start-ver=1.4 cd-journal=joma no-vol=81 cd-vols= no-issue=6 article-no= start-page=063623 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100614 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spin textures in condensates with large dipole moments en-subtitle= kn-subtitle= en-abstract= kn-abstract= We have solved numerically the ground states of a Bose-Einstein condensate in the presence of dipolar interparticle forces using a semiclassical approach. Our motivation is to model, in particular, the spontaneous spin textures emerging in quantum gases with large dipole moments, such as Cr-52 or Dy condensates, or ultracold gases consisting of polar molecules. For a pancake-shaped harmonic ( optical) potential, we present the ground-state phase diagram spanned by the strength of the nonlinear coupling and dipolar interactions. In an elongated harmonic potential, we observe a helical spin texture. The textures calculated according to the semiclassical model in the absence of external polarizing fields are predominantly analogous to previously reported results for a ferromagnetic F = 1 spinor Bose-Einstein condensate, suggesting that the spin textures arising from the dipolar forces are largely independent of the value of the quantum number F or the origin of the dipolar interactions. en-copyright= kn-copyright= en-aut-name=HuhtamakiJ. A. M. en-aut-sei=Huhtamaki en-aut-mei=J. A. M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiM. en-aut-sei=Takahashi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SimulaT. P. en-aut-sei=Simula en-aut-mei=T. P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizushimaT. en-aut-sei=Mizushima en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MachidaK. en-aut-sei=Machida en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=82 cd-vols= no-issue=2 article-no= start-page=023624 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201008 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Splitting and oscillation of Majorana zero modes in the p-wave BCS-BEC evolution with plural vortices en-subtitle= kn-subtitle= en-abstract= kn-abstract= We investigate how the vortex-vortex separation changes Majorana zero modes in the vicinity of the BCS-BEC (Bose-Einstein condensation) topological phase transition of p-wave resonant Fermi gases. By analytically and numerically solving the Bogoliubov-de Gennes equation for spinless p-wave superfluids with plural vortices, it is demonstrated that the quasiparticle tunneling between neighboring vortices gives rise to the quantum oscillation of the low-lying spectra on the scale of the Fermi wavelength in addition to the exponential splitting. This rapid oscillation, which appears in the weak-coupling regime as a consequence of quantum oscillations of quasiparticle wave functions, disappears in the vicinity of the BCS-BEC topological phase transition. This is understandable from that the wave function of the Majorana zero modes is described by the modified Bessel function in the strong-coupling regime, and thus it becomes spread over the vortex core region. Due to the exponential divergence of the modified Bessel function, the concrete realization of the Majorana zero modes near the topological phase transition requires the neighboring vortices to be separated beyond the length scale defined by the coherence length and the dimensionless coupling constant. All these behaviors are also confirmed by carrying out the full numerical diagonalization of the nonlocal Bogoliubov-de Gennes equation in a two-dimensional geometry. Furthermore, this argument is expanded into the case of three-vortex systems, where a pair of core-bound and edge-bound Majorana states survive at zero-energy state regardless of the vortex separation. en-copyright= kn-copyright= en-aut-name=MizushimaT. en-aut-sei=Mizushima en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MachidaK. en-aut-sei=Machida en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=84 cd-vols= no-issue=1 article-no= start-page=011607 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201107 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Textures of F = 2 spinor Bose-Einstein condensates with spin-orbit coupling en-subtitle= kn-subtitle= en-abstract= kn-abstract= We study the textures of F = 2 spinor Bose-Einstein condensates (BECs) with spin-orbit coupling (SOC) induced by a synthetic non-Abelian gauge field. On the basis of the analysis of the SOC energy and the numerical calculation of the Gross-Pitaevskii equation, we demonstrate that the textures originate from the helical modulation of the order parameter (OP) due to the SOC. In particular, the cyclic OP consists of two-dimensional lattice textures, such as the hexagonal lattice and the 1/3 vortex lattice, commonly understandable as the two-dimensional network of the helical modulations. en-copyright= kn-copyright= en-aut-name=KawakamiTakuto en-aut-sei=Kawakami en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MizushimaTakeshi en-aut-sei=Mizushima en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MachidaKazushige en-aut-sei=Machida en-aut-mei=Kazushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=86 cd-vols= no-issue=1 article-no= start-page=013812 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dynamics of two-photon paired superradiance en-subtitle= kn-subtitle= en-abstract= kn-abstract= We develop for dipole-forbidden transition a dynamical theory of two-photon paired superradiance (PSR). This is a cooperative process characterized by two photons emitted back to back with equal energies. By irradiating the trigger laser from two target ends, with its frequency tuned at the half energy between two levels, a macroscopically coherent state of medium and fields dynamically emerges as time evolves, and a large signal of amplified output occurs with a time delay. The basic semiclassical equations in 1 + 1 space-time dimensions are derived for the field-plus-medium system to describe the space-time evolution of the entire system and are numerically solved to demonstrate the existence of both explosive and weak PSR phenomena in the presence of relaxation terms. The explosive PSR event terminates accompanying a sudden release of most of the energy stored in the target. Our numerical simulations are performed using the vibrational transition X-1 Sigma(+)(g)upsilon = 1 -> 0 of a para-H-2 molecule and taking many different excited atom number densities and different initial coherences between the metastable and the ground states. In an example with a number density close to O(10(21) cm(-3)) and a high initial coherence, the explosive event terminates several nanoseconds after the trigger irradiation, when the phase relaxation time larger than O(10 ns) is taken. After PSR events the system is expected to follow a steady-state solution which is obtained by analytic means and is made of many objects of field condensates endowed with a topological stability. en-copyright= kn-copyright= en-aut-name=YoshimuraMotohiko en-aut-sei=Yoshimura en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasaoN. en-aut-sei=Sasao en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaM. en-aut-sei=Tanaka en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Center of Quantum Universe, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Research Core for Extreme Quantum World, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Graduate School of Science, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=91 cd-vols= no-issue=1 article-no= start-page=016302 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150123 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reply to “Comment on ‘Spontaneous liquid-liquid phase separation of water’ ” en-subtitle= kn-subtitle= en-abstract= kn-abstract= Two different scenarios have been proposed on the phase separation occurring in the deeply supercooled liquid water. We discuss what we can derive from our simulation results for the two scenarios and propose a way for future investigation. We also demonstrate that the phase separation in the supercooled liquid water looks like the separation of liquid water and vapor just below the conventional critical point. en-copyright= kn-copyright= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Matsumoto Masakazu en-aut-sei=Matsumoto en-aut-mei= Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=115 