SCD) is an ideal target for early therapeutic intervention because SCD occurs at preclinical stages many years before the onset of Alzheimer's disease (AD). According to a novel lifespan-based model of dementia risk, hearing loss is considered the greatest potentially modifiable risk factor of dementia among nine health and lifestyle factors, and hearing impairment is associated with cognitive decline. Therefore, we propose a neurofeedback training based on MMN, which is an objective index of auditory discriminability, to regulate sensory ability and memory as a non-pharmacological intervention (NPI) in SCD patients. Seventeen subjects meeting the standardized clinical evaluations for SCD received neurofeedback training. The auditory frequency discrimination test, the visual digital N-back (1-, 2-, and 3-back), auditory digital N-back (1-, 2-, and 3-back), and auditory tone N-back (1-, 2-, and 3-back) tasks were used pre- and post-training in all SCD patients. The intervention schedule comprised five 60-min training sessions over 2 weeks. The results indicate that the subjects who received neurofeedback training had successfully improved the amplitude of MMN at the parietal electrode (Pz). A slight decrease in the threshold of auditory frequency discrimination was observed after neurofeedback training. Notably, after neurofeedback training, the working memory (WM) performance was significantly enhanced in the auditory tone 3-back test. Moreover, improvements in the accuracy of all WM tests relative to the baseline were observed, although the changes were not significant. To the best of our knowledge, our preliminary study is the first to investigate the effects of MMN neurofeedback training on WM in SCD patients, and our results suggest that MMN neurofeedback may represent an effective treatment for intervention in SCD patients and the elderly with aging memory decline. en-copyright= kn-copyright= en-aut-name=PeiGuangying en-aut-sei=Pei en-aut-mei=Guangying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangRuoshui en-aut-sei=Yang en-aut-mei=Ruoshui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShiZhongyan en-aut-sei=Shi en-aut-mei=Zhongyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GuoGuoxin en-aut-sei=Guo en-aut-mei=Guoxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangShujie en-aut-sei=Wang en-aut-mei=Shujie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LiuMiaomiao en-aut-sei=Liu en-aut-mei=Miaomiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=QiuYuxiang en-aut-sei=Qiu en-aut-mei=Yuxiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WuJinglong en-aut-sei=Wu en-aut-mei=Jinglong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=GoRitsu en-aut-sei=Go en-aut-mei=Ritsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HanYin en-aut-sei=Han en-aut-mei=Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YanTianyi en-aut-sei=Yan en-aut-mei=Tianyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=School of Life Science, Beijing Institute of Technology kn-affil= affil-num=2 en-affil=School of Mechatronical Engineering, Beijing Institute of Technology kn-affil= affil-num=3 en-affil=School of Life Science, Beijing Institute of Technology kn-affil= affil-num=4 en-affil=School of Life Science, Beijing Institute of Technology kn-affil= affil-num=5 en-affil=School of Life Science, Beijing Institute of Technology kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=School of Life Science, Beijing Institute of Technology kn-affil= affil-num=8 en-affil=Faculty of Engineering, Okayama University kn-affil= affil-num=9 en-affil=School of Mechatronical Engineering, Beijing Institute of Technology kn-affil= affil-num=10 en-affil=Department of Neurology, Xuanwu Hospital, Capital Medical University kn-affil= affil-num=11 en-affil=School of Life Science, Beijing Institute of Technology kn-affil= en-keyword=mismatch negativity kn-keyword=mismatch negativity en-keyword=neurofeedback kn-keyword=neurofeedback en-keyword=working memory kn-keyword=working memory en-keyword=subjective cognitive decline kn-keyword=subjective cognitive decline en-keyword=Alzheimer's disease kn-keyword=Alzheimer's disease en-keyword=early intervention kn-keyword=early intervention END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=541 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200819 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Transcriptomic Analysis of the Kuruma PrawnMarsupenaeus japonicusReveals Possible Peripheral Regulation of the Ovary en-subtitle= kn-subtitle= en-abstract= kn-abstract=Crustacean reproduction has been hypothesized to be