このエントリーをはてなブックマークに追加
ID 33355
フルテキストURL
著者
Nakasora, Hiroyuki Okayama University
抄録

Suppose that n is even and a set of n/2 -1 mutually orthogonal Latin squares of order n exists. Then we can construct a strongly regular graph with parameters (n², n/2 (n-1), n/2 ( n/2-1), n/2 ( n/2 -1)), which is called a Latin square graph. In this paper, we give a sufficient condition of the Latin square graph for the existence of a projective plane of order n. For the existence of a Latin square graph under the condition, we will introduce and consider a self-complementary 2-design (allowing repeated blocks) with parameters (n, n/2 , n/2 ( n/2 -1)). For n ≡ 2 (mod 4), we give a proof of the non-existence of the design.

キーワード
Mutually orthogonal Latin squares
Transversal designs
Latin square graphs
Self-complementary designs
発行日
2006-01
出版物タイトル
Mathematical Journal of Okayama University
48巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
21
終了ページ
32
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol48/iss1/3
JaLCDOI