このエントリーをはてなブックマークに追加
ID 54715
フルテキストURL
著者
Defant, Colin Department of Mathematics, University of Florida
抄録
We define ψ‾ to be the multiplicative arithmetic function that satisfies

for all primes p and positive integers α. Let λ(n) be the number of iterations of the function ψ‾ needed for n to reach 2. It follows from a theorem due to White that λ is additive. Following Shapiro's work on the iterated φ function, we determine bounds for λ. We also use the function λ to partition the set of positive integers into three sets S1, S2, S3 and determine some properties of these sets.
キーワード
Iterated function
Dedekind function
additive function
発行日
2017-01
出版物タイトル
Mathematical Journal of Okayama University
59巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
81
終了ページ
92
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
オフィシャル URL
http://www.math.okayama-u.ac.jp/mjou/
言語
English
著作権者
Copyright©2017 by the Editorial Board of Mathematical Journal of Okayama University
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol59/iss1/6