start-ver=1.4 cd-journal=joma no-vol=107 cd-vols= no-issue=7 article-no= start-page=073910-1 end-page=073910-6 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Room temperature ferromagnetic behavior in the hollandite-type titanium oxide en-subtitle= kn-subtitle= en-abstract= kn-abstract=A hollandite-type K(x)Ti(8)O(16) polycrystalline sample has been prepared and studied by magnetization, resistivity and x-ray photoelectron spectroscopy (XPS). Room temperature ferromagnetic behavior is observed in the magnetic hysteresis measurement. The sample shows a semiconductive temperature dependence in the resistivity measurement. Analysis of the Ti 2p(3/2) core-level XPS spectrum indicates that the titanium ions have a mixed valence of Ti(4+) and Ti(3+). In addition, the valence band spectrum reveals that the 3d electrons tend to localize on Ti(3+) ions in the hollandite-type TiO(2) lattice. Also, analysis of the valence band spectrum shows that the prepared sample is a wide-gap oxide with a band gap of 3.6 eV. These results indicate that the present hollandite-type K(x)Ti(8)O(16) sample can be classified as a TiO(2)-based wide-gap semiconductor with Curie temperature above room temperature. Room temperature ferromagnetism (RTFM) decreases in the sample prepared under a strong reducing gas atmosphere, accompanied with the decrease in the resistivity. The results imply that the localized 3d electrons are responsible for the RTFM of the K(x)Ti(8)O(16) sample. en-copyright= kn-copyright= en-aut-name=NoamiK. en-aut-sei=Noami en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraiM. en-aut-sei=Hirai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoY. en-aut-sei=Kato en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MuroT. en-aut-sei=Muro en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TamenoriY. en-aut-sei=Tamenori en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Faculty of Science, Research Laboratory for Surface Science, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=6 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=7 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=8 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=108 cd-vols= no-issue=4 article-no= start-page=043916-1 end-page=043916-4 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100815 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bulk and surface physical properties of a CrO2 thin film prepared from a Cr8O21 precursor en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have prepared a CrO(2) thin film by chemical vapor deposition from a Cr(8)O(21) precursor and studied the bulk and surface physical properties. The CrO(2) thin film is grown on a TiO(2) (100) substrate by heating of a Cr(8)O(21) precursor and TiO(2) (100) substrate together in a sealed quartz tube. The prepared film is found from x-ray diffraction analysis to be an (100)-oriented single phase. The magnetization and resistivity measurements indicate that the film is a ferromagnetic metal with a Curie temperature of about 400 K. Cr 3s core-level and valence band photoelectron spectroscopy spectra reveal the presence of a metallic CrO(2) in the surface region of the film. Our work indicates that preparation from a Cr(8)O(21) precursor is promising for obtaining a CrO(2) thin film with the metallic surface. en-copyright= kn-copyright= en-aut-name=IwaiK. en-aut-sei=Iwai en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraiM. en-aut-sei=Hirai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoY. en-aut-sei=Kato en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MuroT. en-aut-sei=Muro en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TamenoriY. en-aut-sei=Tamenori en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Faculty of Science, Research Laboratory for Surface Science, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=7 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=8 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 END start-ver=1.4 cd-journal=joma no-vol=109 cd-vols= no-issue=4 article-no= start-page=043702-1 end-page=043702-6 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spectroscopic evidence of the formation of (V,Ti)O2 solid solution in VO2 thinner films grown on TiO2(001) substrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have prepared VO2 thin films epitaxially grown on TiO2(001) substrates with thickness systematically varied from 2.5 to 13 nm using a pulsed laser deposition method, and studied the transport property and electronic states of the films by means of resistivity and in situ synchrotron photoemission spectroscopy (SRPES). In resistivity measurements, the 13-nm-thick film exhibits a metal-insulator transition at around 290 K on cooling with change of three orders of magnitudes in resistivity. As the film thickness decreases, the metal-insulator transition broadens and the transition temperature increases. Below 4 nm, the films do not show the transition and become insulators. In situ SRPES measurements of near the Fermi level valence band find that the electronic state of the 2.5-nm-thick film is different than that of the temperature-induced insulator phase of VO2 itself although these two states are insulating. Ti 2p core-level photoemission measurements reveal that Ti ions exist near the interface between the films and TiO2 substrates, with a chemical state similar to that in (V,Ti)O-2 solid solution. These results indicate that insulating (V,Ti)O-2 solid solution is formed in the thinner films. We propose a simple growth model of a VO2 thin film on a TiO2(001) substrate. Near the interface, insulating (V,Ti) O-2 solid solution is formed due to the diffusion of Ti ions from the TiO2 substrate into the VO2 film. The concentration of Ti in (V,Ti) O-2 is relatively high near the interface and decreases toward the surface of the film. Beyond a certain film thickness (about 7 nm in the case of the present 13-nm-thick film), the VO2 thin film without any Ti ions starts to grow. Our work suggests that developing a technique for preparing the sharp interface between the VO2 thin films and TiO2 substrates is a key issue to study the physical property of an ultrathin film of "pure" VO2, especially to examine the presence of the novel electronic state called a semi-Dirac point phase predicted by calculations. en-copyright= kn-copyright= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaekiK. en-aut-sei=Saeki en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EguchiR. en-aut-sei=Eguchi en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiraiM. en-aut-sei=Hirai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShinS. en-aut-sei=Shin en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=RIKEN/SPring-8 END start-ver=1.4 cd-journal=joma no-vol=98 cd-vols= no-issue=8 article-no= start-page=082107-1 end-page=082107-3 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110221 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multiple phosphorus chemical sites in heavily phosphorus-doped diamond en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have performed high-resolution core level photoemission spectroscopy on a heavily phosphorus (P)-doped diamond film in order to elucidate the chemical sites of doped-phosphorus atoms in diamond. P 2p core level study shows two bulk components, providing spectroscopic evidence for multiple chemical sites of doped-phosphorus atoms. This indicates that only a part of doped-phosphorus atoms contribute to the formation of carriers. From a comparison with band calculations, possible origins for the chemical sites are discussed. en-copyright= kn-copyright= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MuroTakayuki en-aut-sei=Muro en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraTetsuya en-aut-sei=Nakamura en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatoHiromitsu en-aut-sei=Kato en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamasakiSatoshi en-aut-sei=Yamasaki en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakanoYoshihiko en-aut-sei=Takano en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshiiSatoshi en-aut-sei=Ishii en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OguchiTamio en-aut-sei=Oguchi en-aut-mei=Tamio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=4 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=5 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) affil-num=9 en-affil= kn-affil=Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) affil-num=10 en-affil= kn-affil=National Institute for Materials Science (NIMS) affil-num=11 en-affil= kn-affil=National Institute for Materials Science (NIMS) affil-num=12 en-affil= kn-affil=Institute of Scientific and Industrial Research, Osaka University affil-num=13 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=100 cd-vols= no-issue=25 article-no= start-page=252104-1 end-page=252104-3 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=20120619 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced thermoelectric properties by Ir doping of PtSb2 with pyrite structure en-subtitle= kn-subtitle= en-abstract= kn-abstract=The effects of Ir doping on the thermoelectric properties of Pt1-xIrxSb2 (x = 0, 0.01, 0.03, and 0.1) with pyrite structure were studied. Measurements of electrical resistivity rho, Seebeck coefficient S, and thermal conductivity kappa were conducted. The results showed an abrupt change from semiconducting behavior without Ir (x = 0) to metallic behavior at x = 0.01. The sample with x = 0.01 exhibited large S and low rho, resulting in a maximum power factor (S-2/rho) of 43 mu W/cmK(2) at 400 K. The peculiar "pudding mold"-type electronic band dispersion could explain the enhanced thermoelectric properties in the metallic state. en-copyright= kn-copyright= en-aut-name=NishikuboYoshihiro en-aut-sei=Nishikubo en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakanoSeiya en-aut-sei=Nakano en-aut-mei=Seiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KudoKazutaka en-aut-sei=Kudo en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NoharaMinoru en-aut-sei=Nohara en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=Department of Physics, Okayama University affil-num=2 en-affil= kn-affil=Department of Physics, Okayama University affil-num=3 en-affil= kn-affil=Department of Physics, Okayama University affil-num=4 en-affil= kn-affil=Department of Physics, Okayama University END start-ver=1.4 cd-journal=joma no-vol=1707 cd-vols= no-issue= article-no= start-page=050017 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=2016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Numerical study on anaerobic digestion of fruit and vegetable waste: Biogas generation en-subtitle= kn-subtitle= en-abstract= kn-abstract= The study provides experimental results and numerical results concerning anaerobic digestion of fruit and vegetable waste. Experiments were carried out by using batch floating drum type digester without mixing and temperature setting. The retention time was 30 days. Numerical results based on Monod type model with influence of temperature is introduced. Initial value problems were analyzed numerically, while kinetic parameters were analyzed by using trial error methods. The numerical results for the first five days seems appropriate in comparison with the experimental outcomes. However, numerical results shows that the model is inappropriate for 30 days of fermentation. This leads to the conclusion that Monod type model is not suitable for