cd-vols= no-issue=19 article-no= start-page=197801 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20151106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chiral Ordering in Supercooled Liquid Water and Amorphous Ice en-subtitle= kn-subtitle= en-abstract= kn-abstract=The emergence of homochiral domains in supercooled liquid water is presented using molecular dynamics simulations. An individual water molecule possesses neither a chiral center nor a twisted conformation that can cause spontaneous chiral resolution. However, an aggregation of water molecules will naturally give rise to a collective chirality. Such homochiral domains possess obvious topological and geometrical orders and are energetically more stable than the average. However, homochiral domains cannot grow into macroscopic homogeneous structures due to geometrical frustrations arising from their icosahedral local order. Homochiral domains are the major constituent of supercooled liquid water and the origin of heterogeneity in that substance, and are expected to be enhanced in low-density amorphous ice at lower temperatures. en-copyright= kn-copyright= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=93 cd-vols= no-issue=9 article-no= start-page=094507 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Site-selective NMR for odd-frequency Cooper pairs around vortex in chiral p -wave superconductors en-subtitle= kn-subtitle= en-abstract= kn-abstract=In order to identify the pairing symmetry with chirality, we study site-selective NMR in chiral p-wave superconductors. We calculate local nuclear relaxation rate T-1(-1) in the vortex lattice state by Eilenberger theory, including the applied magnetic field dependence. We find that T-1(-1) in the NMR resonance line shape is different between two chiral states p +/-(= p(x)+/- ip(y)), depending on whether the chirality is parallel or antiparallel to the vorticity. Anomalous suppression of T-1(-1) occurs around the vortex core in the chiral p(-) wave due to the negative coherence term coming from the odd-frequency s-wave Cooper pair induced around the vortex with Majorana state. en-copyright= kn-copyright= en-aut-name=TanakaKenta K. en-aut-sei=Tanaka en-aut-mei=Kenta K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnariSeiichiro en-aut-sei=Onari en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=93 cd-vols= no-issue=10 article-no= start-page=104508 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Correlation of superconductivity with crystal structure in (NH3)(y)CsxFeSe en-subtitle= kn-subtitle= en-abstract= kn-abstract= The superconducting transition temperature T-c of ammoniated metal-doped FeSe (NH3)(y)MxFeSe (M: metal atom) has been scaled with the FeSe plane spacing, and it has been suggested that the FeSe plane spacing depends on the location of metal atoms in (NH3)(y)MxFeSe crystals. Although the crystal structure of (NH3)(y)LixFeSe exhibiting a high T-c (similar to 44 K) was determined from neutron diffraction, the structure of (NH3)(y)MxFeSe exhibiting a low T-c (similar to 32 K) has not been determined thus far. Here, we determined the crystal structure of (NH3)(y)Cs0.4FeSe (T-c = 33 K) through the Rietveld refinement of the x-ray diffraction (XRD) pattern measured with synchrotron radiation at 30 K. The XRD pattern was analyzed based on two different models, on-center and off-center, under a space group of 14/mmm. In the on-center structure, the Cs occupies the 2a site and the N of NH3 may occupy either the 4c or 2b site, or both. In the off-center structure, the Cs may occupy either the 4c or 2b site, or both, while the N occupies the 2a site. Only an on-center structure model in which the Cs occupies the 2a and the N of NH3 occupies the 4c site provided reasonable results in the Rietveld analysis. Consequently, we concluded that (NH3)(y)Cs0.4FeSe can be assigned to the on-center structure, which produces a smaller FeSe plane spacing leading to the lower T-c. en-copyright= kn-copyright= en-aut-name=ZhengLu en-aut-sei=Zheng en-aut-mei=Lu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiaoXiao en-aut-sei=Miao en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakaiYusuke en-aut-sei=Sakai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UesugiEri en-aut-sei=Uesugi en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EguchiRitsuko en-aut-sei=Eguchi en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiyamaSaki en-aut-sei=Nishiyama en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoKunihisa en-aut-sei=Sugimoto en-aut-mei=Kunihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraAkihiko en-aut-sei=Fujiwara en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=2 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=3 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=4 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=5 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=6 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=7 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=8 en-affil=Japan Synchrotron Radiation Research Institute, SPring-8 kn-affil= affil-num=9 en-affil=Department of Nanotechnology for Sustainable Energy, Kwansei Gakuin University kn-affil= affil-num=10 en-affil=Research Centre of New Functional Materials for Energy Production, Storage and Transport, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=93 cd-vols= no-issue=14 article-no= start-page=140505 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201604 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Composition-induced structural instability and strong-coupling superconductivity in Au1-xPdxTe2 en-subtitle= kn-subtitle= en-abstract= kn-abstract= The physical properties and structural evolution of the MX2-type solid solution Au1-xPdxTe2 are reported. The end member AuTe2 is a normal metal with a monoclinic distorted CdI2-type structure with preformed Te-Te dimers. A monoclinic-trigonal structural phase transition at a finite temperature occurs upon Pd substitution and is suppressed to zero temperature near x = 0.55, and a superconducting phase with a maximum T-c = 4.65 K emerges. A clear indication of strong-coupling superconductivity is observed near the composition of the structural instability. The competitive relationship between Te-Te dimers and superconductivity is proposed. en-copyright= kn-copyright= en-aut-name=KudoKazutaka en-aut-sei=Kudo en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshiiHiroyuki en-aut-sei=Ishii en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NoharaMinoru en-aut-sei=Nohara en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=94 cd-vols= no-issue=17 article-no= start-page=174505 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201611 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Superconductivity in (NH3)(y)NaxFeSe0.5Te0.5 en-subtitle= kn-subtitle= en-abstract= kn-abstract= Na-intercalated FeSe0.5Te0.5 was prepared using the liquid NH3 technique, and a superconducting phase exhibiting a superconducting transition temperature (T-c) as high as 27 K was discovered. This can be called the high-T-c phase since a 21 K superconducting phase was previously obtained in (NH3)(y)NaxFeSe0.5Te0.5. The chemical composition of the high-T-c phase was determined to be (NH3)(0.61(4))Na-0.63(5) Fe0.85Se0.55(3) Te-0.44(2). The x-ray diffraction patterns of both phases show that a larger lattice constant c (i.e., FeSe0.5Te0.5 plane spacing) produces a higher T-c. This behavior is the same as that of metal-doped FeSe, suggesting that improved Fermi-surface nesting produces the higher T-c. The high-T-c phase converted to the low-T-c phase within several days, indicating that it is a metastable phase. The temperature dependence of resistance for both phases was recorded at different magnetic fields, and the critical fields were determined for both phases. Finally, the T-c versus c phase diagram was prepared for the metal-doped FeSe0.5Te0.5, which is similar to that of metal-doped FeSe, although the T-c is lower. en-copyright= kn-copyright= en-aut-name=ZhengLu en-aut-sei=Zheng en-aut-mei=Lu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaiYusuke en-aut-sei=Sakai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiaoXiao en-aut-sei=Miao en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiyamaSaki en-aut-sei=Nishiyama en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TeraoTakahiro