
| ID | 33287 |
| フルテキストURL | |
| 著者 |
Honda, Masanobu
Niigata College of Pharmacy
Sakamoto, Takanori
Fukuoka University of Education
|
| 抄録 | Let L be a Lie algebra represented as a sum of two subalgebras A and B. We prove that if L belongs to a subclass of the class of locally finite Lie algebras over a field of characteristic ≠ 2 and both A and B are locally nilpotent, then L is locally soluble. We also prove that if L is a serially finite Lie algebra over a field of characteristic zero, then any common serial subalgebra of A and B is serial in L. |
| 発行日 | 2000-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 42巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 73
|
| 終了ページ | 82
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| NAID | |
| Submission Path | mjou/vol42/iss1/4
|
| JaLCDOI |