
| ID | 33355 |
| フルテキストURL | |
| 著者 |
Nakasora, Hiroyuki
Okayama University
|
| 抄録 | Suppose that n is even and a set of n/2 -1 mutually orthogonal Latin squares of order n exists. Then we can construct a strongly regular graph with parameters (n², n/2 (n-1), n/2 ( n/2-1), n/2 ( n/2 -1)), which is called a Latin square graph. In this paper, we give a sufficient condition of the Latin square graph for the existence of a projective plane of order n. For the existence of a Latin square graph under the condition, we will introduce and consider a self-complementary 2-design (allowing repeated blocks) with parameters (n, n/2 , n/2 ( n/2 -1)). For n ≡ 2 (mod 4), we give a proof of the non-existence of the design. |
| キーワード | Mutually orthogonal Latin squares
Transversal designs
Latin square graphs
Self-complementary designs
|
| 発行日 | 2006-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 48巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 21
|
| 終了ページ | 32
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol48/iss1/3
|
| JaLCDOI |