start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue=4 article-no= start-page=219 end-page=223 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Positive chemotaxis to plant apoplastic fluids of Pseudomonas syringae pv. tabaci 6605 and metabolome analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants. Although chemotaxis has been shown to be necessary for Pta6605 in tobacco infection, the chemoattractants at the site of infection are unclear. Pta6605 was attracted to the apoplastic fluid from not only host tobacco leaves but also non-host plant leaves, indicating that Pta6605 is attracted to common plant metabolites. Metabolome analysis of apoplastic fluid from tobacco leaves revealed that amino acids including γ-aminobutyric acid and organic acids are abundant, suggesting that these compounds are potential chemoattractants. en-copyright= kn-copyright= en-aut-name=WatanabeYuta en-aut-sei=Watanabe en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TumewuStephany Angelia en-aut-sei=Tumewu en-aut-mei=Stephany Angelia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaHajime en-aut-sei=Yamada en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=4 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Apoplastic fluid kn-keyword=Apoplastic fluid en-keyword=Chemotaxis kn-keyword=Chemotaxis en-keyword=Chemoattractants kn-keyword=Chemoattractants en-keyword=Metabolome kn-keyword=Metabolome en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=1 article-no= start-page=ME21076 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of Aerotaxis Receptor Proteins Involved in Host Plant Infection by Pseudomonas syringae pv. tabaci 6605 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a foliar plant pathogen that causes wildfire disease on tobacco plants. It requires chemotaxis to enter plants and establish infection. While chemotactic signals appear to be the main mechanism by which Pta6605 performs directional movement, the involvement of aerotaxis or energy taxis by this foliar pathogen is currently unknown. Based on domain structures and similarity with more than 50 previously identified putative methyl-accepting chemotaxis proteins (MCPs), the genome of Pta6605 encodes three potential aerotaxis transducers. We identified AerA as the main aerotaxis transducer and found that it possesses a taxis-to-serine-and-repellent (Tsr)-like domain structure that supports a periplasmic 4HB-type ligand-binding domain (LBD). The secondary aerotaxis transducer, AerB, possesses a cytosolic PAS-type LBD, similar to the Aer of Escherichia coli and Pseudomonas aeruginosa. Aerotaxis ability by single and double mutant strains of aerA and aerB was weaker than that by wild-type Pta6605. On the other hand, another cytosolic PAS-type LBD containing MCP did not make a major contribution to Pta6605 aerotaxis in our assay system. Furthermore, mutations in aerotaxis transducer genes did not affect surface motility or chemotactic attraction to yeast extract. Single and double mutant strains of aerA and aerB showed less colonization in the early stage of host plant infection and lower biofilm production than wild-type Pta6605. These results demonstrate the presence of aerotaxis transducers and their contribution to host plant infection by Pta6605. en-copyright= kn-copyright= en-aut-name=TumewuStephany Angelia en-aut-sei=Tumewu en-aut-mei=Stephany Angelia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeYuta en-aut-sei=Watanabe en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=aerotaxis kn-keyword=aerotaxis en-keyword=aeroreceptor kn-keyword=aeroreceptor en-keyword=MCP kn-keyword=MCP en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae en-keyword=virulence kn-keyword=virulence END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=1004184 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Time-series transcriptome of Brachypodium distachyon during bacterial flagellin-induced pattern-triggered immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants protect themselves from microorganisms by inducing pattern-triggered immunity (PTI) via recognizing microbe-associated molecular patterns (MAMPs), conserved across many microbes. Although the MAMP perception mechanism and initial events during PTI have been well-characterized, knowledge of the