このエントリーをはてなブックマークに追加
ID 33108
フルテキストURL
著者
Hashemi, Ebrahim Shahrood University of Thechnology
抄録

Let δ be a derivation on R. A ring R is called δ-quasi-Baer (resp. quasi-Baer) if the right annihilator of every δ-ideal (resp. ideal) of R is generated by an idempotent of R. In this note first we give a positive answer to the question posed in Han et al. [7], then we show that R is δ-quasi-Baer iff the differential polynomial ring S = R[x; δ] is quasi-Baer iff S is δ‾-quasi-Baer for every extended derivation δ‾ on S of δ. This results is a generalization of Han et al. [7], to the case where R is not assumed to be δ-semiprime.

発行日
2007-01
出版物タイトル
Mathematical Journal of Okayama University
49巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
English
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol49/iss1/14