このエントリーをはてなブックマークに追加
ID 44498
フルテキストURL
著者
Kanatani, Kenichi Department of Computer Science, Okayama University
Niitsuma, Hirotaka Department of Computer Science, Okayama University
抄録
We present a new method for optimally computing the 3-D rotation from two sets of 3-D data. Unlike 2-D data, the noise in 3-D data is inherently inhomogeneous and anisotropic, reflecting the characteristics of the 3-D sensing used. To cope with this, Ohta and Kanatani introduced a technique called “renormalization”. Following them, we represent a 3-D rotation in terms of a quaternion and compute an exact maximum likelihood solution using the FNS of Chojnacki et al. As an example, we consider 3-D data obtained by stereo vision and optimally compute the 3-D rotation by analyzing the noise characteristics of stereo reconstruction. We show that the widely used method is not suitable for 3-D data. We confirm that the renormalization of Ohta and Kanatani indeed computes almost an optimal solution and that, although the difference is small, the proposed method can compute an even better solution.
発行日
2011-01
出版物タイトル
Memoirs of the Faculty of Engineering, Okayama University
出版物タイトル(別表記)
岡山大学工学部紀要
45巻
出版者
Faculty of Engineering, Okayama University
開始ページ
36
終了ページ
45
ISSN
1349-6115
NCID
AA12014085
資料タイプ
紀要論文
言語
English
著作権者
Copyright © by the authors
論文のバージョン
publisher
査読
無し
Eprints Journal Name
mfe