under complex endocrinological regulation by peptide hormones. To further improve our understanding of the mechanisms underlying this complex regulation, knowledge is needed regarding the hormones not only of the central nervous system (CNS) such as the X-organ/sinus gland (XOSG), brain, and thoracic ganglia, but also the peripheral gonadal tissues. For example, in vertebrates, some gonadal peptide hormones including activin, inhibin, follistatin, and relaxin are known to be involved in the reproductive physiology. Therefore, it is highly likely that some peptide factors from the ovary are serving as the signals among peripheral tissues and central nervous tissues in crustaceans. In this work, we sought to find gonadal peptide hormones and peptide hormone receptors by analyzing the transcriptome of the ovary of the kuruma prawnMarsupenaeus japonicus. The generated ovarian transcriptome data led to the identification of five possible peptide hormones, including bursicon-alpha and -beta, the crustacean hyperglycemic hormone (CHH)-like peptide, insulin-like peptide (ILP), and neuroparsin-like peptide (NPLP). Dominant gene expressions for the bursicons were observed in the thoracic ganglia and the ovary, in the CNS for the CHH-like peptide, in the heart for NPLP, and in the ovary for ILP. Since the gene expressions of CHH-like peptide and NPLP were affected by a CHH (Penaeus japonicussinus gland peptide-I) from XOSG, we produced recombinant peptides for CHH-like peptide and NPLP usingEscherichia coliexpression system to examine their possible peripheral regulation. As a result, we found that the recombinant NPLP increased vitellogenin gene expression in incubated ovarian tissue fragments. Moreover, contigs encoding putative receptors for insulin-like androgenic gland factor, insulin, neuroparsin, and neuropeptide Y/F, as well as several contigs encoding orphan G-protein coupled receptors and receptor-type guanylyl cyclases were also identified in the ovarian transcriptome. These results suggest that reproductive physiology in crustaceans is regulated by various gonadal peptide hormones, akin to vertebrates. en-copyright= kn-copyright= en-aut-name=TsutsuiNaoaki en-aut-sei=Tsutsui en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiYasuhisa en-aut-sei=Kobayashi en-aut-mei=Yasuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IzumikawaKouichi en-aut-sei=Izumikawa en-aut-mei=Kouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoTatsuya en-aut-sei=Sakamoto en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Science, Ushimado Marine Institute, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Science, Ushimado Marine Institute, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Fisheries Science, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries kn-affil= affil-num=4 en-affil=Faculty of Science, Ushimado Marine Institute, Okayama University kn-affil= en-keyword=peptide hormone kn-keyword=peptide hormone en-keyword=Marsupenaeus japonicus kn-keyword=Marsupenaeus japonicus en-keyword=ovary kn-keyword=ovary en-keyword=reproduction kn-keyword=reproduction en-keyword=transcriptome kn-keyword=transcriptome en-keyword=vitellogenesis kn-keyword=vitellogenesis END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=1461 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200714 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High Mobility Group Box 1 Expression in Oral Inflammation and Regeneration en-subtitle= kn-subtitle= en-abstract= kn-abstract=High mobility group box 1 (HMGB1) is a non-histone DNA-binding protein of about 30 kDa. It is released from a variety of cells into the extracellular milieu in response to inflammatory stimuli and acts on specific cell-surface receptors, such as receptors for advanced glycation end-products (RAGE), Toll-like receptor (TLR)2, TLR4, with or without forming a complex with other molecules. HMGB1 mediates various mechanisms such as inflammation, cell migration, proliferation, and differentiation. On the other hand, HMGB1 enhances chemotaxis acting through the C-X-C motif chemokine ligand (CXCL)12/C-X-C chemokine receptor (CXCR)4 axis and is involved in regeneration. In the oral cavity, high levels of HMGB1 have been detected in the gingival tissue from periodontitis and peri-implantitis patients, and it has been shown that secreted HMGB1 induces pro-inflammatory cytokine expression, such as interleukin (IL)-1 beta, IL-6, and tumor necrosis factor (TNF)-alpha, which prolong inflammation. In contrast, wound healing after tooth extraction or titanium dental implant osseointegration requires an initial acute inflammation, which