transcriptomic changes in plants, especially monocots, is limited during the intermediate and terminal stages of PTI. Here, we report a time-series high-resolution RNA-sequencing (RNA-seq) analysis during PTI in the leaf disks of Brachypodium distachyon. We identified 6,039 differentially expressed genes (DEGs) in leaves sampled at 0, 0.5, 1, 3, 6, and 12 hours after treatment (hat) with the bacterial flagellin peptide flg22. The k-means clustering method classified these DEGs into 10 clusters (6 upregulated and 4 downregulated). Based on the results, we selected 10 PTI marker genes in B. distachyon. Gene ontology (GO) analysis suggested a tradeoff between defense responses and photosynthesis during PTI. The data indicated the recovery of photosynthesis started at least at 12 hat. Over-representation analysis of transcription factor genes and cis-regulatory elements in DEG promoters implied the contribution of 12 WRKY transcription factors in plant defense at the early stage of PTI induction. en-copyright= kn-copyright= en-aut-name=OgasaharaTsubasa en-aut-sei=Ogasahara en-aut-mei=Tsubasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiAkihiro en-aut-sei=Takahashi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahagiKotaro en-aut-sei=Takahagi en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KimJune-Sik en-aut-sei=Kim en-aut-mei=June-Sik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Kihara Institute for Biological Research, Yokohama City University kn-affil= affil-num=6 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=12 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Brachypodium distachyon kn-keyword=Brachypodium distachyon en-keyword=monocotyledonous plant kn-keyword=monocotyledonous plant en-keyword=microbe-associated molecular pattern kn-keyword=microbe-associated molecular pattern en-keyword=time-series transcriptome analysis kn-keyword=time-series transcriptome analysis en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=pattern-triggered immunity kn-keyword=pattern-triggered immunity END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=6 article-no= start-page=885 end-page=894 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=HopAZ1, a type III effector of Pseudomonas amygdali pv. tabaci, induces a hypersensitive response in tobacco wildfire-resistant Nicotiana tabacum 'N509' en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host & apos;s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum 'N509'. Inoculation with the Pta increment hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta increment hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509. en-copyright= kn-copyright= en-aut-name=KashiharaSachi en-aut-sei=Kashihara en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakafumi en-aut-sei=Nishimura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=effector kn-keyword=effector en-keyword=hypersensitive responses kn-keyword=hypersensitive responses en-keyword=Pseudomonas syringae pv kn-keyword=Pseudomonas syringae pv en-keyword=tabaci kn-keyword=tabaci en-keyword=type III secretion system kn-keyword=type III secretion system END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=76 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surveillance of Pathogenicity of Rhizoctonia solani Japanese Isolates with Varied Anastomosis Groups and Subgroups on Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizoctonia solani is a necrotrophic plant pathogen with a wide host range. R. solani is a species complex consisting of thirteen anastomosis groups (AGs) defined by compatibility of hyphal fusion reaction and subgroups based on cultural morphology. The relationship between such classifications and host specificity remains elusive. Here, we investigated the pathogenicity of seventeen R. solani isolates (AG-1 to 7) in Japan towards Arabidopsis thaliana using leaf and soil inoculations. The tested AGs, except AG-3 and AG-6, induced symptoms in both methods with variations in pathogenicity. The virulence levels differed even within the same AG and subgroup. Some isolates showed tissue-specific infection behavior. Thus, the AGs and their subgroups are suggested to be not enough to define the virulence (host and tissue specificity) of R. solani. We also evaluated the virulence of the isolates on