start-ver=1.4 cd-journal=joma no-vol=119 cd-vols= no-issue=43 article-no= start-page=e2122641119 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221017 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structures and mechanisms of actin ATP hydrolysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The major cytoskeleton protein actin undergoes cyclic transitions between the monomeric G-form and the filamentous F-form, which drive organelle transport and cell motility. This mechanical work is driven by the ATPase activity at the catalytic site in the F-form. For deeper understanding of the actin cellular functions, the reaction mechanism must be elucidated. Here, we show that a single actin molecule is trapped in the F-form by fragmin domain-1 binding and present their crystal structures in the ATP analog-, ADP-Pi-, and ADP-bound forms, at 1.15-? resolutions. The G-to-F conformational transition shifts the side chains of Gln137 and His161, which relocate four water molecules including W1 (attacking water) and W2 (helping water) to facilitate the hydrolysis. By applying quantum mechanics/molecular mechanics calculations to the structures, we have revealed a consistent and comprehensive reaction path of ATP hydrolysis by the F-form actin. The reaction path consists of four steps: 1) W1 and W2 rotations; 2) PG?O3B bond cleavage; 3) four concomitant events: W1?PO3? formation, OH? and proton cleavage, nucleophilic attack by the OH? against PG, and the abstracted proton transfer; and 4) proton relocation that stabilizes the ADP-Pi?bound F-form actin. The mechanism explains the slow rate of ATP hydrolysis by actin and the irreversibility of the hydrolysis reaction. While the catalytic strategy of actin ATP hydrolysis is essentially the same as those of motor proteins like myosin, the process after the hydrolysis is distinct and discussed in terms of Pi release, F-form destabilization, and global conformational changes. en-copyright= kn-copyright= en-aut-name=KanematsuYusuke en-aut-sei=Kanematsu en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaritaAkihiro en-aut-sei=Narita en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OdaToshiro en-aut-sei=Oda en-aut-mei=Toshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoikeRyotaro en-aut-sei=Koike en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtaMotonori en-aut-sei=Ota en-aut-mei=Motonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakanoYu en-aut-sei=Takano en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoritsuguKei en-aut-sei=Moritsugu en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiwaraIkuko en-aut-sei=Fujiwara en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaKotaro en-aut-sei=Tanaka en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KomatsuHideyuki en-aut-sei=Komatsu en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagaeTakayuki en-aut-sei=Nagae en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WatanabeNobuhisa en-aut-sei=Watanabe en-aut-mei=Nobuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IwasaMitsusada en-aut-sei=Iwasa en-aut-mei=Mitsusada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=Ma?daYuichiro en-aut-sei=Ma?da en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakedaShuichi en-aut-sei=Takeda en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Graduate School of Information Sciences, Hiroshima City University kn-affil= affil-num=2 en-affil=Structural Biology Research Center, Graduate School of Science, Nagoya University kn-affil= affil-num=3 en-affil=Faculty of Health and Welfare, Tokai Gakuin University kn-affil= affil-num=4 en-affil=Graduate School of Informatics, Nagoya University kn-affil= affil-num=5 en-affil=Graduate School of Informatics, Nagoya University kn-affil= affil-num=6 en-affil=Graduate School of Information Sciences, Hiroshima City University kn-affil= affil-num=7 en-affil=Graduate School of Medical Life Science, Yokohama City University kn-affil= affil-num=8 en-affil=Graduate School of Science, Osaka City University kn-affil= affil-num=9 en-affil=Structural Biology Research Center, Graduate School of Science, Nagoya University kn-affil= affil-num=10 en-affil=Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology kn-affil= affil-num=11 en-affil=Synchrotron Radiation Research Center, Nagoya University kn-affil= affil-num=12 en-affil=Synchrotron Radiation Research Center, Nagoya University kn-affil= affil-num=13 en-affil=Graduate School of Informatics, Nagoya University kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=15 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=actin kn-keyword=actin en-keyword=ATP hydrolysis kn-keyword=ATP hydrolysis en-keyword=protein crystallography kn-keyword=protein crystallography en-keyword=QM kn-keyword=QM en-keyword=MM