en-aut-sei=Terao en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Eguchi,Ritsuko en-aut-sei=Eguchi, en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=24 article-no= start-page=245310 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Transistor properties of exfoliated single crystals of 2H-Mo(Se1-x Te-x) 2 ( 0 <= x <= 1) en-subtitle= kn-subtitle= en-abstract= kn-abstract= Field-effect transistors (FETs) were fabricated using exfoliated single crystals of Mo(Se1-x Te-x)(2) with an x range of 0 to 1, and the transistor properties fully investigated at 295 K in four-terminal measurement mode. The chemical composition and crystal structure of exfoliated single crystals were identified by energy-dispersive x-ray spectroscopy (EDX), single-crystal x-ray diffraction, and Raman scattering, suggesting the 2H - structure in all Mo(Se1-x Te-x)(2). The lattice constants of a and c increase monotonically with increasing x, indicating the substitution of Se by Te. When x < 0.4 in a FET with a thin single crystal of Mo(Se1-x Te-x)(2), n-channel FET properties were observed, changing to p-channelor ambipolar operation for x > 0.4. In contrast, the polarity of a thick single-crystal Mo(Se1-x Te-x)(2) FET did not change despite an increase in x. The change of polarity in a thin single-crystal FET was well explained by the variation of electronic structure. The absence of such change in the thick single-crystal FET can be reasonably interpreted based on the large bulk conduction due to naturally accumulated electrons. The mu value in the thin single-crystal FET showed a parabolic variation, with a minimum mu at around x = 0.4, which probably originates from the disorder of the single crystal caused by the partial replacement of Se by Te, i.e., a disorder that may be due to ionic size difference of Se and Te. en-copyright= kn-copyright= en-aut-name=UesugiEri en-aut-sei=Uesugi en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiaoXiao en-aut-sei=Miao en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtaHiromi en-aut-sei=Ota en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=8 article-no= start-page=085109 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ce 4f electronic states of CeO1-xFxBiS2 studied by soft x-ray photoemission spectroscopy en-subtitle= kn-subtitle= en-abstract= kn-abstract= We use soft x-ray photoemission spectroscopy (SXPES) to investigate Ce 4f electronic states of a new BiS2 layered superconductor CeO1-xFxBiS2, for polycrystalline and single-crystal samples. The Ce 3d spectrum of the single crystal of nominal composition x = 0.7 has no f(0) component and the spectral shape closely resembles the ones observed for Ce trivalent insulating compounds, strongly implying that the CeO layer is still in an insulating state even after the F doping. The Ce 3d-4f resonant SXPES for both polycrystalline and single-crystal samples shows that the prominent peak is located around 1 eV below the Fermi level (E-F) with negligible spectral intensity at EF. The F-concentration dependence of the valence band spectra for single crystals shows the increases of the degeneracy in energy levels and of the interaction between Ce 4f and S 3p states. These results give insight into the nature of the CeO1-xFx layer and the microscopic coexistence of magnetism and superconductivity in CeO1-xFxBiS2. en-copyright= kn-copyright= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TerashimaKensei en-aut-sei=Terashima en-aut-mei=Kensei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaTakahiro en-aut-sei=Hamada en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiwaraHirokazu en-aut-sei=Fujiwara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MinoharaMakoto en-aut-sei=Minohara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiMasaki en-aut-sei=Kobayashi en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HoribaKoji en-aut-sei=Horiba en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KumigashiraHiroshi en-aut-sei=Kumigashira en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KutlukGalif en-aut-sei=Kutluk en-aut-mei=Galif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NagaoMasanori en-aut-sei=Nagao en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WatauchiSatoshi en-aut-sei=Watauchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TanakaIsao en-aut-sei=Tanaka en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DemuraSatoshi en-aut-sei=Demura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakanoYoshihiko en-aut-sei=Takano en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MizuguchiYoshikazu en-aut-sei=Mizuguchi en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MiuraOsuke en-aut-sei=Miura en-aut-mei=Osuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=OkadaKozo en-aut-sei=Okada en-aut-mei=Kozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=6 en-affil=Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=7 en-affil= kn-affil= affil-num=8 en-affil=Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=9 en-affil=Synchrotron Radiation Center, Hiroshima University kn-affil= affil-num=10 en-affil=Center for Crystal Science and Technology, University of Yamanashi kn-affil= affil-num=11 en-affil=Center for Crystal Science and Technology, University of Yamanashi kn-affil= affil-num=12 en-affil=Center for Crystal Science and Technology, University of Yamanashi kn-affil= affil-num=13 en-affil=National Institute for Materials Science kn-affil= affil-num=14 en-affil=National Institute for Materials Science kn-affil= affil-num=15 en-affil=National Institute for Materials Science kn-affil= affil-num=16 en-affil=Department of Electrical and Electronic Engineering, Tokyo Metropolitan University kn-affil= affil-num=17 en-affil=Department of Electrical and Electronic Engineering, Tokyo Metropolitan University kn-affil= affil-num=18 en-affil=Department of Physics and the Graduate school of Natural Science and Technology, Okayama University kn-affil= affil-num=19 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=20 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=6 article-no= start-page=064512 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Locking of length scales in two-band superconductors en-subtitle= kn-subtitle= en-abstract= kn-abstract= A model of a clean two-band s-wave superconductor with cylindrical Fermi surfaces, different Fermi velocities v(1),(2), and a general 2x2 coupling matrix V-alpha beta is used to study the order parameter distribution in vortex lattices. The Eilenberger weak coupling formalism is used to calculate numerically the spatial distributions of the pairing amplitudes Delta(1) and Delta(2) of the two bands for vortices parallel to the Fermi cylinders. For generic values of the interband coupling V-12, it is shown that, independently of the couplings V-alpha beta, of the ratio v(1)/v(2), of the temperature, and the applied field, the length scales of spatial variation of Delta(1) and of Delta(2) are the same within the accuracy of our calculations. The only exception from this single length-scale behavior is found for V-12 << V-11, i.e., for nearly decoupled bands. en-copyright= kn-copyright= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KoganV. G. en-aut-sei=Kogan en-aut-mei=V. G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SchmalianJ. en-aut-sei=Schmalian en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, RIIS, Okayama University kn-affil= affil-num=2 en-affil=Ames Laboratory-DOE and Department of Physics and Astronomy, Iowa State University kn-affil= affil-num=3 en-affil=Institut für Theorie der Kondensierten Materie und Institut für Festkörperphysik, Karlsruher Institut für Technologie kn-affil= END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=13 article-no= start-page=134502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201704 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spin-polarized local density of states in the vortex state of helical p -wave superconductors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Properties of the vortex state in helical p-wave superconductor are studied by the quasiclassical Eilenberger theory. We confirm the instability of the helical p-wave state at high fields and that the spin-polarized local density of states M(E,r) appears even when Knight shift does not change. This is because