start-ver=1.4 cd-journal=joma no-vol=103 cd-vols= no-issue= article-no= start-page=085134 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Successive destruction of charge density wave states by pressure in LaAgSb2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We comprehensively studied the magnetotransport properties of LaAgSb2 under high pressure up to 4 GPa, which showed unique successive charge density wave (CDW) transitions at TCDW1?210 K and TCDW2?190 K at ambient pressure. With the application of pressure, both TCDW1 and TCDW2 were suppressed and disappeared at the critical pressures of PCDW1=3.0?3.4 GPa and PCDW2=1.5?1.9 GPa, respectively. At PCDW1, the Hall conductivity showed a steplike increase, which is consistently understood by the emergence of a two-dimensional hollow Fermi surface at PCDW1. We also observed a significant negative magnetoresistance effect when the magnetic field and current were applied parallel to the c axis. The negative contribution was observed in the whole pressure region from 0 to 4 GPa. Shubnikov?de Haas (SdH) oscillation measurements under pressure directly showed the changes in the Fermi surface across the CDW phase boundaries. In PPCDW1, we observed a single frequency of ?48 T with a cyclotron effective mass of 0.066m0, whose cross section in the reciprocal space corresponded to only 0.22% of the first Brillouin zone. Besides, we observed another oscillation component with frequency of ?9.2 T, which is significantly enhanced in the limited pressure range of PCDW2 0 of a para-H-2 molecule and taking many different excited atom number densities and different initial coherences between the metastable and the ground states. In an example with a number density close to O(10(21) cm(-3)) and a high initial coherence, the explosive event terminates several nanoseconds after the trigger irradiation, when the phase relaxation time larger than O(10 ns) is taken. After PSR events the system is expected to follow a steady-state solution which is obtained by analytic means and is made of many objects of field condensates endowed with a topological stability. en-copyright= kn-copyright= en-aut-name=YoshimuraMotohiko en-aut-sei=Yoshimura en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasaoN. en-aut-sei=Sasao en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaM. en-aut-sei=Tanaka en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Center of Quantum Universe, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Research Core for Extreme Quantum World, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Graduate School of Science, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=6 article-no= start-page=063827 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201712 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Frequency dependence of coherently amplified two-photon emission from hydrogen molecules en-subtitle= kn-subtitle= en-abstract= kn-abstract= We investigate how the efficiency of coherently amplified two-photon emission depends on the frequency of one of the two emitted photons, namely the signal photon. This is done over the wavelength range of 5.048-10.21 mu m by using the vibrational transition of parahydrogen. The efficiency increases with the frequency of the signal photon. Considering experimental errors, our results are consistent with the theoretical prediction for the present experimental conditions. This study is an experimental demonstration of the frequency dependence of coherently amplified two-photon emission, and also presents its potential as a light source. en-copyright= kn-copyright= en-aut-name=HaraHideaki en-aut-sei=Hara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyamotoYuki en-aut-sei=Miyamoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirakiTakahiro en-aut-sei=Hiraki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasudaTakahiko en-aut-sei=Masuda en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SasaoNoboru en-aut-sei=Sasao en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UetakeSatoshi en-aut-sei=Uetake en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshimiAkihiro en-aut-sei=Yoshimi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshimuraKoji en-aut-sei=Yoshimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshimuraMotohiko en-aut-sei=Yoshimura en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=93 cd-vols= no-issue=10 article-no= start-page=104508 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Correlation of superconductivity with crystal structure in (NH3)(y)CsxFeSe en-subtitle= kn-subtitle= en-abstract= kn-abstract= The superconducting transition temperature T-c of ammoniated metal-doped FeSe (NH3)(y)MxFeSe (M: metal atom) has been scaled with the FeSe plane spacing, and it has been