Arabidopsis plants pretreated with salicylic acid, jasmonic acid, and ethylene. No obvious effects were detected on the symptom formation by the virulence isolates, but ethylene and salicylic acid slightly enhanced the susceptibility to the weak and nonvirulent isolates. R. solani seems to be able to overcome the induced defense by these phytohormones in the infection to Arabidopsis. en-copyright= kn-copyright= en-aut-name=AbdelghanyMai Mohsen Ahmed en-aut-sei=Abdelghany en-aut-mei=Mai Mohsen Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurikawaMaria en-aut-sei=Kurikawa en-aut-mei=Maria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Rhizoctonia solani kn-keyword=Rhizoctonia solani en-keyword=anastomosis group kn-keyword=anastomosis group en-keyword=phytohormones kn-keyword=phytohormones en-keyword=pathogenicity kn-keyword=pathogenicity en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=28 article-no= start-page=e00405-21 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Complete Genome Sequence of Pseudomonas amygdali pv. tabaci Strain 6605, a Causal Agent of Tobacco Wildfire Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas amygdali pv. tabaci strain 6605 is the bacterial pathogen causing tobacco wildfire disease that has been used as a model for elucidating virulence mechanisms. Here, we present the complete genome sequence of P. amygdali pv. tabaci 6605 as a circular chromosome from reads using a PacBio sequencer. en-copyright= kn-copyright= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakafumi en-aut-sei=Nishimura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsaiShuta en-aut-sei=Asai en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasudaSachiko en-aut-sei=Masuda en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShirasuKen en-aut-sei=Shirasu en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=3 en-affil=Center for Sustainable Resource Science, RIKEN kn-affil= affil-num=4 en-affil=Center for Sustainable Resource Science, RIKEN kn-affil= affil-num=5 en-affil=Center for Sustainable Resource Science, RIKEN kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=296 cd-vols= no-issue= article-no= start-page=299 end-page=312 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cluster II che genes of Pseudomonas syringae pv. tabaci 6605, orthologs of cluster I in Pseudomonas aeruginosa, are required for chemotaxis and virulence en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants and is highly motile. Pta6605 has multiple clusters of chemotaxis genes including cheA, a gene encoding a histidine kinase, cheY, a gene encoding a response regulator, mcp, a gene for a methyl-accepting chemotaxis protein, as well as flagellar and pili biogenesis genes. However, only two major chemotaxis gene clusters, cluster I and cluster II, possess cheA and cheY. Deletion mutants of cheA or cheY were constructed to evaluate their possible role in Pta6605 chemotaxis and virulence. Motility tests and a chemotaxis assay to known attractant demonstrated that cheA2 and cheY2 mutants were unable to swarm and to perform chemotaxis, whereas cheA1 and cheY1 mutants retained chemotaxis ability almost equal to that of the wild-type (WT) strain. Although WT and cheY1 mutants of Pta6605 caused severe disease symptoms on host tobacco leaves, the cheA2 and cheY2 mutants did not, and symptom development with cheA1 depended on the inoculation method. These results indicate that chemotaxis genes located in cluster II are required for optimal chemotaxis and host plant infection by Pta6605 and that cluster I may partially contribute to these phenotypes. en-copyright= kn-copyright= en-aut-name=TumewuStephany Angelia en-aut-sei=Tumewu en-aut-mei=Stephany Angelia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgawaYujiro en-aut-sei=Ogawa en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkamotoTakumi en-aut-sei=Okamoto en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugiharaYuka en-aut-sei=Sugihara en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaHajime en-aut-sei=Yamada en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Bacterial virulence kn-keyword=Bacterial virulence en-keyword=cheA kn-keyword=cheA en-keyword=Chemotaxis kn-keyword=Chemotaxis en-keyword=cheY kn-keyword=cheY en-keyword=Flagellar motility kn-keyword=Flagellar