the vorticity couples to the chirality of up-spin pair or down-spin pair of the helical state. In order to identify the helical p-wave state at low fields, we investigate the structure of the zero-energy M(E = 0,r) in the vortex states, and also the energy spectra of M(E,r). en-copyright= kn-copyright= en-aut-name=TanakaKenta K. en-aut-sei=Tanaka en-aut-mei=Kenta K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnariSeiichiro en-aut-sei=Onari en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=4 article-no= start-page=043309 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170425 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of internal mass in the lattice Boltzmann simulation of moving solid bodies by the smoothed-profile method en-subtitle= kn-subtitle= en-abstract= kn-abstract= A computational method for the simulation of particulate flows that can efficiently treat the particle-fluid boundary in systems containing many particles was developed based on the smoothed-profile lattice Boltzmann method (SPLBM). In our proposed method, which we call the improved SPLBM (iSPLBM), for an accurate and stable simulation of particulate flows, the hydrodynamic force on a moving solid particle is exactly formulated with consideration of the effect of internal fluid mass. To validate the accuracy and stability of iSPLBM, we conducted numerical simulations of several particulate flow systems and compared our results with those of other simulations and some experiments. In addition, we performed simulations on flotation of many lightweight particles with a wide range of particle size distribution, the results of which demonstrated the effectiveness of iSPLBM. Our proposed model is a promising method to accurately and stably simulate extensive particulate flows. en-copyright= kn-copyright= en-aut-name=MinoYasushi en-aut-sei=Mino en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShintoHiroyuki en-aut-sei=Shinto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakaiShohei en-aut-sei=Sakai en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuyamaHideto en-aut-sei=Matsuyama en-aut-mei=Hideto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemical Engineering, Fukuoka University kn-affil= affil-num=3 en-affil=Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University kn-affil= affil-num=4 en-affil=Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=4 article-no= start-page=041106 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evolution of the remnant Fermi-surface state in the lightly doped correlated spin-orbit insulator Sr2-xLaxIrO4 en-subtitle= kn-subtitle= en-abstract= kn-abstract= The electronic structure of the lightly electron-doped correlated spin-orbit insulator Sr2IrO4 has been studied by angle-resolved photoelectron spectroscopy. We have observed the coexistence of a lower Hubbard band and an in-gap band; the momentum dependence of the latter traces that of the band calculations without on-site Coulomb repulsion. The in-gap state remained anisotropically gapped in all observed momentum areas, forming a remnant Fermi-surface state, evolving towards the Fermi energy by carrier doping. These experimental results show a striking similarity with those observed in deeply underdoped cuprates, suggesting the common nature of the nodal liquid states observed in both compounds. en-copyright= kn-copyright= en-aut-name=TerashimaKensei en-aut-sei=Terashima en-aut-mei=Kensei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SunagawaM. en-aut-sei=Sunagawa en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraH. en-aut-sei=Fujiwara en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukuraT. en-aut-sei=Fukura en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiiM. en-aut-sei=Fujii en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkadaK. en-aut-sei=Okada en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HoriganeK. en-aut-sei=Horigane en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiK. en-aut-sei=Kobayashi en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HorieR. en-aut-sei=Horie en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkimitsuJ. en-aut-sei=Akimitsu en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=GoliasE. en-aut-sei=Golias en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MarchenkoD. en-aut-sei=Marchenko en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=VarykhalovA. en-aut-sei=Varykhalov en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SainiN. L. en-aut-sei=Saini en-aut-mei=N. L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Sciences, Okayama University kn-affil= affil-num=4 en-affil= kn-affil= affil-num=5 en-affil=Graduate School of Natural Sciences, Okayama University kn-affil= affil-num=6 en-affil=Aoyama Gakuin University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=11 en-affil=Helmholtz-Zentrum Berlin für Materialien und Energie kn-affil= affil-num=12 en-affil=Helmholtz-Zentrum Berlin für Materialien und Energie kn-affil= affil-num=13 en-affil=Helmholtz-Zentrum Berlin für Materialien und Energie kn-affil= affil-num=14 en-affil=Dipartimento di Fisica, Universitá di Roma “La Sapienza kn-affil= affil-num=15 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=16 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=17 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=1 article-no= start-page=014502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Preparation of new superconductors by metal doping of two-dimensional layered materials using ethylenediamine en-subtitle= kn-subtitle= en-abstract= kn-abstract= We have studied new superconductors prepared by metal doping of two-dimensional (2D) layered materials, FeSe and FeSe0.5Te0.5, using ethylenediamine (EDA). The superconducting transition temperatures (T(c)s) of metal-doped FeSe and metal-doped FeSe0.5Te0.5, i.e., (EDA)(y)MxFeSe and (EDA)(y)MxFeSe0.5Te0.5 (M: Li, Na, and K), were 31-45 K and 19-25 K, respectively. The stoichiometry of each sample was clarified by energy dispersive x-ray (EDX) spectroscopy, and the x-ray powder diffraction pattern indicated a large expansion of lattice constant c, indicating the cointercalation of metal atoms and EDA. The pressure dependence of superconductivity in (EDA)(y)NaxFeSe0.5Te0.5 has been investigated at a pressure of 0-0.8GPa, showing negative pressure dependence in the same manner as (NH3)(y)NaxFeSe0.5Te0.5. The T-c-c phase diagrams of MxFeSe and MxFeSe0.5Te0.5 were drawn afresh from the T-c and c of (EDA)(y)MxFeSe and (EDA)(y)MxFeSe0.5Te0.5, showing that the T-c increases with increasing c but that extreme expansion of c reverses the T-c trend. en-copyright= kn-copyright= en-aut-name=MiaoXiao en-aut-sei=Miao en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TeraoTakahiro en-aut-sei=Terao en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YangXiaofan en-aut-sei=Yang en-aut-mei=Xiaofan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiyamaSaki en-aut-sei=Nishiyama en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyazakiTakafumi en-aut-sei=Miyazaki en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IwasaYoshihiro en-aut-sei=Iwasa en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Department of Applied Physics, The University of Tokyo kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=2 article-no= start-page=024414 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spin pumping into superconductors: A new probe of spin dynamics in a superconducting thin film en-subtitle= kn-subtitle= en-abstract= kn-abstract= Spin pumping refers to the microwave-driven spin current injection from a ferromagnet into the adjacent target material. We theoretically investigate the spin pumping into superconductors by fully taking account of impurity spin-orbit scattering that is indispensable to describe diffusive spin transport with finite spin diffusion length. We calculate temperature dependence of the spin pumping signal and show that a pronounced coherence peak appears immediately below the superconducting transition temperature Tc, which survives even in the presence of the spin-orbit scattering. The phenomenon provides us with a new way of studying the dynamic spin susceptibility in a superconducting thin film. This is contrasted with the nuclear magnetic resonance technique used to study a bulk superconductor. en-copyright= kn-copyright= en-aut-name=InoueMasashi