describe the mixture degradation of fruit and vegetable waste and horse dung. en-copyright= kn-copyright= en-aut-name=WardhaniPuteri Kusuma en-aut-sei=Wardhani en-aut-mei=Puteri Kusuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeMasaji en-aut-sei=Watanabe en-aut-mei=Masaji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Anaerobic digestion kn-keyword=Anaerobic digestion en-keyword=monod model kn-keyword=monod model en-keyword=numerical simulation kn-keyword=numerical simulation END start-ver=1.4 cd-journal=joma no-vol=1707 cd-vols= no-issue= article-no= start-page=050013 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=2016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mathematical Formulation and Numerical Simulation of Bird Flu Infection Process within a Poultry Farm en-subtitle= kn-subtitle= en-abstract= kn-abstract= Bird flu infection processes within a poultry farm are formulated mathematically. A spatial effect is taken into account for the virus concentration with a diffusive term. An infection process is represented in terms of a traveling wave solutions. For a small removal rate, a singular perturbation analysis lead to existence of traveling wave solutions, that correspond to progressive infection in one direction. en-copyright= kn-copyright= en-aut-name=PutriArrival Rince en-aut-sei=Putri en-aut-mei=Arrival Rince kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NovaTertia Delia en-aut-sei=Nova en-aut-mei=Tertia Delia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMasaji en-aut-sei=Watanabe en-aut-mei=Masaji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Andalas University kn-affil= affil-num=3 en-affil=Graduate School Environmental and Life Science, Okayama University kn-affil= en-keyword=bird flu kn-keyword=bird flu en-keyword=spatial effect kn-keyword=spatial effect en-keyword=traveling wave solutions kn-keyword=traveling wave solutions en-keyword=singular perturbation kn-keyword=singular perturbation END start-ver=1.4 cd-journal=joma no-vol=111 cd-vols= no-issue=18 article-no= start-page=183102 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20171030 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials en-subtitle= kn-subtitle= en-abstract= kn-abstract= A technique of selective electroless plating onto PLA-ABS (Polylactic Acid-Acrylonitrile Butadiene Styrene) composite structures fabricated by three-dimensional (3D) printing is demonstrated to construct 3D microwave metamaterials. The reducing activity of the PLA surface is selectively enhanced by the chemical modification involving Sn2+ in a simple wet process, thereby forming a highly conductive Ag-plated membrane only onto the PLA surface. The fabricated metamaterial composed of Ag-plated PLA and non-plated ABS parts is characterized experimentally and numerically to demonstrate the important bi-anisotropic microwave responses arising from the 3D nature of metallodielectric structures. Our approach based on a simple wet chemical process allows for the creation of highly complex 3D metal-insulator structures, thus paving the way toward the sophisticated microwave applications of the 3D printing technology. Published by AIP Publishing. en-copyright= kn-copyright= en-aut-name=IshikawaAtsushi en-aut-sei=Ishikawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoTaiki en-aut-sei=Kato en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeyasuNobuyuki en-aut-sei=Takeyasu en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujimoriKazuhiro en-aut-sei=Fujimori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsurutaKenji en-aut-sei=Tsuruta en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=4 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=5 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=111 cd-vols= no-issue=24 article-no= start-page=243106 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20171211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Robust plasmonic hot-spots in a metamaterial lattice for enhanced sensitivity of infrared molecular detection en-subtitle= kn-subtitle= en-abstract= kn-abstract= High-density and long-lived plasmonic hot-spots are an ideal system for high-sensitive surface-enhanced infrared absorption (SEIRA), but these conditions arc usually incompatible due to unwanted near-field coupling between the adjacent unit structures. Here, by fully controlling plasmonic interference in a metamaterial lattice, we experimentally demonstrate densely packed long-lived quadrupole plasmons for high-sensitive SEIRA. The metamaterial consists of a strongly coupled array of super-and sub-radiant plasmonic elements to exhibit an electromagnetic transparency mode at 1730 cm(-1), which spectrally overlaps with the C=O vibrational mode. In the SEIRA measurement, the C=O mode of poly(methyl methacrylate) molecules is clearly observed as a distinct dip within a transmission peak of the metamaterial. The corresponding numerical simulations reveal that constructive interference uniformly forms coherent quadrupole plasmons over the metamaterial lattice, leading to a stronger molecular signal from the system. Our metamaterial approach provides a robust way to construct ideal hot-spots over the sample, paving the way toward a reliable sensing platform of advanced infrared inspection technologies. Published by AIP Publishing. en-copyright= kn-copyright= en-aut-name=IshikawaAtsushi en-aut-sei=Ishikawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaraShuhei en-aut-sei=Hara en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTakuo en-aut-sei=Tanaka en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhanXiang en-aut-sei=Zhan en-aut-mei=Xiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsurutaKenji en-aut-sei=Tsuruta en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=3 