simulation kn-keyword=MM simulation END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=1105460 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230316 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mutagenic analysis of actin reveals the mechanism of His161 flipping that triggers ATP hydrolysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The dynamic assembly of actin is controlled by the hydrolysis of ATP, bound to the center of the molecule. Upon polymerization, actin undergoes a conformational change from the monomeric G-form to the fibrous F-form, which is associated with the flipping of the side chain of His161 toward ATP. His161 flipping from the gauche-minus to gauche-plus conformation leads to a rearrangement of the active site water molecules, including ATP attacking water (W1), into an orientation capable of hydrolysis. We previously showed that by using a human cardiac muscle a-actin expression system, mutations in the Pro-rich loop residues (A108G and P109A) and in a residue that was hydrogen-bonded to W1 (Q137A) affect the rate of polymerization and ATP hydrolysis. Here, we report the crystal structures of the three mutant actins bound to AMPPNP or ADP-P-i determined at a resolution of 1.35-1.55( )angstrom, which are stabilized in the F-form conformation with the aid of the fragmin F1 domain. In A108G, His161 remained non-flipped despite the global actin conformation adopting the F-form, demonstrating that the side chain of His161 is flipped to avoid a steric clash with the methyl group of A108. Because of the non-flipped His161, W1 was located away from ATP, similar to G-actin, which was accompanied by incomplete hydrolysis. In P109A, the absence of the bulky proline ring allowed His161 to be positioned near the Pro-rich loop, with a minor influence on ATPase activity. In Q137A, two water molecules replaced the side-chain oxygen and nitrogen of Gln137 almost exactly at their positions; consequently, the active site structure, including the W1 position, is essentially conserved. This seemingly contradictory observation to the reported low ATPase activity of the Q137A filament could be attributed to a high fluctuation of the active site water. Together, our results suggest that the elaborate structural design of the active site residues ensures the precise control of the ATPase activity of actin. en-copyright= kn-copyright= en-aut-name=IwasaMitsusada en-aut-sei=Iwasa en-aut-mei=Mitsusada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakedaShuichi en-aut-sei=Takeda en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaritaAkihiro en-aut-sei=Narita en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaYuichiro en-aut-sei=Maeda en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OdaToshiro en-aut-sei=Oda en-aut-mei=Toshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Informatics, Nagoya University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=3 en-affil=Structural Biology Research Center, Graduate School of Science, Nagoya University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=5 en-affil=Faculty of Health and Welfare, Tokai Gakuin University kn-affil= en-keyword=MD simulation kn-keyword=MD simulation en-keyword=actin kn-keyword=actin en-keyword=water dynamics kn-keyword=water dynamics en-keyword=ATP hydrolysis kn-keyword=ATP hydrolysis en-keyword=X-ray structure kn-keyword=X-ray structure en-keyword=baculovirus expression kn-keyword=baculovirus expression END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=890 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220831 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural and biochemical evidence for the emergence of a calcium-regulated actin cytoskeleton prior to eukaryogenesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Charting the emergence of eukaryotic traits is important for understanding the characteristics of organisms that contributed to eukaryogenesis. Asgard archaea and eukaryotes are the only organisms known to possess regulated actin cytoskeletons. Here, we determined that gelsolins (2DGels) from Lokiarchaeota (Loki) and Heimdallarchaeota (Heim) are capable of regulating eukaryotic actin dynamics in vitro and when expressed in eukaryotic cells. The actin filament severing and capping, and actin monomer sequestering, functionalities of 2DGels are strictly calcium controlled. We determined the X-ray structures of Heim and Loki 2DGels bound actin monomers. Each structure possesses common and distinct calcium-binding sites. Loki2DGel has an unusual WH2-like motif (LVDV) between its two gelsolin domains, in which the aspartic acid coordinates a calcium ion at the interface with actin. We conclude that the calcium-regulated actin cytoskeleton predates eukaryogenesis and emerged