motility en-keyword=Pseudomonas kn-keyword=Pseudomonas END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=4 article-no= start-page=ME20114 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=2020 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Requirement of γ-Aminobutyric Acid Chemotaxis for Virulence of Pseudomonas syringae pv. tabaci 6605 en-subtitle= kn-subtitle= en-abstract= kn-abstract=γ-Aminobutyric acid (GABA) is a widely distributed non-proteinogenic amino acid that accumulates in plants under biotic and abiotic stress conditions. Recent studies suggested that GABA also functions as an intracellular signaling molecule in plants and in signals mediating interactions between plants and phytopathogenic bacteria. However, the molecular mechanisms underlying GABA responses to bacterial pathogens remain unknown. In the present study, a GABA receptor, named McpG, was conserved in the highly motile plant-pathogenic bacteria Pseudomonas syringae pv. tabaci 6605 (Pta6605). We generated a deletion mutant of McpG to further investigate its involvement in GABA chemotaxis using quantitative capillary and qualitative plate assays. The wild-type strain of Pta6605 was attracted to GABA, while the ΔmcpG mutant abolished chemotaxis to 10? ?mM GABA. However, ΔmcpG retained chemotaxis to proteinogenic amino acids and succinic semialdehyde, a structural analog of GABA. Furthermore, ΔmcpG was unable to effectively induce disease on host tobacco plants in three plant inoculation assays: flood, dip, and infiltration inoculations. These results revealed that the GABA sensing of Pta6605 is important for the interaction of Pta6605 with its host tobacco plant. en-copyright= kn-copyright= en-aut-name=TumewuStephany Angelia en-aut-sei=Tumewu en-aut-mei=Stephany Angelia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword= bacterial virulence kn-keyword= bacterial virulence en-keyword=chemotaxis kn-keyword=chemotaxis en-keyword=GABA kn-keyword=GABA en-keyword=plant-microbe interaction kn-keyword=plant-microbe interaction en-keyword=Pseudomonas kn-keyword=Pseudomonas END start-ver=1.4 cd-journal=joma no-vol=87 cd-vols= no-issue= article-no= start-page=24 end-page=29 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=HopH1 effectors of Pseudomonas syringae pv. tomato DC3000 and pv. syringae B728a induce HR cell death in nonhost eggplant Solanum torvum en-subtitle= kn-subtitle= en-abstract= kn-abstract=HopH1 is an effector protein of Pseudomonas syringae pv. tomato DC3000 and P. syringae pv. syringae B728a and is a homolog of the putative Zn-dependent protease effector Rip36 of Ralstonia solanacearum, which induces hypersensitive response (HR) cell death in a nonhost plant, Solanum torvum Sw. cv. Torubamubiga. Although P. syringae pv. phaseolicola (Pph) 1448A neither produces HopH1 nor induces HR cell death, hopH1-introduced Pph 1448A acquired the ability to induce HR. These results indicate that the putative Zn-protease HopH1 effector induces HR cell death in nonhost S. torvum. en-copyright= kn-copyright= en-aut-name=NaharKamrun en-aut-sei=Nahar en-aut-mei=Kamrun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MukaiharaTakafumi en-aut-sei=Mukaihara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Biological Sciences, Okayama (RIBS) kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Biological Sciences, Okayama (RIBS) kn-affil= affil-num=9 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Effector kn-keyword=Effector en-keyword=HopH1 kn-keyword=HopH1 en-keyword=HR kn-keyword=HR en-keyword=Rip36 kn-keyword=Rip36 en-keyword=Zn-protease kn-keyword=Zn-protease END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=14889 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200910 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of effector candidate genes of Rhizoctonia solani AG-1 IA expressed during infection in Brachypodium distachyon en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizoctonia solani is a necrotrophic phytopathogen belonging to basidiomycetes. It causes rice sheath blight which inflicts serious damage in rice production. The infection strategy of this pathogen remains unclear. We previously demonstrated that salicylic acid-induced immunity could block R. solani AG-1 IA infection in both rice and Brachypodium distachyon. R. solani