is regulated by secreted HMGB1. This indicates that secreted HMGB1 regulates angiogenesis and bone remodeling by osteoclast and osteoblast activation and promotes bone healing in oral tissue repair. Therefore, HMGB1 can prolong inflammation in the periodontal tissue and, conversely, can regenerate or repair damaged tissues in the oral cavity. In this review, we highlight the role of HMGB1 in the oral cavity by comparing its function and regulation with its function in other diseases. We also discuss the necessity for further studies in this field to provide more specific scientific evidence for dentistry. en-copyright= kn-copyright= en-aut-name=YamashiroKeisuke en-aut-sei=Yamashiro en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IdeguchiHidetaka en-aut-sei=Ideguchi en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AoyagiHiroaki en-aut-sei=Aoyagi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Yoshihara-HirataChiaki en-aut-sei=Yoshihara-Hirata en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiraiAnna en-aut-sei=Hirai en-aut-mei=Anna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Suzuki-KyoshimaRisa en-aut-sei=Suzuki-Kyoshima en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangYao en-aut-sei=Zhang en-aut-mei=Yao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=9 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=10 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=high mobility group box 1 kn-keyword=high mobility group box 1 en-keyword=inflammation kn-keyword=inflammation en-keyword=periodontal regeneration kn-keyword=periodontal regeneration en-keyword=periodontitis kn-keyword=periodontitis en-keyword=osseointegration kn-keyword=osseointegration en-keyword=tooth movement kn-keyword=tooth movement en-keyword=wound healing kn-keyword=wound healing END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=1064 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200626 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Diverse Partitiviruses From the Phytopathogenic Fungus,Rosellinia necatrix en-subtitle= kn-subtitle= en-abstract= kn-abstract=Partitiviruses (dsRNA viruses, familyPartitiviridae) are ubiquitously detected in plants and fungi. Although previous surveys suggested their omnipresence in the white root rot fungus,Rosellinia necatrix, only a few of them have been molecularly and biologically characterized thus far. We report the characterization of a total of 20 partitiviruses from 16R. necatrixstrains belonging to 15 new species, for which "Rosellinia necatrix partitivirus 11-Rosellinia necatrix partitivirus 25" were proposed, and 5 previously reported species. The newly identified partitiviruses have been taxonomically placed in two genera,Alphapartitivirus, andBetapartitivirus. Some partitiviruses were transfected into reference strains of the natural host,R. necatrix, and an experimental host,Cryphonectria parasitica, using purified virions. A comparative analysis of resultant transfectants revealed interesting differences and similarities between the RNA accumulation and symptom induction patterns ofR. necatrixandC. parasitica. Other interesting findings include the identification of a probable reassortment event and a quintuple partitivirus infection of a single fungal strain. These combined results provide a foundation for further studies aimed at elucidating mechanisms that underly the differences observed. en-copyright= kn-copyright= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MugambiCyrus en-aut-sei=Mugambi en-aut-mei=Cyrus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Arjona-LopezJuan Manuel en-aut-sei=Arjona-Lopez en-aut-mei=Juan Manuel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Lopez-HerreraCarlos Jose en-aut-sei=Lopez-Herrera en-aut-mei=Carlos Jose kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanematsuSatoko en-aut-sei=Kanematsu en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute for Sustainable Agriculture,Spanish Research Council kn-affil= affil-num=7 en-affil=Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=partitivirus kn-keyword=partitivirus en-keyword=dsRNA virus kn-keyword=dsRNA virus en-keyword=phytopathogenic fungus kn-keyword=phytopathogenic fungus en-keyword=Rosellinia necatrix kn-keyword=Rosellinia necatrix en-keyword=Cryphonectria parasitica kn-keyword=Cryphonectria parasitica en-keyword=diversity kn-keyword=diversity en-keyword=reassortment kn-keyword=reassortment en-keyword=horizontal transfer kn-keyword=horizontal transfer END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=164 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200616 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in Experimental Parkinson's Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Spinal cord stimulation (SCS) exerts neuroprotective effects in animal models of Parkinsonfs disease (PD). Conventional stimulation techniques entail limited stimulation time and restricted movement of animals, warranting the need for optimizing the SCS regimen to address the progressive nature of the disease and to improve its clinical translation to PD patients.
