このエントリーをはてなブックマークに追加
ID 53043
フルテキストURL
著者
Qi, Yan Department of Mathematics Graduate School of Natural Science and Technology Okayama University
抄録
A generator of the reduced KO-group of the real projective space of dimension n is related to the canonical line bundle γ. In the present paper, we will prove that for a finite group G of odd order and a real G-representation U of dimension 2n, in the reduced G-equivariant KO-group of the real projective space associated with the G-representation R ⊕ U, the element 2n+2[γ] is equal to zero.
キーワード
equivariant real vector bundle
group action
real projective space
canonical line bundle
product bundle
発行日
2015-01
出版物タイトル
Mathematical Journal of Okayama University
57巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
111
終了ページ
122
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
English
著作権者
Copyright©2015 by the Editorial Board of Mathematical Journal of Okayama University
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol57/iss1/6
JaLCDOI