may undergo biotrophic process using effector proteins to suppress host immunity before necrotrophic stage. To identify pathogen genes expressed at the early infection process, here we developed an inoculation method using B. distachyon which enables to sample an increased amount of semi-synchronous infection hyphae. Sixty-one R. solani secretory effector-like protein genes (RsSEPGs) were identified using in silico approach with the publicly available gene annotation of R. solani AG-1 IA genome and our RNA-sequencing results obtained from hyphae grown on agar medium. Expression of RsSEPGs was analyzed at 6, 10, 16, 24, and 32 h after inoculation by a quantitative reverse transcription-polymerase chain reaction and 52 genes could be detected at least on a single time point tested. Their expressions showed phase-specific patterns which were classified into 6 clusters. The 23 RsSEPGs in the cluster 1-3 and 29 RsSEPGs in the cluster 4-6 are expected to be involved in biotrophic and necrotrophic interactions, respectively. en-copyright= kn-copyright= en-aut-name=AbdelsalamSobhy S. H. en-aut-sei=Abdelsalam en-aut-mei=Sobhy S. H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueKomaki en-aut-sei=Inoue en-aut-mei=Komaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsugeSeiji en-aut-sei=Tsuge en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Agriculture, Kyoto Prefectural University kn-affil= affil-num=10 en-affil=Institute for Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Fungi kn-keyword=Fungi en-keyword=Microbiology kn-keyword=Microbiology en-keyword=Pathogens kn-keyword=Pathogens en-keyword=Plant immunity kn-keyword=Plant immunity en-keyword=Plant sciences kn-keyword=Plant sciences en-keyword=Transcription kn-keyword=Transcription END start-ver=1.4 cd-journal=joma no-vol=223-225 cd-vols= no-issue= article-no= start-page=72 end-page=78 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quorum-dependent expression of rsmX and rsmY, small non-coding RNAs, in Pseudomonas syringae en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pathovars are known to produce N-acyl-homoserine lactones (AHL) as quorum-sensing molecules. However, many isolates, including P. syringae pv. tomato DC3000 (PtoDC3000), do not produce them. In P. syringae, psyI, which encodes an AHL synthase, and psyR, which encodes the transcription factor PsyR required for activation of psyI, are convergently transcribed. In P. amygdali pv. tabaci 6605 (Pta6605), there is one nucleotide between the stop codons of both psyI and psyR. However, the canonical stop codon for psyI in PtoDC3000 was converted to the cysteine codon by one nucleotide deletion, and 23 additional amino acids extended it to a C-terminal end. This resulted in overlapping of the open reading frame (ORF) for psyI and psyR. On the other hand, stop codons in the psyR ORF of P. syringae 7 isolates, including pv. phaseolicola and pv. glycinea, were found. These results indicate that many pathovars of P. syringae have genetically lost AHL production ability by the mutation of their responsible genes. To examine whether PtoDC3000 modulates the gene expression profile in a population-dependent manner, we carried out microarray analysis using RNAs prepared from low- and high-density cells. We found the expressions of rsmX and rsmY remarkably activated in high-density cells. The activated expressions of rsmX and rsmY were confirmed by Northern blot hybridization, but these expressions were abolished in a ΔgacA mutant of Pta6605. These results indicate that regardless of the ability to produce AHL, P. syringae regulates expression of the small noncoding RNAs rsmX/Y by currently unknown quorum-sensing molecules. en-copyright= kn-copyright= en-aut-name=NakatsuYukiko en-aut-sei=Nakatsu en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=N-acyl-homoserine lactone kn-keyword=N-acyl-homoserine lactone en-keyword=Gac two-component system kn-keyword=Gac two-component system en-keyword=Quorum sensing kn-keyword=Quorum sensing en-keyword=rsmX kn-keyword=rsmX en-keyword=rsmY kn-keyword=rsmY en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae END start-ver=1.4 cd-journal=joma no-vol=85 cd-vols= no-issue=6 article-no= start-page=405 end-page=412 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190607 