en-affil=Metamaterials Laboratory, RIKEN kn-affil= affil-num=4 en-affil=NSF Nanoscale Science and Engineering Center, University of California kn-affil= affil-num=5 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue=21 article-no= start-page=214504 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190605 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Bayesian approach for identification of ice Ih, ice Ic, high density, and low density liquid water with a torsional order parameter en-subtitle= kn-subtitle= en-abstract= kn-abstract= An order parameter is proposed to classify the local structures of liquid and solid water. The order parameter, which is calculated from the O–O–O–O dihedral angles, can distinguish ice Ih, ice Ic, high density, and low density liquid water. Three coloring schemes are proposed to visualize each of the coexisting phases in a system using the order parameter on the basis of Bayesian decision theory. The schemes are applied to a molecular dynamics trajectory in which ice nucleation occurs following spontaneous liquid-liquid separation in the deeply supercooled region as a demonstration. en-copyright= kn-copyright= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=151 cd-vols= no-issue=6 article-no= start-page=064702 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190808 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Formation of Hot Ice Caused by Carbon Nanobrushes en-subtitle= kn-subtitle= en-abstract= kn-abstract= Confinement in nanoscaled porous materials changes properties of water significantly. We perform molecular dynamics simulations of water in a model of a nanobrush made of carbon nanotubes. Water crystallizes into a novel structure called dtc in the nanobrush when (6,6) nanotubes are located in a triangular arrangement, and there is a space that can accommodate two layers of water molecules between the tubes. The mechanism of the solidification is analogous to formation of gas hydrates: hydrophobic molecules promote crystallization when their arrangement matches ordered structures of water. This is supported by a statistical mechanical calculation, which bears resemblance to the theory on the clathrate hydrate stability. en-copyright= kn-copyright= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamasakiMasaru en-aut-sei=Yamasaki en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue=21 article-no= start-page=214506 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Liquid-liquid separation of aqueous solutions: A molecular dynamics study en-subtitle= kn-subtitle= en-abstract= kn-abstract= In the liquid-liquid phase transition scenario, supercooled water separates into the high density liquid (HDL) and low density liquid (LDL) phases at temperatures lower than the second critical point. We investigate the effects of hydrophilic and hydrophobic solutes on the liquid-liquid phase transition using molecular dynamics simulations. It is found that a supercooled aqueous NaCl solution separates into solute-rich HDL and solute-poor LDL parts at low pressures. By contrast, a supercooled aqueous Ne solution separates into solute-rich LDL and solute-poor HDL parts at high pressures. Both the solutes increase the high temperature limit of the liquid-liquid separation. The degree of separation is quantified using the local density of solute particles to determine the liquid-liquid coexistence region in the pressure-temperature phase diagram. The effects of NaCl and Ne on the phase diagram of supercooled water are explained in terms of preferential solvation of ions in HDL and that of small hydrophobic particles in LDL, respectively. en-copyright= kn-copyright= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue=4 article-no= start-page=041102 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190123 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phase diagram of ice polymorphs under negative pressure considering the limits of mechanical stability en-subtitle= kn-subtitle= en-abstract= kn-abstract= Thermodynamic and mechanical stabilities of various ultralow-density ices are examined using computer simulations to construct the phase diagram of ice under negative pressure. Some ultralow-density ices, which were predicted to be thermodynamically metastable under negative pressures on the basis of the quasi-harmonic approximation, can exist only in a narrow pressure range at very low temperatures because they are mechanically fragile due to the large distortion in the hydrogen bonding network. By contrast, relatively dense ices such as ice Ih and ice XVI withstand large negative pressure. Consequently, various ices appear one after another in the phase diagram. The phase diagram of ice under negative pressure exhibits a different complexity from that of positive pressure because of the mechanical instability. en-copyright= kn-copyright= en-aut-name=MatsuiTakahiro en-aut-sei=Matsui en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=144 cd-vols= no-issue=22 article-no= start-page=224104 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160610 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A reference-modified density functional theory: An application to solvation free-energy calculations for a Lennard-Jones solution en-subtitle= kn-subtitle= en-abstract= kn-abstract= In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaruyamaYutaka en-aut-sei=Maruyama en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsutakeAyori en-aut-sei=Mitsutake en-aut-mei=Ayori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Co-Design Team, Exascale Computing Project, RIKEN Advanced Institute for Computational Science kn-affil= affil-num=3 en-affil=Co-Design Team, Exascale Computing Project, RIKEN