en-aut-sei=Inoue en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AdachiHiroto en-aut-sei=Adachi en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=10 article-no= start-page=104502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201709 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spin-singlet superconductivity in the doped topological crystalline insulator Sn0.96In0.04Te en-subtitle= kn-subtitle= en-abstract= kn-abstract=The In-doped topological crystalline insulator Sn1−x InxTe is a candidate for a topological superconductor, where a pseudo-spin-triplet state has been proposed. To clarify the spin symmetry of Sn1−x InxTe, we perform 125Te-nuclear magnetic resonance (NMR) measurements in polycrystalline samples with 0 x 0.15. The penetration depth calculated from the NMR line width is T independent below half the superconducting transition temperature (Tc) in polycrystalline Sn0.96In0.04Te, which indicates a fully opened superconducting gap. In this sample, the spin susceptibility measured by the spin Knight shift (Ks) at an external magnetic field of μ0H0 = 0.0872 T decreases below Tc, and Ks(T = 0)/Ks(T = Tc) reaches 0.36 ± 0.10, which is far below the limiting value 2/3 expected for a spin-triplet state for a cubic crystal structure. Our result indicates that polycrystalline Sn0.96In0.04Te is a spin-singlet superconductor. en-copyright= kn-copyright= en-aut-name=MaedaSatoki en-aut-sei=Maeda en-aut-mei=Satoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiroseRyohei en-aut-sei=Hirose en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatanoKazuaki en-aut-sei=Matano en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NovakMario en-aut-sei=Novak en-aut-mei=Mario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AndoYoichi en-aut-sei=Ando en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhengGuo-qing en-aut-sei=Zheng en-aut-mei=Guo-qing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Institute of Scientific and Industrial Research, Osaka University kn-affil= affil-num=5 en-affil=Physics Institute II, University of Cologne kn-affil= affil-num=6 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=9 article-no= start-page=094522 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201709 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pair breaking of multigap superconductivity under parallel magnetic fields in the electric-field-induced surface metallic state en-subtitle= kn-subtitle= en-abstract= kn-abstract=The roles of paramagnetic and diamagnetic pair-breaking effects in superconductivity in the electric-field-induced surface metallic state are studied using the Bogoliubov–de Gennes equation when magnetic fields are applied parallel to the surface. The multigap states of the subbands are related to the depth dependence and the magnetic field dependence of the superconductivity. In the Fermi-energy density of states and the spin density, subband contributions successively appear from higher-level subbands with increasing magnetic fields. The characteristic magnetic field dependence may be a key feature to identify the multigap structure of the surface superconductivity. en-copyright= kn-copyright= en-aut-name=NabetaMasahiro en-aut-sei=Nabeta en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaKenta K. en-aut-sei=Tanaka en-aut-mei=Kenta K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnariSeiichiro en-aut-sei=Onari en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=9 article-no= start-page=094527 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170926 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In-plane anisotropy of transport coefficients in electronic nematic states: Universal origin of nematicity in Fe-based superconductors en-subtitle= kn-subtitle= en-abstract= kn-abstract=The origin of the electronic nematicity and its remarkable material dependence are famous longstanding unsolved issues in Fe-based superconductors. To attack these issues, we focus on the in-plane anisotropy of the resistivity: In the nematic state in FeSe, the relationp(x) >p(y) holds, whereP(x)(y) is the resistivity along the longer (shorter) Fe-Fe axis. In contrast, the opposite anisotropy p(x) < p(y) is realized in other undoped Fe-based superconductors. Such nontrivial material dependence is naturally explained in terms of the strongly orbitaldependent inelastic quasiparticle scattering realized in the orbital-ordered state. The opposite anisotropy between FeSe (p(x) >p(y)) and other undoped compounds (P-x < P-y) reflects the difference in the number of hole pockets. We also explain the large in-plane anisotropy of the thermoelectric power in the nematic state. en-copyright= kn-copyright= en-aut-name=OnariSeiichiro en-aut-sei=Onari en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KontaniHiroshi en-aut-sei=Kontani en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Nagoya University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=4-1 article-no= start-page=042410 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20171019 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes en-subtitle= kn-subtitle= en-abstract= kn-abstract= A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkumotoAtsushi en-aut-sei=Okumoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GotoHitoshi en-aut-sei=Goto en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SekinoHideo en-aut-sei=Sekino en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil= Department of Computer Science and Engineering, Graduate School of Engineering, Toyohashi University of Technology kn-affil= affil-num=3 en-affil= Department of Computer Science and Engineering, Graduate School of Engineering, Toyohashi University of Technology kn-affil= affil-num=4 en-affil= Department of Computer Science and Engineering, Graduate School of Engineering, Toyohashi University of Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=6 article-no= start-page=063827 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201712 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Frequency dependence of coherently amplified two-photon emission from hydrogen molecules en-subtitle= kn-subtitle= en-abstract= kn-abstract= We investigate how the efficiency of coherently amplified two-photon emission depends on the frequency of one of the two emitted photons, namely the signal photon. This is done over the wavelength range of 5.048-10.21 mu m by using the vibrational transition of parahydrogen. The efficiency increases with the frequency of the signal photon. Considering experimental errors, our results are consistent with the theoretical prediction for the present experimental conditions. This study is an experimental demonstration of the frequency dependence of coherently amplified two-photon emission, and also presents its potential as a light source. en-copyright= kn-copyright= en-aut-name=HaraHideaki en-aut-sei=Hara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyamotoYuki en-aut-sei=Miyamoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirakiTakahiro en-aut-sei=Hiraki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasudaTakahiko en-aut-sei=Masuda en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SasaoNoboru en-aut-sei=Sasao en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UetakeSatoshi en-aut-sei=Uetake en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshimiAkihiro en-aut-sei=Yoshimi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshimuraKoji en-aut-sei=Yoshimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshimuraMotohiko en-aut-sei=Yoshimura en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=97 cd-vols= no-issue= article-no= start-page=064425 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180228 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Magnetic phase diagram of Sr2-xLaxIrO4 synthesized by mechanical alloying en-subtitle= kn-subtitle= en-abstract= kn-abstract= We report the crystal structure and physical properties of Sr2-xLaxIrO4 synthesized by mechanical alloying. The magnetic transition temperature T-N and electrical resistivity decreased with increasing La doping, consistent with previous studies involving single-crystalline samples. We also identified the relationship between T-N and tetragonal distortion (c/a) in this system. This result suggests that the magnetism of the Sr214 