suggested that the FeSe plane spacing depends on the location of metal atoms in (NH3)(y)MxFeSe crystals. Although the crystal structure of (NH3)(y)LixFeSe exhibiting a high T-c (similar to 44 K) was determined from neutron diffraction, the structure of (NH3)(y)MxFeSe exhibiting a low T-c (similar to 32 K) has not been determined thus far. Here, we determined the crystal structure of (NH3)(y)Cs0.4FeSe (T-c = 33 K) through the Rietveld refinement of the x-ray diffraction (XRD) pattern measured with synchrotron radiation at 30 K. The XRD pattern was analyzed based on two different models, on-center and off-center, under a space group of 14/mmm. In the on-center structure, the Cs occupies the 2a site and the N of NH3 may occupy either the 4c or 2b site, or both. In the off-center structure, the Cs may occupy either the 4c or 2b site, or both, while the N occupies the 2a site. Only an on-center structure model in which the Cs occupies the 2a and the N of NH3 occupies the 4c site provided reasonable results in the Rietveld analysis. Consequently, we concluded that (NH3)(y)Cs0.4FeSe can be assigned to the on-center structure, which produces a smaller FeSe plane spacing leading to the lower T-c. en-copyright= kn-copyright= en-aut-name=ZhengLu en-aut-sei=Zheng en-aut-mei=Lu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiaoXiao en-aut-sei=Miao en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakaiYusuke en-aut-sei=Sakai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UesugiEri en-aut-sei=Uesugi en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EguchiRitsuko en-aut-sei=Eguchi en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiyamaSaki en-aut-sei=Nishiyama en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoKunihisa en-aut-sei=Sugimoto en-aut-mei=Kunihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraAkihiko en-aut-sei=Fujiwara en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=2 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=3 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=4 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=5 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=6 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=7 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=8 en-affil=Japan Synchrotron Radiation Research Institute, SPring-8 kn-affil= affil-num=9 en-affil=Department of Nanotechnology for Sustainable Energy, Kwansei Gakuin University kn-affil= affil-num=10 en-affil=Research Centre of New Functional Materials for Energy Production, Storage and Transport, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=94 cd-vols= no-issue=17 article-no= start-page=174505 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201611 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Superconductivity in (NH3)(y)NaxFeSe0.5Te0.5 en-subtitle= kn-subtitle= en-abstract= kn-abstract= Na-intercalated FeSe0.5Te0.5 was prepared using the liquid NH3 technique, and a superconducting phase exhibiting a superconducting transition temperature (T-c) as high as 27 K was discovered. This can be called the high-T-c phase since a 21 K superconducting phase was previously obtained in (NH3)(y)NaxFeSe0.5Te0.5. The chemical composition of the high-T-c phase was determined to be (NH3)(0.61(4))Na-0.63(5) Fe0.85Se0.55(3) Te-0.44(2). The x-ray diffraction patterns of both phases show that a larger lattice constant c (i.e., FeSe0.5Te0.5 plane spacing) produces a higher T-c. This behavior is the same as that of metal-doped FeSe, suggesting that improved Fermi-surface nesting produces the higher T-c. The high-T-c phase converted to the low-T-c phase within several days, indicating that it is a metastable phase. The temperature dependence of resistance for both phases was recorded at different magnetic fields, and the critical fields were determined for both phases. Finally, the T-c versus c phase diagram was prepared for the metal-doped FeSe0.5Te0.5, which is similar to that of metal-doped FeSe, although the T-c is lower. en-copyright= kn-copyright= en-aut-name=ZhengLu en-aut-sei=Zheng en-aut-mei=Lu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaiYusuke en-aut-sei=Sakai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiaoXiao en-aut-sei=Miao en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiyamaSaki en-aut-sei=Nishiyama en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TeraoTakahiro en-aut-sei=Terao en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Eguchi,Ritsuko en-aut-sei=Eguchi, en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=24 article-no= start-page=245310 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Transistor properties of exfoliated single crystals of 2H-Mo(Se1-x Te-x) 2 ( 0 <= x <= 1) en-subtitle= kn-subtitle= en-abstract= kn-abstract= Field-effect