Objective: Recognizing the limitations of conventional stimulation, we now investigated the effects of continuous SCS in freely moving parkinsonian rats.
Methods: We developed a small device that could deliver continuous SCS. At the start of the experiment, thirty female Sprague-Dawley rats received the dopamine (DA)-depleting neurotoxin, 6-hydroxydopamine, into the right striatum. The SCS device was fixed below the shoulder area of the back of the animal, and a line from this device was passed under the skin to an electrode that was then implanted epidurally over the dorsal column. The rats were divided into three groups: control, 8-h stimulation, and 24-h stimulation, and behaviorally tested then euthanized for immunohistochemical analysis.
Results: The 8- and 24-h stimulation groups displayed significant behavioral improvement compared to the control group. Both SCS-stimulated groups exhibited significantly preserved tyrosine hydroxylase (TH)-positive fibers and neurons in the striatum and substantia nigra pars compacta (SNc), respectively, compared to the control group. Notably, the 24-h stimulation group showed significantly pronounced preservation of the striatal TH-positive fibers compared to the 8-h stimulation group. Moreover, the 24-h group demonstrated significantly reduced number of microglia in the striatum and SNc and increased laminin-positive area of the cerebral cortex compared to the control group.
Conclusions: This study demonstrated the behavioral and histological benefits of continuous SCS in a time-dependent manner in freely moving PD animals, possibly mediated by anti-inflammatory and angiogenic mechanisms. en-copyright= kn-copyright= en-aut-name=KuwaharaKen en-aut-sei=Kuwahara en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkazakiYosuke en-aut-sei=Okazaki en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HosomotoKakeru en-aut-sei=Hosomoto en-aut-mei=Kakeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KinIttetsu en-aut-sei=Kin en-aut-mei=Ittetsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkazakiMihoko en-aut-sei=Okazaki en-aut-mei=Mihoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YabunoSatoru en-aut-sei=Yabuno en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawauchiSatoshi en-aut-sei=Kawauchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TomitaYousuke en-aut-sei=Tomita en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UmakoshiMichiari en-aut-sei=Umakoshi en-aut-mei=Michiari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KinKyohei en-aut-sei=Kin en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MorimotoJun en-aut-sei=Morimoto en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=LeeJea-Young en-aut-sei=Lee en-aut-mei=Jea-Young kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TajiriNaoki en-aut-sei=Tajiri en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=BorlonganCesar V. en-aut-sei=Borlongan en-aut-mei=Cesar V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida kn-affil= affil-num=16 en-affil=Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University kn-affil= affil-num=17 en-affil=Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida kn-affil= affil-num=18 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=electrical stimulation kn-keyword=electrical stimulation en-keyword=neuroinflammation kn-keyword=neuroinflammation en-keyword=neuromodulation kn-keyword=neuromodulation en-keyword=neuroprotection kn-keyword=neuroprotection en-keyword=6-hydroxydopamine kn-keyword=6-hydroxydopamine END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=1017 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200605 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification and Modification ofPorphyromonas gingivalisCysteine Protease, Gingipain, Ideal for Screening Periodontitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chronic periodontitis is an inflammatory disease caused by the formation of oral microbial biofilms. Periodontitis is associated with general health and not only oral diseases.Porphyromonas gingivalisis a well-known keystone pathogen for periodontitis