system is strongly correlated with its crystal structure. Zero-field muon spin rotation/relaxation studies revealed that short-range antiferromagnetic ordering is realized in Sr1.9La0.1IrO4; also, the spin-glass state is stabilized in the low-temperature region. The Ir moment estimated from the longitudinal field mu SR results is 0.045 mu(B), ten times smaller than that of Sr2IrO4 (similar to 0.4 mu(B)), indicating that electrons are introduced into the Ir atoms. en-copyright= kn-copyright= en-aut-name=HoriganeKazumasa en-aut-sei=Horigane en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiM. en-aut-sei=Fujii en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkabeH. en-aut-sei=Okabe en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiK. en-aut-sei=Kobayashi en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HorieR. en-aut-sei=Horie en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshiiH. en-aut-sei=Ishii en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LiaoY. F. en-aut-sei=Liao en-aut-mei=Y. F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubozonoY. en-aut-sei=Kubozono en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KodaA. en-aut-sei=Koda en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KadonoR. en-aut-sei=Kadono en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AkimitsuJ. en-aut-sei=Akimitsu en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Institute of Materials Structure Science/J-PARC Center, KEK kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil= kn-affil= affil-num=7 en-affil=National Synchrotron Radiation Research Center kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Institute of Materials Structure Science/J-PARC Center, KEK kn-affil= affil-num=10 en-affil=Institute of Materials Structure Science/J-PARC Center, KEK kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=97 cd-vols= no-issue=10 article-no= start-page=104503 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180307 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pressure-induced superconductivity in AgxBi2-xSe3 en-subtitle= kn-subtitle= en-abstract= kn-abstract= We investigated the pressure dependence of electric transport and crystal structure of Ag-doped Bi2Se3. In the sample prepared by Ag doping of Bi2Se3, the Bi atom was partially replaced by Ag, i.e., Ag0.05Bi1.95Se3. X-ray diffraction patterns of Ag0.05Bi1.95Se3 measured at 0–30 GPa showed three different structural phases, with rhombohedral, monoclinic, and tetragonal structures forming in turn as pressure increased, and structural phase transitions at 8.8 and 24 GPa. Ag0.05Bi1.95Se3 showed no superconductivity down to 2.0 K at 0 GPa, but under pressure, superconductivity suddenly appeared at 11 GPa. The magnetic field (H) dependence of the superconducting transition temperature Tc was measured at 11 and 20.5 GPa, in order to investigate whether the pressure-induced superconducting phase is explained by either p-wave polar model or s-wave model. en-copyright= kn-copyright= en-aut-name=HeTong en-aut-sei=He en-aut-mei=Tong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangXiaofan en-aut-sei=Yang en-aut-mei=Xiaofan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TeraoTakahiro en-aut-sei=Terao en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UchiyamaTakaki en-aut-sei=Uchiyama en-aut-mei=Takaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UenoTeppei en-aut-sei=Ueno en-aut-mei=Teppei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiKaya en-aut-sei=Kobayashi en-aut-mei=Kaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkimitsuJun en-aut-sei=Akimitsu en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyazakiTakafumi en-aut-sei=Miyazaki en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishiokaTakumi en-aut-sei=Nishioka en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KimuraKoji en-aut-sei=Kimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiKouichi en-aut-sei=Hayashi en-aut-mei=Kouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HappoNaohisa en-aut-sei=Happo en-aut-mei=Naohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamaokaHitoshi en-aut-sei=Yamaoka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IshiiHirofumi en-aut-sei=Ishii en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=LiaoYen-Fa en-aut-sei=Liao en-aut-mei=Yen-Fa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OtaHiromi en-aut-sei=Ota en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=9 en-affil=Department of Physical Science and Engineering, Nagoya Institute of Technology kn-affil= affil-num=10 en-affil=Department of Physical Science and Engineering, Nagoya Institute of Technology kn-affil= affil-num=11 en-affil=Frontier Research Institute for Materials Science, Nagoya Institute of Technology kn-affil= affil-num=12 en-affil=Graduate School of Information Science, Hiroshima City University, kn-affil= affil-num=13 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=14 en-affil=National Synchrotron Radiation Research Center kn-affil= affil-num=15 en-affil=National Synchrotron Radiation Research Center kn-affil= affil-num=16 en-affil=Advanced Science Research Center, kn-affil= affil-num=17 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=18 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=97 cd-vols= no-issue=9 article-no= start-page=094505 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180309 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pressure dependence of superconductivity in low- and high-T-c phases of (NH3)(y)NaxFeSe en-subtitle= kn-subtitle= en-abstract= kn-abstract= We prepared two superconducting phases, which are called “low-Tc phase” and “high-Tc phase” of (NH3)yNaxFeSe showing Tc’s of 35 and 44 K, respectively, at ambient pressure, and studied the superconducting behavior and structure of each phase under pressure. The Tc of the 35 K at ambient pressure rapidly decreases with increasing pressure up to 10 GPa, and it remains unchanged up to 22 GPa. Finally, superconductivity was not observed down to 1.4 K at 29 GPa, i.e., Tc < 1.4K. The Tc of the 44 K phase also shows a monotonic decrease up to 15 GPa and it weakly decreases up to 25 GPa. These behaviors suggest no pressure-driven high-Tc phase (called “SC-II”) between 0 and 25 GPa for the low-Tc and high-Tc phases of (NH3)yNaxFeSe, differing from the behavior of (NH3)yCsxFeSe,which has a pressure-driven high-Tc phase (SC-II) in addition to the superconducting phase (SC-I) observed at ambient and low pressures. The Tc-c phase diagram for both low-Tc and high-Tc phases shows that the Tc can be linearly scaled with c (or FeSe plane spacing), where c is a lattice constant. The reason why a pressure-driven high-Tc phase (SC-II) was found for neither low-Tc nor high-Tc phases of (NH3)yNaxFeSe is fully discussed, suggesting a critical c value as the key to forming the pressure-driven high-Tc phase (SC-II). Finally, the precise Tc-c phase diagram is depicted using the data obtained thus far from FeSe codoped with a metal and NH3 or amine, indicating two distinct Tc-c lines below c = 17.5A° . en-copyright= kn-copyright= en-aut-name=TeraoTakahiro en-aut-sei=Terao en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangXiaofan en-aut-sei=Yang en-aut-mei=Xiaofan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiaoXiao en-aut-sei=Miao en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhengLu en-aut-sei=Zheng en-aut-mei=Lu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyazakiTakafumi en-aut-sei=Miyazaki en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamaokaHitoshi en-aut-sei=Yamaoka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshiiHirofumi en-aut-sei=Ishii en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LiaoYen-Fa en-aut-sei=Liao en-aut-mei=Yen-Fa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Laboratory for Surface science, Okayama University kn-affil= affil-num=7 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=8 en-affil=National Synchrotron Radiation Research Center kn-affil= affil-num=9 en-affil=National Synchrotron Radiation Research Center kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Superconductors kn-keyword=Superconductors en-keyword=2-dimensional systems kn-keyword=2-dimensional systems en-keyword=4-terminal techniques kn-keyword=4-terminal techniques en-keyword=Pressure effects kn-keyword=Pressure effects