transistors (FETs) were fabricated using exfoliated single crystals of Mo(Se1-x Te-x)(2) with an x range of 0 to 1, and the transistor properties fully investigated at 295 K in four-terminal measurement mode. The chemical composition and crystal structure of exfoliated single crystals were identified by energy-dispersive x-ray spectroscopy (EDX), single-crystal x-ray diffraction, and Raman scattering, suggesting the 2H - structure in all Mo(Se1-x Te-x)(2). The lattice constants of a and c increase monotonically with increasing x, indicating the substitution of Se by Te. When x < 0.4 in a FET with a thin single crystal of Mo(Se1-x Te-x)(2), n-channel FET properties were observed, changing to p-channelor ambipolar operation for x > 0.4. In contrast, the polarity of a thick single-crystal Mo(Se1-x Te-x)(2) FET did not change despite an increase in x. The change of polarity in a thin single-crystal FET was well explained by the variation of electronic structure. The absence of such change in the thick single-crystal FET can be reasonably interpreted based on the large bulk conduction due to naturally accumulated electrons. The mu value in the thin single-crystal FET showed a parabolic variation, with a minimum mu at around x = 0.4, which probably originates from the disorder of the single crystal caused by the partial replacement of Se by Te, i.e., a disorder that may be due to ionic size difference of Se and Te. en-copyright= kn-copyright= en-aut-name=UesugiEri en-aut-sei=Uesugi en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiaoXiao en-aut-sei=Miao en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtaHiromi en-aut-sei=Ota en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=1 article-no= start-page=014502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Preparation of new superconductors by metal doping of two-dimensional layered materials using ethylenediamine en-subtitle= kn-subtitle= en-abstract= kn-abstract= We have studied new superconductors prepared by metal doping of two-dimensional (2D) layered materials, FeSe and FeSe0.5Te0.5, using ethylenediamine (EDA). The superconducting transition temperatures (T(c)s) of metal-doped FeSe and metal-doped FeSe0.5Te0.5, i.e., (EDA)(y)MxFeSe and (EDA)(y)MxFeSe0.5Te0.5 (M: Li, Na, and K), were 31-45 K and 19-25 K, respectively. The stoichiometry of each sample was clarified by energy dispersive x-ray (EDX) spectroscopy, and the x-ray powder diffraction pattern indicated a large expansion of lattice constant c, indicating the cointercalation of metal atoms and EDA. The pressure dependence of superconductivity in (EDA)(y)NaxFeSe0.5Te0.5 has been investigated at a pressure of 0-0.8GPa, showing negative pressure dependence in the same manner as (NH3)(y)NaxFeSe0.5Te0.5. The T-c-c phase diagrams of MxFeSe and MxFeSe0.5Te0.5 were drawn afresh from the T-c and c of (EDA)(y)MxFeSe and (EDA)(y)MxFeSe0.5Te0.5, showing that the T-c increases with increasing c but that extreme expansion of c reverses the T-c trend. en-copyright= kn-copyright= en-aut-name=MiaoXiao en-aut-sei=Miao en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TeraoTakahiro en-aut-sei=Terao en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YangXiaofan en-aut-sei=Yang en-aut-mei=Xiaofan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiyamaSaki en-aut-sei=Nishiyama en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyazakiTakafumi en-aut-sei=Miyazaki en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IwasaYoshihiro en-aut-sei=Iwasa en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Department of Applied Physics, The University of Tokyo kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=93 cd-vols= no-issue=14 article-no= start-page=140505 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201604 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Composition-induced structural instability and strong-coupling superconductivity in Au1-xPdxTe2 en-subtitle= kn-subtitle= en-abstract= kn-abstract= The physical properties and structural evolution of the MX2-type solid solution Au1-xPdxTe2 are reported. The end member AuTe2 is a normal metal with a monoclinic distorted CdI2-type structure with preformed Te-Te dimers. A monoclinic-trigonal structural phase transition at a finite temperature occurs upon Pd substitution and is suppressed to zero temperature near x = 0.55, and a superconducting phase with a maximum T-c = 4.65 K emerges. A clear indication of strong-coupling superconductivity is observed near the composition of the structural instability. The competitive relationship between Te-Te dimers and superconductivity is proposed. en-copyright= kn-copyright= en-aut-name=KudoKazutaka en-aut-sei=Kudo en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshiiHiroyuki en-aut-sei=Ishii