Advanced Institute for Computational Science kn-affil= affil-num=4 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue=16 article-no= start-page=164701 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190424 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Three-phase equilibria in density-functional theory: Interfacial tensions en-subtitle= kn-subtitle= en-abstract= kn-abstract= A mean-field density-functional model for three-phase equilibria in fluids (or other soft condensed matter) with two spatially varying densities is analyzed analytically and numerically. The interfacial tension between any two out of three thermodynamically coexisting phases is found to be captured by a surprisingly simple analytic expression that has a geometric interpretation in the space of the two densities. The analytic expression is based on arguments involving symmetries and invariances. It is supported by numerical computations of high precision, and it agrees with earlier conjectures obtained for special cases in the same model. An application is presented to three-phase equilibria in the vicinity of a tricritical point. Using the interfacial tension expression and employing the field variables compatible with tricritical point scaling, the expected mean-field critical exponent is derived for the vanishing of the critical interfacial tension as a function of the deviation of the noncritical interfacial tension from its limiting value, upon approach to a critical endpoint in the phase diagram. The analytic results are again confirmed by numerical computations of high precision. en-copyright= kn-copyright= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IndekeuJoseph O. en-aut-sei=Indekeu en-aut-mei=Joseph O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Institute for Theoretical Physics, KU Leuven kn-affil= END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=11 article-no= start-page=5488 end-page=5493 dt-received= dt-revised= dt-accepted= dt-pub-year=2004 dt-pub=20040915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On the thermodynamic stability of clathrate hydrates IV: Double occupancy of cages en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have extended the van der Waals and Platteeuw theory to treat multiple occupancy of a single cage of clathrate hydrates, which has not been taken into account in the original theory but has been experimentally confirmed as a real entity. We propose a simple way to calculate the free energy of multiple cage occupancy and apply it to argon clathrate structure II in which a larger cage can be occupied by two argon atoms. The chemical potential of argon is calculated treating it as an imperfect gas, which is crucial to predict accurate pressure dependence of double occupancy expected at high pressure. It is found that double occupancy dominates over single occupancy when the guest pressure in equilibrium with the clathrate hydrate exceeds 270 MPa. (C) 2004 American Institute of Physics. en-copyright= kn-copyright= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakatsukaTakeharu en-aut-sei=Nakatsuka en-aut-mei=Takeharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=RAMAN-SCATTERING kn-keyword=RAMAN-SCATTERING en-keyword=HIGH-PRESSURES kn-keyword=HIGH-PRESSURES en-keyword=LIQUID WATER kn-keyword=LIQUID WATER en-keyword=AR HYDRATE kn-keyword=AR HYDRATE en-keyword=MOLECULES kn-keyword=MOLECULES END start-ver=1.4 cd-journal=joma no-vol=122 cd-vols= no-issue=7 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On the thermodynamic stability and structural transition of clathrate hydrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Gas mixtures of methane and ethane form structure II clathrate hydrates despite the fact that each of pure methane and pure ethane gases forms the structure I hydrate. Optimization of the interaction potential parameters for methane and ethane is attempted so as to reproduce the dissociation pressures of each simple hydrate containing either methane or ethane alone. An account for the structural transitions between type I and type II hydrates upon changing the mole fraction of the gas mixture is given on the basis of the van der Waals and Platteeuw theory with these optimized potentials. Cage occupancies of the two kinds of hydrates are also calculated as functions of the mole fraction at the dissociation pressure and at a fixed pressure well above the dissociation pressure. en-copyright= kn-copyright= en-aut-name=KoyamaYuji en-aut-sei=Koyama en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=STRUCTURE-II kn-keyword=STRUCTURE-II en-keyword=POTENTIAL FUNCTIONS kn-keyword=POTENTIAL FUNCTIONS en-keyword=ETHANE kn-keyword=ETHANE en-keyword=METHANE kn-keyword=METHANE en-keyword=GAS kn-keyword=GAS en-keyword=MOLECULES kn-keyword=MOLECULES en-keyword=MIXTURES kn-keyword=MIXTURES en-keyword=PROPANE kn-keyword=PROPANE en-keyword=WATER kn-keyword=WATER END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=4 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On the thermodynamic stability of hydrogen clathrate hydrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=The cage occupancy of hydrogen clathrate hydrate has been examined by grand canonical Monte Carlo (GCMC) simulations for wide ranges of temperature and pressure. The simulations are carried out with a fixed number of water molecules and a fixed chemical potential of the guest species so that hydrogen molecules can be created or annihilated in the clathrate. Two types of the GCMC simulations are performed; in one the volume of the clathrate is fixed and in the other it is allowed to adjust itself under a preset pressure so as to take account of compression by a hydrostatic pressure and expansion due to multiple cage occupancy. It is