in the predecessors of the last common ancestor of Loki, Heim and Thorarchaeota. Calcium-regulated actin filament assembly predates eukaryogenesis and was present in the last common ancestor of Asgard archaea Loki, Heim, and Thorarchaeota. en-copyright= kn-copyright= en-aut-name=AkilCaner en-aut-sei=Akil en-aut-mei=Caner kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TranLinh T. en-aut-sei=Tran en-aut-mei=Linh T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Orhant-PriouxMagali en-aut-sei=Orhant-Prioux en-aut-mei=Magali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BaskaranYohendran en-aut-sei=Baskaran en-aut-mei=Yohendran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SenjuYosuke en-aut-sei=Senju en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakedaShuichi en-aut-sei=Takeda en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ChotchuangPhatcharin en-aut-sei=Chotchuang en-aut-mei=Phatcharin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MuengsaenDuangkamon en-aut-sei=Muengsaen en-aut-mei=Duangkamon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SchulteAlbert en-aut-sei=Schulte en-aut-mei=Albert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ManserEdward en-aut-sei=Manser en-aut-mei=Edward kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=BlanchoinLaurent en-aut-sei=Blanchoin en-aut-mei=Laurent kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=3 en-affil=CytomorphoLab, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & V?g?tale, Universit? Grenoble-Alpes/CEA/CNRS/INRA kn-affil= affil-num=4 en-affil=Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=7 en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC) kn-affil= affil-num=8 en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC) kn-affil= affil-num=9 en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC) kn-affil= affil-num=10 en-affil=Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis kn-affil= affil-num=11 en-affil=CytomorphoLab, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & V?g?tale, Universit? Grenoble-Alpes/CEA/CNRS/INRA kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=433 cd-vols= no-issue=9 article-no= start-page=166891 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021430 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural Insights into the Regulation of Actin Capping Protein by Twinfilin C-terminal Tail en-subtitle= kn-subtitle= en-abstract= kn-abstract=Twinfilin is a conserved actin regulator that interacts with actin capping protein (CP) via C-terminus residues (TWtail) that exhibits sequence similarity with the CP interaction (CPI) motif of CARMIL. Here we report the crystal structure of TWtail in complex with CP. Our structure showed that although TWtail and CARMIL CPI bind CP to an overlapping surface via their middle regions, they exhibit different CP-binding modes at both termini. Consequently, TWtail and CARMIL CPI restrict the CP in distinct conformations of open and closed forms, respectively. Interestingly, V-1, which targets CP away from the TWtail binding site, also favors the open-form CP. Consistently, TWtail forms a stable ternary complex with CP and V-1, a striking contrast to CARMIL CPI, which rapidly dissociates V-1 from CP. Our results demonstrate that TWtail is a unique CP-binding motif that regulates CP in a manner distinct from CARMIL CPI. en-copyright= kn-copyright= en-aut-name=TakedaShuichi en-aut-sei=Takeda en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KoikeRyotaro en-aut-sei=Koike en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraIkuko en-aut-sei=Fujiwara en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NaritaAkihiro en-aut-sei=Narita en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyataMakoto en-aut-sei=Miyata en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtaMotonori en-aut-sei=Ota en-aut-mei=Motonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Ma?daYuichiro en-aut-sei=Ma?da en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Informatics, Nagoya University kn-affil= affil-num=3 en-affil=Graduate School of Science, Osaka City University kn-affil= affil-num=4 en-affil=Graduate School of Science, Nagoya University kn-affil= affil-num=5 en-affil=Graduate School of Science, Osaka City University kn-affil= affil-num=6 en-affil=Graduate School of Informatics, Nagoya University kn-affil= affil-num=7 en-affil=Graduate School of Informatics, Nagoya University kn-affil= en-keyword=Twinfilin kn-keyword=Twinfilin en-keyword= actin capping protein kn-keyword= actin capping protein en-keyword=actin dynamics kn-keyword=actin dynamics en-keyword=V-1 kn-keyword=V-1 en-keyword=crystal structure kn-keyword=crystal structure en-keyword=conformational flexibility kn-keyword=conformational flexibility END