このエントリーをはてなブックマークに追加
ID 53045
フルテキストURL
著者
Ishiwata, Satoshi Department of Mathematical Sciences, Faculty of Science Yamagata University
Kawabi, Hiroshi Department of Mathematics, Faculty of Science Okayama University Kaken ID publons researchmap
Teruya, Tsubasa The Okinawa Kaiho Bank, Ltd.
抄録
In the present paper, we study an explicit effect of non-symmetry on asymptotics of the n-step transition probability as n → ∞ for a class of non-symmetric random walks on the triangular lattice. Realizing the triangular lattice into R2 appropriately, we observe that the Euclidean distance in R2 naturally appears in the asymptotics. We characterize this realization from a geometric view point of Kotani-Sunada’s standard realization of crystal lattices. As a corollary of the main theorem, we obtain that the transition semigroup generated by the non-symmetric random walk approximates the heat semigroup generated by the usual Brownian motion on R2.
キーワード
Non-symmetric random walk
asymptotic expansion
triangular lattice
standard realization
発行日
2015-01
出版物タイトル
Mathematical Journal of Okayama University
57巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
129
終了ページ
148
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
English
著作権者
Copyright©2015 by the Editorial Board of Mathematical Journal of Okayama University
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol57/iss1/8