en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NoharaMinoru en-aut-sei=Nohara en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=8 article-no= start-page=085109 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ce 4f electronic states of CeO1-xFxBiS2 studied by soft x-ray photoemission spectroscopy en-subtitle= kn-subtitle= en-abstract= kn-abstract= We use soft x-ray photoemission spectroscopy (SXPES) to investigate Ce 4f electronic states of a new BiS2 layered superconductor CeO1-xFxBiS2, for polycrystalline and single-crystal samples. The Ce 3d spectrum of the single crystal of nominal composition x = 0.7 has no f(0) component and the spectral shape closely resembles the ones observed for Ce trivalent insulating compounds, strongly implying that the CeO layer is still in an insulating state even after the F doping. The Ce 3d-4f resonant SXPES for both polycrystalline and single-crystal samples shows that the prominent peak is located around 1 eV below the Fermi level (E-F) with negligible spectral intensity at EF. The F-concentration dependence of the valence band spectra for single crystals shows the increases of the degeneracy in energy levels and of the interaction between Ce 4f and S 3p states. These results give insight into the nature of the CeO1-xFx layer and the microscopic coexistence of magnetism and superconductivity in CeO1-xFxBiS2. en-copyright= kn-copyright= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TerashimaKensei en-aut-sei=Terashima en-aut-mei=Kensei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaTakahiro en-aut-sei=Hamada en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiwaraHirokazu en-aut-sei=Fujiwara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MinoharaMakoto en-aut-sei=Minohara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiMasaki en-aut-sei=Kobayashi en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HoribaKoji en-aut-sei=Horiba en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KumigashiraHiroshi en-aut-sei=Kumigashira en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KutlukGalif en-aut-sei=Kutluk en-aut-mei=Galif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NagaoMasanori en-aut-sei=Nagao en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WatauchiSatoshi en-aut-sei=Watauchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TanakaIsao en-aut-sei=Tanaka en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DemuraSatoshi en-aut-sei=Demura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakanoYoshihiko en-aut-sei=Takano en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MizuguchiYoshikazu en-aut-sei=Mizuguchi en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MiuraOsuke en-aut-sei=Miura en-aut-mei=Osuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=OkadaKozo en-aut-sei=Okada en-aut-mei=Kozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=6 en-affil=Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=7 en-affil= kn-affil= affil-num=8 en-affil=Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=9 en-affil=Synchrotron Radiation Center, Hiroshima University kn-affil= affil-num=10 en-affil=Center for Crystal Science and Technology, University of Yamanashi kn-affil= affil-num=11 en-affil=Center for Crystal Science and Technology, University of Yamanashi kn-affil= affil-num=12 en-affil=Center for Crystal Science and Technology, University of Yamanashi kn-affil= affil-num=13 en-affil=National Institute for Materials Science kn-affil= affil-num=14 en-affil=National Institute for Materials Science kn-affil= affil-num=15 en-affil=National Institute for Materials Science kn-affil= affil-num=16 en-affil=Department of Electrical and Electronic Engineering, Tokyo Metropolitan University kn-affil= affil-num=17 en-affil=Department of Electrical and Electronic Engineering, Tokyo Metropolitan University kn-affil= affil-num=18 en-affil=Department of Physics and the Graduate school of Natural Science and Technology, Okayama University kn-affil= affil-num=19 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=20 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=4 article-no= start-page=041106 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evolution of the remnant Fermi-surface state in the lightly doped correlated spin-orbit insulator Sr2-xLaxIrO4 en-subtitle= kn-subtitle= en-abstract= kn-abstract= The electronic structure of the lightly electron-doped correlated spin-orbit insulator Sr2IrO4 has been studied by angle-resolved photoelectron spectroscopy. We have observed the coexistence of a lower Hubbard band and an in-gap band; the momentum dependence of the latter traces that of the band calculations without on-site Coulomb repulsion. The in-gap state remained anisotropically gapped in all observed momentum