en-keyword=X-ray diffraction kn-keyword=X-ray diffraction END start-ver=1.4 cd-journal=joma no-vol=97 cd-vols= no-issue= article-no= start-page=104511 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180326 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced superconducting transition temperatures in the rocksalt-type superconductors In1-xSnxTe (x <= 0.5) en-subtitle= kn-subtitle= en-abstract= kn-abstract= We investigate superconductivity in In1-xSnxTe (x <= 0.5) synthesized at high pressures of up to 2 GPa and observe an enhancement of the superconducting transition temperature T-c for increasing tin concentration x. These compounds have not been accessible in rocksalt structure via conventional ambient pressure synthesis. While the lattice constant smoothly increases with x, T-c saturates around x = 0.4. Electronic structure calculations indicate that the Tc modulation is brought on by the change of the density of states in the vicinity of the Fermi energy [N(E-F)]. However, differences between the calculated N(E-F) and the observed electronic specific-heat coefficient indicate that the phonon dispersion plays an important role in the system and that the mechanism of superconductivity may not be the same in the entire doping range. en-copyright= kn-copyright= en-aut-name=KobayashiKaya en-aut-sei=Kobayashi en-aut-mei=Kaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AiYukio en-aut-sei=Ai en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JeschkeHarald O. en-aut-sei=Jeschke en-aut-mei=Harald O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkimitsuJun en-aut-sei=Akimitsu en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=97 cd-vols= no-issue= article-no= start-page=134507 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local NMR relaxation rates T-1(-1) and T-2(-1) depending on the d-vector symmetry in the vortex state of chiral and helical p-wave superconductors en-subtitle= kn-subtitle= en-abstract= kn-abstract= Local NMR relaxation rates in the vortex state of chiral and helical p-wave superconductors are investigated by the quasiclassical Eilenberger theory. We calculate the spatial and resonance frequency dependences of the local NMR spin-lattice relaxation rate T-1(-1) and spin-spin relaxation rate T-2(-1). Depending on the relation between the NMR relaxation direction and the d-vector symmetry, the local T-1(-1) and T-2(-1) in the vortex core region show different behaviors. When the NMR relaxation direction is parallel to the d-vector component, the local NMR relaxation rate is anomalously suppressed by the negative coherence effect due to the spin dependence of the odd- frequency s-wave spin-triplet Cooper pairs. The difference between the local T-1(-1) and T-2(-1) in the site-selective NMR measurement is expected to be a method to examine the d-vector symmetry of candidate materials for spin-triplet superconductors. en-copyright= kn-copyright= en-aut-name=TanakaKenta K. en-aut-sei=Tanaka en-aut-mei=Kenta K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnariSeiichiro en-aut-sei=Onari en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=98 cd-vols= no-issue=9 article-no= start-page=094525 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180928 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Temperature-dependent local structure and superconductivity of BaPd2As2 and SrPd2As2 en-subtitle= kn-subtitle= en-abstract= kn-abstract= The local structures of 122-type paradium arsenides, namely BaPd2As2 and SrPd2As2, are examined by As K-edge extended x-ray absorption fine structure measurements to find a possible correlation between the variation of their superconducting transition temperature and the local structure. The local atomic distances are found to be consistent with average distances measured by diffraction techniques. The temperature dependence of mean square relative displacements reveal that, while BaPd2As2 is characterized by a local As-Pd soft mode, albeit with larger atomic disorder, SrPd2As2 shows anomalous As-Pd correlations with a kink at similar to 160 K due to hardening by raising temperature. We have discussed implications of these results and possible mechanisms of differing superconducting transition temperature in relation with the structural instability. en-copyright= kn-copyright= en-aut-name=TerashimaK. en-aut-sei=Terashima en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ParisE. en-aut-sei=Paris en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SimonelliL. en-aut-sei=Simonelli en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Salas-ColeraE. en-aut-sei=Salas-Colera en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PuriA. en-aut-sei=Puri en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamadaY. en-aut-sei=Yamada en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakanoS. en-aut-sei=Nakano en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IdeiH. en-aut-sei=Idei en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KudoK. en-aut-sei=Kudo en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NoharaM. en-aut-sei=Nohara en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MizokawaT. en-aut-sei=Mizokawa en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SainiN. L. en-aut-sei=Saini en-aut-mei=N. L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Dipartimento di Fisica, Universitá di Roma “La Sapienza” kn-affil= affil-num=3 en-affil=CELLS - ALBA Synchrotron Radiation Facility kn-affil= affil-num=4 en-affil=Spanish CRG BM25 Spline, ESRF - The European Synchrotron kn-affil= affil-num=5 en-affil=CRG-LISA, ESRF kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=13 en-affil=Department of Applied Physics, Waseda University kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=15 en-affil=Dipartimento di Fisica, Universitá di Roma “La Sapienza” kn-affil= END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=2 article-no= start-page=024601 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Three-wave resonant interactions and zonal flows in two-dimensional Rossby-Haurwitz wave turbulence on a rotating sphere en-subtitle= kn-subtitle= en-abstract= kn-abstract= This paper addresses three-wave resonant interactions of Rossby-Haurwitz waves in two-dimensional turbulence on a rotating sphere. Zonal modes are often omitted from the "resonant wave set" even when they satisfy the conditions for three-wave resonant interactions, as they do not transfer any energy to other modes in a resonant manner. However, the presence of zonal flows induces phase shifts in other modes, and it is not at all clear that their influence is negligible. Since it is expected that three-wave resonant interactions govern the entire dynamics of turbulence if the rotation rate of the sphere is sufficiently high, by analogy with the theorem regarding three-wave resonant interactions of Rossby waves on a beta plane with sufficiently large beta previously proven by Yamada and Yoneda [Physica D 245, 1 (2013)], an appropriate definition of the resonant wave set was determined by comparing the time evolution of several wave sets on a rapidly rotating sphere. It was found that zonal waves of the form Y-l(m=0) exp(i omega t) with odd l, where Y(l)(m )are the spherical harmonics, should be considered for inclusion in the resonant wave set to ensure that the dynamics of the resonant wave set determine the overall dynamics of the turbulence on a rapidly rotating sphere. Consequently, it is suggested that the minimal resonant wave set that must be considered in the discussion of the three-wave interaction of Rossby-Haurwitz waves is the set consisting of nonzonal resonant waves and zonal waves of the form Y-l(0) exp(icot) with odd l. en-copyright= kn-copyright= en-aut-name=ObuseKiori en-aut-sei=Obuse en-aut-mei=Kiori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamadaMichio en-aut-sei=Yamada en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=1Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Mathematical Sciences, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=100 cd-vols= no-issue=21 article-no= start-page=214302 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Resistivity, Seebeck coefficient, and thermal conductivity of platinum at high pressure and temperature en-subtitle= kn-subtitle= en-abstract= kn-abstract= Platinum (Pt) is one of the most widely used functional