and is associated with several systemic diseases, such as diabetes mellitus and Alzheimer's disease. We previously developed a system for screening periodontitis usingP. gingivalis-specific serum immunoglobulin G (IgG) in an enzyme-linked immunosorbent assay with a sensitivity of 0.774 and a specificity of 0.586 and an area under the receiver operating characteristic curve of 0.708. However, the antigens elicited non-specific responses, since they were obtained from whole extracts of sonicated cultured bacteria. The purpose of this study was to identify antigens ideal for a sensitive and specific serum test. We identified the specific antigens using immunoaffinity columns immobilized with IgG antibodies from periodontitis patients. Liquid chromatography-tandem mass spectrometry identified 29 antigens from the elutes. Recombinant proteins for these candidates were synthesized using the wheat germ cell-free translation system and screened by dot blot analysis with serum from the columns. Three of the 16 candidates that reacted showed strongest affinities upon dot blot analysis; they included outer membrane protein 28, cysteine proteases, lysine gingipain Kgp, and arginine gingipain RgpA. Outer membrane protein 28 was not suitable for screeningP. gingivalisinfection because of its high false-negative rates. Kgp and RgpA were unstable antigens since they underwent self-digestion. They were made stable by substituting the active cysteine residues in Kgp and RgpA with alanine using site-directed mutagenesis. Using the modified antigens, we demonstrated that the patient serum IgG level against RgpA was the highest among all the antigens expressed inP. gingivalis. Moreover, the N-terminus of recombinant RgpA was excellent in differentiating between diseased and non-diseased states (with sensitivity of 0.85, specificity of 0.9, and area under the curve of 0.915). Although dot blot analysis was the only experiment used, the N-terminus of RgpA is an excellent antigen to immunologically test forP. gingivalisinfection, especially for estimating the risks for periodontitis-associated systemic diseases. In conclusion, we have developed aP. gingivalisantigen for screening periodontitis. en-copyright= kn-copyright= en-aut-name=HiraiKimito en-aut-sei=Hirai en-aut-mei=Kimito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Yamaguchi-TomikawaTomoko en-aut-sei=Yamaguchi-Tomikawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EguchiToru en-aut-sei=Eguchi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaHiroshi en-aut-sei=Maeda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Pathophysiology?Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathophysiology?Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=R&D, Sunstar Inc. kn-affil= affil-num=4 en-affil=Department of Endodontology, Osaka Dental University kn-affil= affil-num=5 en-affil=Department of Pathophysiology?Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=screening chronic periodontitis kn-keyword=screening chronic periodontitis en-keyword=Porphyromonas gingivalis kn-keyword=Porphyromonas gingivalis en-keyword=serum IgG test kn-keyword=serum IgG test en-keyword=gingipain kn-keyword=gingipain en-keyword=specific antigen kn-keyword=specific antigen END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue= article-no= start-page=307 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In vitroNeo-Genesis of Tendon/Ligament-Like Tissue by Combination of Mohawk and a Three-Dimensional Cyclic Mechanical Stretch Culture System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tendons and ligaments are pivotal connective tissues that tightly connect muscle and bone. In this study, we developed a novel approach to generate tendon/ligament-like tissues with a hierarchical structure, by introducing the tendon/ligament-specific transcription factor Mohawk (MKX) into the mesenchymal stem cell (MSC) line C3H10T1/2 cells, and by applying an improved three-dimensional (3D) cyclic mechanical stretch culture system. In our developed protocol, a combination of stableMkxexpression and cyclic mechanical stretch synergistically affects the structural tendon/ligament-like tissue generation and tendon related gene expression. In a histological analysis of these tendon/ligament-like tissues, an organized extracellular matrix (ECM), containing collagen type III and elastin, was observed. Moreover, we confirmed thatMkxexpression and cyclic mechanical stretch, induced the alignment of structural collagen fibril bundles that were deposited in a fibripositor-like manner during the generation of our tendon/ligament-like tissues. Our