areas, forming a remnant Fermi-surface state, evolving towards the Fermi energy by carrier doping. These experimental results show a striking similarity with those observed in deeply underdoped cuprates, suggesting the common nature of the nodal liquid states observed in both compounds. en-copyright= kn-copyright= en-aut-name=TerashimaKensei en-aut-sei=Terashima en-aut-mei=Kensei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SunagawaM. en-aut-sei=Sunagawa en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraH. en-aut-sei=Fujiwara en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukuraT. en-aut-sei=Fukura en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiiM. en-aut-sei=Fujii en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkadaK. en-aut-sei=Okada en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HoriganeK. en-aut-sei=Horigane en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiK. en-aut-sei=Kobayashi en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HorieR. en-aut-sei=Horie en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkimitsuJ. en-aut-sei=Akimitsu en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=GoliasE. en-aut-sei=Golias en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MarchenkoD. en-aut-sei=Marchenko en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=VarykhalovA. en-aut-sei=Varykhalov en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SainiN. L. en-aut-sei=Saini en-aut-mei=N. L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Sciences, Okayama University kn-affil= affil-num=4 en-affil= kn-affil= affil-num=5 en-affil=Graduate School of Natural Sciences, Okayama University kn-affil= affil-num=6 en-affil=Aoyama Gakuin University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=11 en-affil=Helmholtz-Zentrum Berlin f?r Materialien und Energie kn-affil= affil-num=12 en-affil=Helmholtz-Zentrum Berlin f?r Materialien und Energie kn-affil= affil-num=13 en-affil=Helmholtz-Zentrum Berlin f?r Materialien und Energie kn-affil= affil-num=14 en-affil=Dipartimento di Fisica, Universit? di Roma gLa Sapienza kn-affil= affil-num=15 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=16 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=17 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=2 article-no= start-page=024414 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spin pumping into superconductors: A new probe of spin dynamics in a superconducting thin film en-subtitle= kn-subtitle= en-abstract= kn-abstract= Spin pumping refers to the microwave-driven spin current injection from a ferromagnet into the adjacent target material. We theoretically investigate the spin pumping into superconductors by fully taking account of impurity spin-orbit scattering that is indispensable to describe diffusive spin transport with finite spin diffusion length. We calculate temperature dependence of the spin pumping signal and show that a pronounced coherence peak appears immediately below the superconducting transition temperature Tc, which survives even in the presence of the spin-orbit scattering. The phenomenon provides us with a new way of studying the dynamic spin susceptibility in a superconducting thin film. This is contrasted with the nuclear magnetic resonance technique used to study a bulk superconductor. en-copyright= kn-copyright= en-aut-name=InoueMasashi en-aut-sei=Inoue en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AdachiHiroto en-aut-sei=Adachi en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=10 article-no= start-page=104502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201709 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spin-singlet superconductivity in the doped topological crystalline insulator Sn0.96In0.04Te en-subtitle= kn-subtitle= en-abstract= kn-abstract=The In-doped topological crystalline insulator Sn1?x InxTe is a candidate for a topological superconductor, where a pseudo-spin-triplet state has been proposed. To clarify the spin symmetry of Sn1?x InxTe, we perform 125Te-nuclear magnetic resonance (NMR) measurements in polycrystalline samples with 0 x 0.15. The penetration depth calculated from the NMR line width is T independent below half the superconducting transition temperature (Tc) in polycrystalline Sn0.96In0.04Te, which indicates a fully opened superconducting gap. In this sample, the spin susceptibility measured by the spin Knight shift (Ks) at an external magnetic field of ƒÊ0H0 = 0.0872 T decreases below Tc, and Ks(T = 0)/Ks(T = Tc) reaches 0.36 } 0.10, which is far below the limiting value 2/3 expected for a spin-triplet state for a cubic crystal structure. Our result indicates that polycrystalline Sn0.96In0.04Te is a spin-singlet superconductor. en-copyright= kn-copyright= en-aut-name=MaedaSatoki