このエントリーをはてなブックマークに追加
ID 33221
フルテキストURL
著者
Danchev, Peter Mathematical Department, Plovdiv State University
抄録

Let F be a field of char(F) = p > 0 and G an abelian group with p-component Gp of cardinality at most ℵ1 and length at most ω1. The main affirmation on the Direct Factor Problem is that S(FG)/Gp is totally projective whenever F is perfect. This extends results due to May (Contemp. Math., 1989) and Hill-Ullery (Proc. Amer. Math. Soc., 1990). As applications to the Isomorphism Problem, suppose that for any group H the F-isomorphism FH ≅ FG holds. Then if Gp is totally projective, Hp ≅ Gp. This partially solves a problem posed by May (Proc. Amer. Math. Soc., 1988). In particular, H ≅ G provided G is p-mixed of torsion-free rank one so that Gp is totally projective. The same isomorphism H ≅ G is fulfilled when G is p-local algebraically compact too. Besides if Fp is the simple field with p-elements and Gp FpH is a coproduct of torsion complete groups, FpH ≅ FpG as Fp Fp-algebras implies Hp ≅ Gp. This expands the central theorem obtained by us in (Rend. Sem. Mat. Univ. Padova, 1999) and partly settles the generalized version of a question raised by May (Proc. Amer. Math. Soc.,1979) as well. As a consequence, when Gp is torsion complete and G is p-mixed of torsion-free rank one, H ≅ G. Moreover, if G is a coproduct of p-local algebraically compact groups then H ≅ G. The last attainment enlarges an assertion of Beers-Richman-Walker (Rend. Sem. Mat. Univ. Padova, 1983). Each of the reported achievements strengthens our statements in this direction (Southeast Asian Bull. Math., 2001-2002) and also continues own studies in this aspect (Hokkaido Math. J., 2000) and (Kyungpook Math. J., 2004).

発行日
2009-01
出版物タイトル
Mathematical Journal of Okayama University
51巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
English
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol51/iss1/13