materials for high-pressure and high-temperature experiments. Despite the crucial importance of its transport properties, both experimental and theoretical studies are very limited. In this study, we conducted density functional theory calculations on the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of solid face-centered cubic Pt at pressures up to 200 GPa and temperatures up to 4800 K by using the Kubo-Greenwood formula. The thermal lattice displacements were treated within the alloy analogy, which is represented by means of the Korringa-Kohn-Rostoker method with the coherent potential approximation. The electrical resistivity decreases with pressure and increases with temperature. These two conflicting effects yield a constant resistivity of similar to 70 mu Omega cm along the melting curve. Both pressure and temperature effects enhance the thermal conductivity at low temperatures, but the temperature effect becomes weaker at high temperatures. Although the pressure dependence of the Seebeck coefficient is negligibly small at temperatures below similar to 1500 K, it becomes larger at higher temperatures. It requires a calibration of a thermocouple such as Pt-Rh in high-pressure and -temperature experiments. en-copyright= kn-copyright= en-aut-name=GomiHitoshi en-aut-sei=Gomi en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshinoTakashi en-aut-sei=Yoshino en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=Institute for Planetary Materials, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue=3 article-no= start-page=033304 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200313 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lattice Boltzmann method for simulation of wettable particles at a fluid-fluid interface under gravity en-subtitle= kn-subtitle= en-abstract= kn-abstract= A computational technique was developed to simulate wettable particles trapped at a fluid-fluid interface under gravity. The proposed technique combines the improved smoothed profile-lattice Boltzmann method (iSP-LBM) for the treatment of moving solid-fluid boundaries and the free-energy LBM for the description of isodensity immiscible two-phase flows. We considered five benchmark problems in two-dimensional systems, including a stationary drop, a wettable particle trapped at a fluid-fluid interface in the absence or presence of gravity, two freely moving particles at a fluid-fluid interface in the presence of gravity (i.e., capillary floatation forces), and two vertically constrained particles at a fluid-fluid interface (i.e., capillary immersion forces). The simulation results agreed well with theoretical estimations, demonstrating the efficacy of the proposed technique. en-copyright= kn-copyright= en-aut-name=MinoYasushi en-aut-sei=Mino en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShintoHiroyuki en-aut-sei=Shinto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemical Engineering, Fukuoka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue=24 article-no= start-page=245111 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Magnetotransport properties of tellurium under extreme conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigates the transport properties of a chiral elemental semiconductor tellurium (Te) under magnetic fields and pressure. Application of hydrostatic pressure reduces the resistivity of Te, while its temperature dependence remains semiconducting up to 4 GPa, contrary to recent theoretical and experimental studies. Application of higher pressure causes structural as well as semiconductor-metal transitions. The resulting metallic phase above 4 GPa exhibits superconductivity at 2 K along with a noticeable linear magnetoresistance effect. On the other hand, at ambient pressure, we identified metallic surface states on the as-cleaved (10¯10) surfaces of Te. The nature of these metallic surface states has been systematically studied by analyzing quantum oscillations observed in high magnetic fields. We clarify that a well-defined metallic surface state exists not only on chemically etched samples that were previously reported, but also on as-cleaved ones. en-copyright= kn-copyright= en-aut-name=AkibaKazuto en-aut-sei=Akiba en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiKaya en-aut-sei=Kobayashi en-aut-mei=Kaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiTatsuo C. en-aut-sei=Kobayashi en-aut-mei=Tatsuo C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoezukaRyo en-aut-sei=Koezuka en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyakeAtsushi en-aut-sei=Miyake en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GouchiJun en-aut-sei=Gouchi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UwatokoYoshiya en-aut-sei=Uwatoko en-aut-mei=Yoshiya kn-aut-name= Yosh kn-aut-sei= Yosh kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TokunagaMasashi en-aut-sei=Tokunaga en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=5 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=6 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=7 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=8 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue=4 article-no= start-page=043090 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anomalous Hall effect triggered by pressure-induced magnetic phase transition in α-Mn en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recent interest in topological nature in condensed matter physics has revealed the essential role of Berry curvature in the anomalous Hall effect (AHE). However, since a large Hall response originating from Berry curvature has been reported in quite limited materials, the detailed mechanism remains unclear at present. Here, we report the discovery of a large AHE triggered by a pressure-induced magnetic phase transition in elemental α-Mn. The AHE is absent in the noncollinear antiferromagnetic phase at ambient pressure, whereas a large AHE is observed in the weak ferromagnetic phase under high pressure despite the small magnetization of ≈0.02μB/Mn. Our results indicate that the emergence of the AHE in α-Mn is governed by the symmetry of the underlying magnetic structure, providing a direct evidence of a switch between a zero and nonzero contribution of the Berry curvature across the phase boundary. α-Mn can be an elemental and tunable platform to reveal the role of Berry curvature in AHE. en-copyright= kn-copyright= en-aut-name=AkibaKazuto en-aut-sei=Akiba en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwamotoKaisei en-aut-sei=Iwamoto en-aut-mei=Kaisei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoTakaaki en-aut-sei=Sato en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArakiShingo en-aut-sei=Araki en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiTatsuo C. en-aut-sei=Kobayashi en-aut-mei=Tatsuo C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=103 cd-vols= no-issue= article-no= start-page=085134 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Successive destruction of charge density wave states by pressure in LaAgSb2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We comprehensively studied the magnetotransport properties of LaAgSb2 under high pressure up to 4 GPa, which showed unique successive charge density wave (CDW) transitions at TCDW1∼210 K and TCDW2∼190 K at ambient pressure. With the application of pressure, both TCDW1 and TCDW2 were suppressed and disappeared at the critical pressures of PCDW1=3.0–3.4 GPa and PCDW2=1.5–1.9 GPa, respectively. At PCDW1, the Hall conductivity showed a steplike increase, which is consistently understood by the emergence of a two-dimensional hollow Fermi surface at PCDW1. We also observed a significant negative magnetoresistance effect when the magnetic field and current were applied parallel to the c axis. The negative contribution was observed in the whole pressure region from 0 to 4 GPa. Shubnikov–de Haas (SdH) oscillation measurements under pressure directly showed the changes in the Fermi surface across the CDW phase boundaries. In PPCDW1, we observed a single frequency of ∼48 T with a cyclotron effective mass of 0.066m0, whose cross section in the reciprocal space corresponded to only 0.22% of the first Brillouin zone. Besides, we observed another oscillation component with frequency of ∼9.2 T, which is significantly enhanced in the limited pressure range of PCDW2