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A class III peroxidase PRX34 is a component of disease resistance in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract= PRX34 mediates the oxidative burst in Arabidopsis. Here we characterized two additional Arabidopsis prx34 null mutants (prx34-2, prx34-3), besides the well-studied prx34-1. Due to a decrease in corresponding peroxidase, the activity that generates reactive oxygen species (ROS) was significantly lower in cell wall extracts of prx34-2 and prx34-3 plants. Consistently, the prx34-2 and prx34-3 exhibited reduced accumulation both of ROS and callose in Flg22-elicitor-treated leaves, leading to enhanced susceptibility to bacterial and fungal pathogens. In contrast, ectopic expression of PRX34 in the wild type caused enhanced resistance. PRX34 is thus a component for disease resistance in Arabidopsis. en-copyright= kn-copyright= en-aut-name=ZhaoLei en-aut-sei=Zhao en-aut-mei=Lei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Le Thi Phuong en-aut-sei=Le Thi Phuong en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Mai Thanh Luan en-aut-sei=Mai Thanh Luan en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Aprilia Nur Fitrianti en-aut-sei=Aprilia Nur Fitrianti en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagamiHirofumi en-aut-sei=Nakagami en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=2 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=3 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=4 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=5 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=6 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=8 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=9 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=10 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=11 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= en-keyword=Apoplastic oxidative burst kn-keyword=Apoplastic oxidative burst en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=Cell wall kn-keyword=Cell wall en-keyword=Class III peroxidase kn-keyword=Class III peroxidase en-keyword=PRX34 kn-keyword=PRX34 en-keyword=Reactive oxygen species (ROS) kn-keyword=Reactive oxygen species (ROS) END start-ver=1.4 cd-journal=joma no-vol=86 cd-vols= no-issue=1 article-no= start-page=103 end-page=108 dt-received= dt-revised= dt-accepted= dt-pub-year=1997 dt-pub=199702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Host-Specific AF-Toxins Produced by Causal Pathogen of Alternaria Black Spot of Strawberry kn-title=イチゴ黒斑病菌の生成する宿主特異的毒素 en-subtitle= kn-subtitle= en-abstract=ある植物病原菌はなぜ特定の植物種(あるいは品種)しか侵すことができないか、という病害の特異性(宿主特異性あるいは選択性)の解明に関しては、現在も様々な病原菌とその宿主植物の組み合わせで広範で精力的な研究が続けられている。宿主選択性の決定は物質を介在して行われると概念的に理解されているが、実際の病原菌感染場面においては物質は異種生物間(病原菌と宿主植物)の複雑な相互作用中に生成・分泌されると考えられ、明快な選択性を示す物質の精製・同定には困難を伴う。その中で、一部の植物病原糸状菌の生成する宿主特異的毒素(host-specific あるいは host-selective toxin,以下HSTと略す)は明快な選択性を説明し得る好例である。植物病原糸状菌は培養中植物に毒性を示す多様な代謝産物を生成するが、その多くはいわゆる非特異的毒素であり、本来宿主でない植物(非宿主)に対しても毒性を発揮する。このような非特異的毒素と明確に区別するため、HSTは非特異的毒素以下の条件を具備すべきものと定義された。@宿主植物にだけ毒性を発揮する病原菌の代謝産物であり、A病原菌の毒素生成機能の有無と病原性の一致すること、B宿主品種の毒素耐性と病害抵抗性の序列の一致することC病原菌感染によって誘起される宿主組織の生理・生化学的諸変化が毒素処理によって再現されること、の4項目であった。その後、D病原菌の病死発芽時の毒素放出、E放出毒による宿主植物への菌受容化誘導の2つの条件が補足され、当初の毒性の高さ・選択性への注目に加え、病原菌感染場面での役割に対する認識が強化され、病原菌の病原性発揮の第1義的決定因子としてのHSTを定義している。今日、HST生産菌であるとされている病原糸状菌は14例が知られている(Table 1).このうち半分にあたる7例がAlternaria alternata (Fries) Keissler に属しているが、本菌では残念ながら未だ完全世代は発見されておらず、現在集合種とされている。また、本種はこれら病原菌のみで形成されるわけではなく、圧倒的多数は植物病原菌ではなく、つまりどの植物に対しても寄生できない腐生菌(非病原性菌)としてひろく自然界に存在している。しかし本菌は、多数の分生胞子を形成するため空中飛散胞子も多く、植物体内への物理・生化学的侵入能力を備えており、植物の抵抗性が弱まった場合などでのいわゆる「日和見感染」を引き起こすことがしばしば観察される。また、一方では農産物の貯蔵病害を引き起こす糸状菌の主たるうちの1つである。本文では、このうちイチゴ黒班病とその生成するHSTであるAF毒素についての研究を紹介する。 