found that the smaller cage in structure II is practically incapable of accommodating more than a single guest molecule even at pressures as high as 500 MPa, which agrees with the recent experimental investigations. The larger cage is found to encapsulate at most 4 hydrogen molecules, but its occupancy is dependent significantly on the pressure of hydrogen. en-copyright= kn-copyright= en-aut-name=KatsumasaKeisuke en-aut-sei=Katsumasa en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=OCCUPANCY kn-keyword=OCCUPANCY en-keyword=CLUSTERS kn-keyword=CLUSTERS en-keyword=STORAGE kn-keyword=STORAGE en-keyword=CAGES kn-keyword=CAGES en-keyword=WATER kn-keyword=WATER END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=15 article-no= start-page=7304 end-page=7312 dt-received= dt-revised= dt-accepted= dt-pub-year=2004 dt-pub=20041015 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hydrophobic effect in the pressure-temperature plane en-subtitle= kn-subtitle= en-abstract= kn-abstract=The free energy of the hydrophobic hydration and the strength of the solvent-mediated attraction between hydrophobic solute molecules are calculated in the pressure-temperature plane. This is done in the framework of an exactly soluble model that is an extension of the lattice model proposed by Kolomeisky and Widom [A. B. Kolomeisky and B. Widom, Faraday Discuss. 112, 81 (1999)]. The model takes into account both the mechanism of the hydrophobic effect dominant at low temperatures and the opposite mechanism of solvation appearing at high temperatures and has the pressure as a second thermodynamic variable. With this model, two boundaries are identified in the pressure-temperature plane: the first one within which the solubility, or the Ostwald absorption coefficient, decreases with increasing temperature at fixed pressure and the second one within which the strength of solvent-mediated attraction increases with increasing temperature. The two are nearly linear and parallel to each other, and the second boundary lies in the low-temperature and low-pressure side of the first boundary. It is found that a single, near-linear relation between the hydration free energy and the strength of the hydrophobic attraction holds over the entire area within the second boundary in the pressure-temperature plane. (C) 2004 American Institute of Physics. en-copyright= kn-copyright= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=FREE-ENERGY kn-keyword=FREE-ENERGY en-keyword=AQUEOUS ARGON kn-keyword=AQUEOUS ARGON en-keyword=DEPENDENCE kn-keyword=DEPENDENCE en-keyword=WATER kn-keyword=WATER en-keyword=HYDRATION kn-keyword=HYDRATION en-keyword=ENTROPY kn-keyword=ENTROPY en-keyword=MODEL kn-keyword=MODEL en-keyword=DENATURATION kn-keyword=DENATURATION en-keyword=SIMULATIONS kn-keyword=SIMULATIONS en-keyword=ATTRACTION kn-keyword=ATTRACTION END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=8 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070828 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phase equilibria and interfacial tension of fluids confined in narrow pores en-subtitle= kn-subtitle= en-abstract= kn-abstract=Correlation between phase behaviors of a Lennard-Jones fluid in and outside a pore is examined over wide thermodynamic conditions by grand canonical Monte Carlo simulations. A pressure tensor component of the confined fluid, a variable controllable in simulation but usually uncontrollable in experiment, is related with the pressure of a bulk homogeneous system in equilibrium with the confined system. Effects of the pore dimensionality, size, and attractive potential on the correlations between thermodynamic properties of the confined and bulk systems are clarified. A fluid-wall interfacial tension defined as an excess grand potential is evaluated as a function of the pore size. It is found that the tension decreases linearly with the inverse of the pore diameter or width. en-copyright= kn-copyright= en-aut-name=HamadaYoshinobu en-aut-sei=Hamada en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=MONTE-CARLO-SIMULATION kn-keyword=MONTE-CARLO-SIMULATION en-keyword=CARBON NANOTUBES kn-keyword=CARBON NANOTUBES en-keyword=WATER kn-keyword=WATER en-keyword=TRANSITION kn-keyword=TRANSITION en-keyword=NANOSPACES kn-keyword=NANOSPACES en-keyword=ADSORPTION kn-keyword=ADSORPTION en-keyword=NANOPORES kn-keyword=NANOPORES en-keyword=SURFACE kn-keyword=SURFACE en-keyword=LIQUID kn-keyword=LIQUID en-keyword=WALLS kn-keyword=WALLS END start-ver=1.4 cd-journal=joma no-vol=122 cd-vols= no-issue=10 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phase diagram of water between hydrophobic surfaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=Molecular dynamics simulations demonstrate that there are at least two classes of quasi-two-dimensional solid water into which liquid water confined between hydrophobic surfaces freezes spontaneously and whose hydrogen-bond networks are as fully connected as those of bulk ice. One of them is the monolayer ice and the other is the bilayer solid which takes either a crystalline or an amorphous form. Here we present the phase transformations among liquid, bilayer amorphous (or crystalline) ice, and monolayer ice phases at various thermodynamic conditions, then determine curves of melting, freezing, and solid-solid structural change on the isostress planes where temperature and intersurface distance are variable, and finally we propose a phase diagram of the confined water in the temperature-pressure-distance space. en-copyright= kn-copyright= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Okayama University en-keyword=MOLECULAR-DYNAMICS SIMULATION kn-keyword=MOLECULAR-DYNAMICS SIMULATION en-keyword=CONFINED WATER kn-keyword=CONFINED WATER en-keyword=LIQUID