findings provide new insights for the tendon/ligament biomaterial fields. en-copyright= kn-copyright= en-aut-name=KataokaKensuke en-aut-sei=Kataoka en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurimotoRyota en-aut-sei=Kurimoto en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsutsumiHiroki en-aut-sei=Tsutsumi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChibaTomoki en-aut-sei=Chiba en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoTomomi en-aut-sei=Kato en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShishidoKana en-aut-sei=Shishido en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatoMariko en-aut-sei=Kato en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoYoshiaki en-aut-sei=Ito en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ChoYuichiro en-aut-sei=Cho en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HoshiOsamu en-aut-sei=Hoshi en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MimataAyako en-aut-sei=Mimata en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SakamakiYuriko en-aut-sei=Sakamaki en-aut-mei=Yuriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakamichiRyo en-aut-sei=Nakamichi en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=LotzMartin K. en-aut-sei=Lotz en-aut-mei=Martin K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=AsaharaHiroshi en-aut-sei=Asahara en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=2 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=3 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=4 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=5 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=6 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=7 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=8 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=9 en-affil=Anatomy and Physiological Science, Tokyo Medical and Dental University kn-affil= affil-num=10 en-affil=Anatomy and Physiological Science, Tokyo Medical and Dental University kn-affil= affil-num=11 en-affil=Research Core, Tokyo Medical and Dental University kn-affil= affil-num=12 en-affil=Research Core, Tokyo Medical and Dental University kn-affil= affil-num=13 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=14 en-affil=Department of Molecular Medicine, The Scripps Research Institute kn-affil= affil-num=15 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= en-keyword=Mohawk kn-keyword=Mohawk en-keyword=tendon kn-keyword=tendon en-keyword=ligament kn-keyword=ligament en-keyword=tissue engineering kn-keyword=tissue engineering en-keyword=mechanical-stress kn-keyword=mechanical-stress END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=1686 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200115 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel Insights Into N-Glycan Fucosylation and Core Xylosylation in C. reinhardtii en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chlamydomonas reinhardtii (C. reinhardtii) N-glycans carry plant typical beta 1,2-core xylose, alpha 1,3-fucose residues, as well as plant atypical terminal beta 1,4-xylose and methylated mannoses. In a recent study, XylT1A was shown to act as core xylosyltransferase, whereby its action was of importance for an inhibition of excessive Man1A dependent trimming. N-Glycans found in a XylT1A/Man1A double mutant carried core xylose residues, suggesting the existence of a second core xylosyltransferase in C. reinhardtii. To further elucidate enzymes important for N-glycosylation, novel single knockdown mutants of candidate genes involved in the N-glycosylation pathway were characterized. In addition, double, triple, and quadruple mutants affecting already known N-glycosylation pathway genes were generated. By characterizing N-glycan compositions of intact N-glycopeptides from these mutant strains by mass spectrometry, a candidate gene encoding for a second putative core xylosyltransferase (XylT1B) was identified. Additionally, the role of a putative fucosyltransferase was revealed. Mutant strains with knockdown of both xylosyltransferases and the fucosyltransferase resulted in the formation of N-glycans with strongly diminished core modifications. Thus, the mutant strains generated will pave the way for further investigations on how single N-glycan core epitopes modulate protein function in C. reinhardtii. en-copyright= kn-copyright= en-aut-name=OltmannsAnne en-aut-sei=Oltmanns en-aut-mei=Anne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HoepfnerLara en-aut-sei=Hoepfner en-aut-mei=Lara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ScholzMartin en-aut-sei=Scholz