en-aut-sei=Maeda en-aut-mei=Satoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiroseRyohei en-aut-sei=Hirose en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatanoKazuaki en-aut-sei=Matano en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NovakMario en-aut-sei=Novak en-aut-mei=Mario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AndoYoichi en-aut-sei=Ando en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhengGuo-qing en-aut-sei=Zheng en-aut-mei=Guo-qing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Institute of Scientific and Industrial Research, Osaka University kn-affil= affil-num=5 en-affil=Physics Institute II, University of Cologne kn-affil= affil-num=6 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=93 cd-vols= no-issue=9 article-no= start-page=094507 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Site-selective NMR for odd-frequency Cooper pairs around vortex in chiral p -wave superconductors en-subtitle= kn-subtitle= en-abstract= kn-abstract=In order to identify the pairing symmetry with chirality, we study site-selective NMR in chiral p-wave superconductors. We calculate local nuclear relaxation rate T-1(-1) in the vortex lattice state by Eilenberger theory, including the applied magnetic field dependence. We find that T-1(-1) in the NMR resonance line shape is different between two chiral states p +/-(= p(x)+/- ip(y)), depending on whether the chirality is parallel or antiparallel to the vorticity. Anomalous suppression of T-1(-1) occurs around the vortex core in the chiral p(-) wave due to the negative coherence term coming from the odd-frequency s-wave Cooper pair induced around the vortex with Majorana state. en-copyright= kn-copyright= en-aut-name=TanakaKenta K. en-aut-sei=Tanaka en-aut-mei=Kenta K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnariSeiichiro en-aut-sei=Onari en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=6 article-no= start-page=064512 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Locking of length scales in two-band superconductors en-subtitle= kn-subtitle= en-abstract= kn-abstract= A model of a clean two-band s-wave superconductor with cylindrical Fermi surfaces, different Fermi velocities v(1),(2), and a general 2x2 coupling matrix V-alpha beta is used to study the order parameter distribution in vortex lattices. The Eilenberger weak coupling formalism is used to calculate numerically the spatial distributions of the pairing amplitudes Delta(1) and Delta(2) of the two bands for vortices parallel to the Fermi cylinders. For generic values of the interband coupling V-12, it is shown that, independently of the couplings V-alpha beta, of the ratio v(1)/v(2), of the temperature, and the applied field, the length scales of spatial variation of Delta(1) and of Delta(2) are the same within the accuracy of our calculations. The only exception from this single length-scale behavior is found for V-12 << V-11, i.e., for nearly decoupled bands. en-copyright= kn-copyright= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KoganV. G. en-aut-sei=Kogan en-aut-mei=V. G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SchmalianJ. en-aut-sei=Schmalian en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, RIIS, Okayama University kn-affil= affil-num=2 en-affil=Ames Laboratory-DOE and Department of Physics and Astronomy, Iowa State University kn-affil= affil-num=3 en-affil=Institut f?r Theorie der Kondensierten Materie und Institut f?r Festk?rperphysik, Karlsruher Institut f?r Technologie kn-affil= END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=13 article-no= start-page=134502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201704 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spin-polarized local density of states in the vortex state of helical p -wave superconductors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Properties of the vortex state in helical p-wave superconductor are studied by the quasiclassical Eilenberger theory. We confirm the instability of the helical p-wave state at high fields and that the spin-polarized local density of states M(E,r) appears even when Knight shift does not change. This is because the vorticity couples to the chirality of up-spin pair or down-spin pair of the helical state. In order to identify the helical p-wave state at low fields, we investigate the structure of the zero-energy M(E = 0,r) in the vortex states, and also the energy spectra of M(E,r). en-copyright= kn-copyright= en-aut-name=TanakaKenta K. en-aut-sei=Tanaka en-aut-mei=Kenta K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnariSeiichiro en-aut-sei=Onari en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=9 article-no= start-page=094522 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201709 