kn-abstract=Occurrence of Alternaria black spot of strawberry was first reported on var.Morioka-16,Among varieties tested,var.Morioka-16 was found to be only one susceptible variety.The pathogen,however,showed pathogenicity on pear leaves which is susceptible to black spot of Japanese pear.The casual pathogen of black spot of strawberry,Alternaria alternata strawberry pathotype produced three host-specific toxins(HSts),which were chemically characterized,and named AF-toxin T,Uand V,respectively.HSTs are considered as a primary determinant of pathogenicity,that is,interaction between the host plant and the pathogen.We here introduce briefly researchd on host-specific toxin focusing on AF-toxins. en-copyright= kn-copyright= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name=山本幹博 kn-aut-sei=山本 kn-aut-mei=幹博 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 en-keyword=host-specific toxin kn-keyword=host-specific toxin en-keyword=AF-toxin kn-keyword=AF-toxin en-keyword=strawberry kn-keyword=strawberry END start-ver=1.4 cd-journal=joma no-vol=90 cd-vols= no-issue=1 article-no= start-page=27 end-page=35 dt-received= dt-revised= dt-accepted= dt-pub-year=2001 dt-pub=200102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=メロンとキュウリのACC合成酵素遺伝子の構造的特徴とGUSトランジェントアッセイによるプロモーター活性 kn-title=Structural Characterization of ACC Synthase Genes from Melon and Cucumber and their Promoter Activities Determined by GUS Transient Assay en-subtitle= kn-subtitle= en-abstract=クライマクテリック型果実のメロンとノンクライマクテリック型果実のキュウリの果実追熟に伴う1-アミ ノシクロプロパン-1-カルボン酸(ACC)合成酵素(ACS)遺伝子の発現調節機構の相違を明らかにするた めに,それぞれ2種類のACSのゲムノDNA配列(約2kb)をPCR法を基にして決定した.メロンのACS 遺伝子は,エキソンとイントロンのサイズおよび位置,制限酵素地図,エキソン・イントロン・近位の5’上 流プロモーター領域・スプライシング部位の塩基配列において,それぞれ対応するキュウリのACS遺伝子 とよく似た構造をしていた.サザンブロック解析の結果,各ACS遺伝子はシングルコピーとして存在する と考えられた.CMe-ACS1とCS-ACS1の一過的プロモーター活性をβ-グルクロニダーゼ(GUS)をレポ ーター遺伝子として両果実の成熟果肉を用いて調べた.メロン切片では,CS-ACS1(−2098〜+42)なら びにCMe-ACS1(−2187〜+67)のプロモーター発現によるGUS活性が検出され,エチレン作用阻害剤 の1-メチルシクロプロペン(1-MCP)処理によって減少した.しかし,キュウリ切片においては,CS-ACS1: GUSのみでGUSが発現し,活性は1-MCP処理で減少し,プロピレン処理ではコントロールと同レベル であった.これらの結果より,CS-ACS1のプロモーターがメロン成熟果肉組織で発現する潜在能力をもつ こと,メロンとキュウリの成熟に伴うエチレン生合成の相違はACS1プロモーター活性によるものではなく, 両者のトランス因子合成能の相違によることが示唆された. kn-abstract=In orader to clarify the differences in regulatory mechanism(s) of the expression of 1-aminocyclopropane-1-carboxylate(ACC) synthase(ACS)genes during ripening in climacteric melon fruit and non-climacteric cucumber fruit, two sets of their genomic DNA sequences, including ca. 2kb of the promoter regions were determined, using PCR-based methods. ACS genes from melon (CMe-ACS1,2) were structurally similar to their counterpart from cucumber (CS-ACS1,2) in terms of size and position of exons and introns, restriction map, and sequencd identity of exeons, introns, proximal 5'-flanking promoter regions and splice junction. Southern blot analysis indicated that each ACS gene is present as a single copy. Transient promoter activity was investigated with two constructs of promoter-β-glucuronidase (GUS) fusion, CMe-ACS1:GUS and CS-ACS1:GUS, in mature mesocarp tissue of the two fruits. In melon disks, GUS activities conferred by the promoters of both CS-ACS1 (-2098〜+42) and CMe-ACS-1(-2187〜+67) were detected, which were decreased by treatment with 1-methylcyclopropene(1-MCP), an ethylene action inhibitor. In cucumber disks, however, only CS-ACS1:GUS was expressed; the activity was decreased with 1-MCP, and it was not affected by propylene. These results suggest that the promoter of CS-ACS1 has a potential to be expressed in the mesocarp tissue of ripening melon fruit, and that the difference in ethylene biosynthesis between melon and cucumber during ripening may be due to the difference in capability of forming trans-acting factor(s), not due to their ACS1 promoter activities. en-copyright= kn-copyright= en-aut-name=ShiomiShinjiro en-aut-sei=Shiomi en-aut-mei=Shinjiro kn-aut-name=塩見慎次郎 kn-aut-sei=塩見 kn-aut-mei=慎次郎 aut-affil-num=1 ORCID= en-aut-name=EmiOgura en-aut-sei=Emi en-aut-mei=Ogura kn-aut-name=小倉恵実 kn-aut-sei=小倉 kn-aut-mei=恵実 aut-affil-num=2 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name=山本幹博 kn-aut-sei=山本 kn-aut-mei=幹博 aut-affil-num=3 ORCID= en-aut-name=NakamuraReinosuke en-aut-sei=Nakamura en-aut-mei=Reinosuke kn-aut-name=中村怜之輔 kn-aut-sei=中村 kn-aut-mei=怜之輔 aut-affil-num=4 ORCID= en-aut-name=KuboYasutaka en-aut-sei=Kubo en-aut-mei=Yasutaka kn-aut-name=久保康隆 kn-aut-sei=久保 kn-aut-mei=康隆 aut-affil-num=5 ORCID= en-aut-name=InabaAkitsugu en-aut-sei=Inaba en-aut-mei=Akitsugu kn-aut-name=稲葉昭次 kn-aut-sei=稲葉 kn-aut-mei=昭次 aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 affil-num=5 en-affil= kn-affil=岡山大学 affil-num=6 en-affil= kn-affil=岡山大学 en-keyword=Cucumis sativus L. kn-keyword=Cucumis sativus L. en-keyword=Cucumis melo L kn-keyword=Cucumis melo L en-keyword=fruit ripening kn-keyword=fruit ripening en-keyword=GUS transient assay kn-keyword=GUS transient assay END