en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZinziusKaren en-aut-sei=Zinzius en-aut-mei=Karen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SchulzeStefan en-aut-sei=Schulze en-aut-mei=Stefan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HipplerMichael en-aut-sei=Hippler en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Biology and Biotechnology, University of M?nster kn-affil= affil-num=2 en-affil=Institute of Plant Biology and Biotechnology, University of M?nster kn-affil= affil-num=3 en-affil=Institute of Plant Biology and Biotechnology, University of M?nster kn-affil= affil-num=4 en-affil=Institute of Plant Biology and Biotechnology, University of M?nster kn-affil= affil-num=5 en-affil=Institute of Plant Biology and Biotechnology, University of M?nster kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=C. reinhardtii kn-keyword=C. reinhardtii en-keyword=N-glycosylation kn-keyword=N-glycosylation en-keyword=xylosyltransferase kn-keyword=xylosyltransferase en-keyword=fucosyltransferase kn-keyword=fucosyltransferase en-keyword=mass spectrometry kn-keyword=mass spectrometry en-keyword=post-translational modification kn-keyword=post-translational modification en-keyword=secretory pathway kn-keyword=secretory pathway END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue= article-no= start-page=UNSP 149 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190614 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Organic Matter Preservation and Incipient Mineralization of Microtubules in 120 Ma Basaltic Glass en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hollow tubular structures in subaqueously-emplaced basaltic glass may represent trace fossils caused by microbially-mediated glass dissolution. Mineralized structures of similar morphology and spatial distribution in ancient, metamorphosed basaltic rocks have widely been interpreted as ichnofossils, possibly dating to similar to 3.5 Ga or greater. Doubts have been raised, however, regarding the biogenicity of the original hollow tubules and granules in basaltic glass. In particular, although elevated levels of biologically-important elements such as C, S, N, and P as well as organic compounds have been detected in association with these structures, a direct detection of unambiguously biogenic organic molecules has not been accomplished. In this study, we describe the direct detection of proteins associated with tubular textures in basaltic glass using synchrotron X-ray spectromicroscopy. Protein-rich organic matter is shown to be associated with the margins of hollow and partly-mineralized tubules. Furthermore, a variety of tubule-infilling secondary minerals, including Ti-rich oxide phases, were observed filling and preserving the microtextures, demonstrating a mechanism whereby cellular materials may be preserved through geologic time. en-copyright= kn-copyright= en-aut-name=IzawaMatthew R. M. en-aut-sei=Izawa en-aut-mei=Matthew R. M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DynesJames J. en-aut-sei=Dynes en-aut-mei=James J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BanerjeeNeil R. en-aut-sei=Banerjee en-aut-mei=Neil R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FlemmingRoberta L. en-aut-sei=Flemming en-aut-mei=Roberta L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MacLeanLachlan C. W. en-aut-sei=MacLean en-aut-mei=Lachlan C. W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HetheringtonCallum J. en-aut-sei=Hetherington en-aut-mei=Callum J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatveevSergei en-aut-sei=Matveev en-aut-mei=Sergei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SouthamGordon en-aut-sei=Southam en-aut-mei=Gordon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=Canadian Light Source, Inc., University of Saskatchewan kn-affil= affil-num=3 en-affil=Department of Earth Sciences, University of Western Ontario kn-affil= affil-num=4 en-affil=Department of Earth Sciences, University of Western Ontario kn-affil= affil-num=5 en-affil=Canadian Light Source, Inc., University of Saskatchewan kn-affil= affil-num=6 en-affil=Department of Geosciences, Texas Tech University kn-affil= affil-num=7 en-affil=Department of Earth and Atmospheric Sciences, University of Alberta kn-affil= affil-num=8 en-affil=Department of Earth Sciences, University of Western Ontario kn-affil= en-keyword=ichnofossils kn-keyword=ichnofossils en-keyword=biomolecule kn-keyword=biomolecule en-keyword=basaltic glass kn-keyword=basaltic glass en-keyword=synchrotron XANES kn-keyword=synchrotron XANES en-keyword=Ontong Java Plateau kn-keyword=Ontong Java Plateau END