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pair breaking of multigap superconductivity under parallel magnetic fields in the electric-field-induced surface metallic state en-subtitle= kn-subtitle= en-abstract= kn-abstract=The roles of paramagnetic and diamagnetic pair-breaking effects in superconductivity in the electric-field-induced surface metallic state are studied using the Bogoliubov?de Gennes equation when magnetic fields are applied parallel to the surface. The multigap states of the subbands are related to the depth dependence and the magnetic field dependence of the superconductivity. In the Fermi-energy density of states and the spin density, subband contributions successively appear from higher-level subbands with increasing magnetic fields. The characteristic magnetic field dependence may be a key feature to identify the multigap structure of the surface superconductivity. en-copyright= kn-copyright= en-aut-name=NabetaMasahiro en-aut-sei=Nabeta en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaKenta K. en-aut-sei=Tanaka en-aut-mei=Kenta K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnariSeiichiro en-aut-sei=Onari en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=9 article-no= start-page=094527 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170926 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In-plane anisotropy of transport coefficients in electronic nematic states: Universal origin of nematicity in Fe-based superconductors en-subtitle= kn-subtitle= en-abstract= kn-abstract=The origin of the electronic nematicity and its remarkable material dependence are famous longstanding unsolved issues in Fe-based superconductors. To attack these issues, we focus on the in-plane anisotropy of the resistivity: In the nematic state in FeSe, the relationp(x) >p(y) holds, whereP(x)(y) is the resistivity along the longer (shorter) Fe-Fe axis. In contrast, the opposite anisotropy p(x) < p(y) is realized in other undoped Fe-based superconductors. Such nontrivial material dependence is naturally explained in terms of the strongly orbitaldependent inelastic quasiparticle scattering realized in the orbital-ordered state. The opposite anisotropy between FeSe (p(x) >p(y)) and other undoped compounds (P-x < P-y) reflects the difference in the number of hole pockets. We also explain the large in-plane anisotropy of the thermoelectric power in the nematic state. en-copyright= kn-copyright= en-aut-name=OnariSeiichiro en-aut-sei=Onari en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KontaniHiroshi en-aut-sei=Kontani en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Nagoya University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=91 cd-vols= no-issue=1 article-no= start-page=016302 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150123 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reply to gComment on eSpontaneous liquid-liquid phase separation of waterf?h en-subtitle= kn-subtitle= en-abstract= kn-abstract= Two different scenarios have been proposed on the phase separation occurring in the deeply supercooled liquid water. We discuss what we can derive from our simulation results for the two scenarios and propose a way for future investigation. We also demonstrate that the phase separation in the supercooled liquid water looks like the separation of liquid water and vapor just below the conventional critical point. en-copyright= kn-copyright= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Matsumoto Masakazu en-aut-sei=Matsumoto en-aut-mei= Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=115 cd-vols= no-issue=19 article-no= start-page=197801 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20151106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chiral Ordering in Supercooled Liquid Water and Amorphous Ice en-subtitle= kn-subtitle= en-abstract= kn-abstract=The emergence of homochiral domains in supercooled liquid water is presented using molecular dynamics simulations. An individual water molecule possesses neither a chiral center nor a twisted conformation that can cause spontaneous chiral resolution. However, an aggregation of water molecules will naturally give rise to a collective chirality. Such homochiral domains possess obvious topological and geometrical orders and are energetically more stable than the average. However, homochiral domains cannot grow into macroscopic homogeneous structures due to geometrical frustrations arising from their icosahedral local order. Homochiral domains are the major constituent of supercooled liquid water and the origin of heterogeneity in that substance, and are expected to be enhanced in low-density amorphous ice at lower temperatures. en-copyright= kn-copyright= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University END