WATER kn-keyword=LIQUID WATER en-keyword=SOLVATION FORCES; CARBON NANOTUBES kn-keyword=SOLVATION FORCES; CARBON NANOTUBES en-keyword=BILAYER ICE kn-keyword=BILAYER ICE en-keyword=EQUILIBRIA kn-keyword=EQUILIBRIA en-keyword=TRANSITION kn-keyword=TRANSITION en-keyword=WALLS kn-keyword=WALLS en-keyword=INTERFACE kn-keyword=INTERFACE END start-ver=1.4 cd-journal=joma no-vol=124 cd-vols= no-issue=13 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=20060407 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Close-packed structures and phase diagram of soft spheres in cylindrical pores en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is shown for a model system consisting of spherical particles confined in cylindrical pores that the first ten close-packed phases are in one-to-one correspondence with the first ten ways of folding a triangular lattice, each being characterized by a roll-up vector like the single-walled carbon nanotube. Phase diagrams in pressure-diameter and temperature-diameter planes are obtained by inherent-structure calculation and molecular dynamics simulation. The phase boundaries dividing two adjacent phases are infinitely sharp in the low-temperature limit but are blurred as temperature is increased. Existence of such phase boundaries explains rich, diameter-sensitive phase behavior unique for cylindrically confined systems. en-copyright= kn-copyright= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=WALLED CARBON NANOTUBES kn-keyword=WALLED CARBON NANOTUBES en-keyword=NANOCAPILLARITY kn-keyword=NANOCAPILLARITY en-keyword=MICROTUBULES kn-keyword=MICROTUBULES en-keyword=CAPILLARITY kn-keyword=CAPILLARITY en-keyword=CRYSTALS kn-keyword=CRYSTALS END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=6 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070814 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Line and boundary tensions on approach to the wetting transition en-subtitle= kn-subtitle= en-abstract= kn-abstract=A mean-field density-functional model often used in the past in the study of line and boundary tensions at wetting and prewetting transitions is reanalyzed by extensive numerical calculations, approaching the wetting transition much more closely than had previously been possible. The results are what are now believed to be definitive for the model. They include strong numerical evidence for the presence of the logarithmic factors predicted by theory both in the mode of approach of the prewetting line to the triple-point line at the point of the first-order wetting transition and in the line tension itself on approach to that point. It is also demonstrated with convincing numerical precision that the boundary tension on the prewetting line and the line tension on the triple-point line have a common limiting value at the wetting transition, again as predicted by theory. As a by product of the calculations, in the model's symmetric three-phase state, far from wetting, it is found that certain properties of the model's line tension and densities are almost surely given by simple numbers arising from the symmetries, but proving that these are exact for the model remains a challenge to analytical theory. en-copyright= kn-copyright= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WidomB. en-aut-sei=Widom en-aut-mei=B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Baker Laboratory, Cornell University en-keyword=SURFACE PHASES kn-keyword=SURFACE PHASES en-keyword=FLUID PHASES kn-keyword=FLUID PHASES en-keyword=SUBSTRATE kn-keyword=SUBSTRATE en-keyword=ADSORPTION kn-keyword=ADSORPTION en-keyword=INTERFACE kn-keyword=INTERFACE en-keyword=CONTACT kn-keyword=CONTACT en-keyword=MODEL kn-keyword=MODEL en-keyword=ICE kn-keyword=ICE END start-ver=1.4 cd-journal=joma no-vol=123 cd-vols= no-issue=9 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Formation of ice nanotube with hydrophobic guests inside carbon nanotube en-subtitle= kn-subtitle= en-abstract= kn-abstract=A composite ice nanotube inside a carbon nanotube has been explored by molecular dynamics and grandcanonical Monte Carlo simulations. It is made from an octagonal ice nanotube whose hollow space contains hydrophobic guest molecules such as neon, argon, and methane. It is shown that the attractive interaction of the guest molecules stabilizes the ice nanotube. The guest occupancy of the hollow space is calculated by the same method as applied to clathrate hydrates. en-copyright= kn-copyright= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=ice nanotubes kn-keyword=ice nanotubes en-keyword=carbon nanotubes kn-keyword=carbon nanotubes END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=12 article-no= start-page=125317 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Magnetic characterization change by solvents of magnetic nanoparticles in liquid-phase magnetic immunoassay en-subtitle= kn-subtitle= en-abstract= kn-abstract=Liquid-phase magnetic immunoassay (MIA) using magnetic nano-particles (MNPs) has been studied as a more rapid method compared to optical methods for inspecting proteins and viruses. MIA can estimate the number of conjugated antibodies without being washed differently from conventional optical immunoassay. However, in the case of the liquid phase, it is considered that the magnetic properties of MNPs are affected by physical properties such as viscosity and impurity substances such as biological substances contained in the blood. In this study, the effect of sodium chloride (NaCl) in buffer and serum solution was evaluated to reveal the effect of serum because the sodium (Na+) and chloride (Cl-) ions in the serum dominate ion balance of blood. The measurement results of AC magnetic susceptibility and a dynamic light scattering (DLS) showed that the aggregation of MNPs was largely affected by the concentration of NaCl. This effect of the NaCl could be explained by shielding of the surface charge of MNPs by ions in the solution. Although the concentrations of NaCl in the buffer and serum solution were almost same, we found that MNPs were aggregated more in their size for those in the serum solution because of other impurities, such as proteins. These results suggest evaluation of effects of the contaminants in serum and optimization of polymer coatings of MNPs could be important factors to realize measurements of magnetic immunoassay with high accuracy. (C) 2019 Author(s). en-copyright= kn-copyright= en-aut-name=JinnoKatsuya en-aut-sei=Jinno en-aut-mei=Katsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiramatsuBunta en-aut-sei=Hiramatsu en-aut-mei=Bunta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsunashimaKenta en-aut-sei=Tsunashima en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujimotoKayo en-aut-sei=Fujimoto en-aut-mei=Kayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaiKenji en-aut-sei=Sakai en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KiwaToshihiko en-aut-sei=Kiwa en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsukadaKeiji en-aut-sei=Tsukada en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=117 cd-vols= no-issue=10 article-no= start-page=101103 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200909 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Super-chiral vibrational spectroscopy with metasurfaces for high-sensitive identification of alanine enantiomers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chiral nature of an enantiomer can be characterized by circular dichroism (CD) spectroscopy, but such a technique usually suffers from weak signal even with a sophisticated optical instrument. Recent demonstrations of plasmonic metasurfaces showed that chiroptical interaction of molecules can be engineered, thereby greatly simplifying a measurement system with high sensing capability. Here, by exploiting super-chiral field in a metasurface, we experimentally demonstrate high-sensitive vibrational CD spectroscopy of alanine enantiomers, the smallest chiral amino acid. Under linearly polarized excitation, the metasurface consisting of an array of staggered Au nano-rods selectively produces the left- and right-handed super-chiral fields at 1600 cm−1, which spectrally overlaps with the functional group vibrations of alanine. In the Fourier-transform infrared spectrometer measurements, the mirror symmetric CD spectra of D- and L-alanine are clearly observed depending on the handedness of the metasurface, realizing the reliable identification of small chiral molecules. The corresponding numerical simulations reveal the underlying resonant chiroptical interaction of plasmonic modes of the metasurface and vibrational modes of alanine. Our approach demonstrates a high-sensitive vibrational CD spectroscopic technique, opening up a reliable chiral sensing platform for advanced infrared inspection technologies. en-copyright= kn-copyright= en-aut-name=IidaTakumi en-aut-sei=Iida en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaAtsushi en-aut-sei=Ishikawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTakuo en-aut-sei=Tanaka en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MuranakaAtsuya en-aut-sei=Muranaka en-aut-mei=Atsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UchiyamaMasanobu en-aut-sei=Uchiyama en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsurutaKenji en-aut-sei=Tsuruta en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=3 en-affil=Metamaterials Laboratory, RIKEN Cluster for Pioneering Research kn-affil= affil-num=4 en-affil=Advanced Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research kn-affil= affil-num=5 en-affil=Advanced Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research kn-affil= affil-num=6 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=7 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=153 cd-vols= no-issue=11 article-no= start-page=114501 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200916 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and phase behavior of high-density ice from molecular-dynamics simulations with the ReaxFF potential en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a molecular dynamics simulation study of dense ice modeled by the reactive force field (ReaxFF) potential, focusing on the possibility of phase changes between crystalline and plastic phases as observed in earlier simulation studies with rigid water models. It is demonstrated that the present model system exhibits phase transitions, or crossovers, among ice VII and two plastic ices with face-centered cubic (fcc) and body-centered cubic (bcc) lattice structures. The phase diagram derived from the ReaxFF potential is different from those of the rigid water models in that the bcc plastic phase lies on the high-pressure side of ice VII and does the fcc plastic phase on the low-pressure side of ice VII. The phase boundary between the fcc and bcc plastic phases on the pressure, temperature plane extends to the high-temperature region from the triple point of ice VII, fcc plastic, and bcc plastic phases. Proton hopping, i.e., delocalization of a proton, along between two neighboring oxygen atoms in dense ice is observed for the ReaxFF potential but only at pressures and temperatures both much higher than those at which ice VII–plastic ice transitions are observed. en-copyright= kn-copyright= en-aut-name=AdachiYuji en-aut-sei=Adachi en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Natural Sciences, Okayama University kn-affil= affil-num=2 en-affil=2Department of Chemistry, Okayama University kn-affil= END