start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=1 article-no= start-page=7 end-page=18 dt-received= dt-revised= dt-accepted= dt-pub-year=1999 dt-pub=19990226 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Swap-Rate of Entrance Examination and Its Software -SRAS- kn-title=合否入れ替わり率とその解析ソフトウェアSRAS en-subtitle= kn-subtitle= en-abstract=When we select N? student from N applicants using a result of an entrance examination, which consists of two step selection, the primary test and the secondary test. It is important to evaluate the contribution for each test. Swap-rate is one of the measure of the contribution for each stage test, and it its widely used. In this paper, we describe a population swap-rate and a sample swap-rate in the first. Next, we consider the distribution of applicants who change the result of the test from pass to fail. Finary, we introduce our system "SRAS - Swap-Rate Analysis System-", that can analyze the examination data on such point of view. kn-abstract= en-copyright= kn-copyright= en-aut-name=TarumiTomoyuki en-aut-sei=Tarumi en-aut-mei=Tomoyuki kn-aut-name=垂水共之 kn-aut-sei=垂水 kn-aut-mei=共之 aut-affil-num=1 ORCID= en-aut-name=YamamotoYoshiro en-aut-sei=Yamamoto en-aut-mei=Yoshiro kn-aut-name=山本義郎 kn-aut-sei=山本 kn-aut-mei=義郎 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=43 end-page=49 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Estimate of the posted land price in Okayama city and its visualizing system kn-title=岡山市における地価公示価格の推定とその表示システムについて en-subtitle= kn-subtitle= en-abstract= kn-abstract=The posted land price is a decrared land price from Land Appraisal Committee, and current market price is selling price of the market. In this paper, we investigate the methods to estimate land price from the posted land price in Okayama city, and create the visualizing system of the price on. en-copyright= kn-copyright= en-aut-name=NakaoKazuo en-aut-sei=Nakao en-aut-mei=Kazuo kn-aut-name=中尾一生 kn-aut-sei=中尾 kn-aut-mei=一生 aut-affil-num=1 ORCID= en-aut-name=TarumiTomoyuki en-aut-sei=Tarumi en-aut-mei=Tomoyuki kn-aut-name=垂水共之 kn-aut-sei=垂水 kn-aut-mei=共之 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 en-keyword=Land price kn-keyword=Land price en-keyword=Google maps kn-keyword=Google maps en-keyword=GIS kn-keyword=GIS en-keyword=Ajax kn-keyword=Ajax END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=17 end-page=22 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Spatial analysis of Kawaguchi City crime data kn-title=川口市犯罪データの空間分析 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we built some models of the spatial data, and evaluate those, using the crime data of Kawaguchi city, Saitama prefecture in Japan. Compute the Moran’I statistics of five crime data related to thefts in the city, the value of sneakthief take the aggregation. So, we pay attention to the sneak, and make a model to estimate the incidence of the events. As a regression, we select the old-age index among regional indexes. Applying a simple regression(SR), a spatial autoregressive model(SAR), a geographically weighted regression(GWR) , we evaluate these models. In GWR model, it is interesting that there are some sections in which the sign of the coefficient takes the opposite versus SR and SAR models. So, stratifying the data by the sign of it, we investigate to data precisely. en-copyright= kn-copyright= en-aut-name=OhshimoYuki en-aut-sei=Ohshimo en-aut-mei=Yuki kn-aut-name=大下優夫 kn-aut-sei=大下 kn-aut-mei=優夫 aut-affil-num=1 ORCID= en-aut-name=TarumiTomoyuki en-aut-sei=Tarumi en-aut-mei=Tomoyuki kn-aut-name=垂水共之 kn-aut-sei=垂水 kn-aut-mei=共之 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 en-keyword=crime data kn-keyword=crime data en-keyword=Kawaguchi city kn-keyword=Kawaguchi city en-keyword=spatial analysis kn-keyword=spatial analysis en-keyword=spatial autoregressive model kn-keyword=spatial autoregressive model en-keyword=geographically weighted regression kn-keyword=geographically weighted regression END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=1 article-no= start-page=37 end-page=46 dt-received= dt-revised= dt-accepted= dt-pub-year=1998 dt-pub=19980114 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Assessing Local Influence in Multivariate Analyses of Incomplete Data en-subtitle= kn-subtitle= en-abstract= kn-abstract=The present paper deals with multivariate analyses applied to the maximum likelihood estimate(s) for (the mean vector and) the covariance matrix based on incomplete data, and derives influence functions for the mean vector, the covariance matrix and some statistics in multivariate analyses. Influential directions in the sense of Cook's local influence are also derived. A numerical example is given to show the usefulness of the proposed method. en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=KimHyum-Jeong kn-aut-sei=Kim kn-aut-mei=Hyum-Jeong aut-affil-num=1 ORCID= en-aut-name=TarumiTomoyuki en-aut-sei=Tarumi en-aut-mei=Tomoyuki kn-aut-name=垂水共之 kn-aut-sei=垂水 kn-aut-mei=共之 aut-affil-num=2 ORCID= en-aut-name=TanakaYutaka en-aut-sei=Tanaka en-aut-mei=Yutaka kn-aut-name=田中豊 kn-aut-sei=田中 kn-aut-mei=豊 aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=1 article-no= start-page=9 end-page=17 dt-received= dt-revised= dt-accepted= dt-pub-year=2003 dt-pub=200303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Development of a statistical survey analysis system using Internet kn-title=インターネットを利用した統計調査分析システムの構築 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We constructed the online analysis system of the Okayama Activity Area Survey in place since 1979. This is one way to solve the problem in case of releasing the result of a statistical survey. In this paper, we treat the detail of the structure of the system. en-copyright= kn-copyright= en-aut-name=FujinoTomokazu en-aut-sei=Fujino en-aut-mei=Tomokazu kn-aut-name=藤野友和 kn-aut-sei=藤野 kn-aut-mei=友和 aut-affil-num=1 ORCID= en-aut-name=TarumiTomoyuki en-aut-sei=Tarumi en-aut-mei=Tomoyuki kn-aut-name=垂水共之 kn-aut-sei=垂水 kn-aut-mei=共之 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 en-keyword=microdata kn-keyword=microdata en-keyword=statistical disclosure control kn-keyword=statistical disclosure control en-keyword=web based system kn-keyword=web based system en-keyword=online database kn-keyword=online database END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=41 end-page=47 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050228 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Variable Selection Method using Apriori Algorithm on Contingency Table kn-title=分割表データにおけるApriori Alogrihtmを利用した変数選択手法 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We proposed a new applied method for induction of variable selection on contingency table. This method is the application of Apriori algorithm on variable selection of contigency table with iteraction. We assume that variables are dichotomous variable. We confirm that can be select variable, when minimun support is low level by using AIC on variable selection criterion. en-copyright= kn-copyright= en-aut-name=OhnoManabu en-aut-sei=Ohno en-aut-mei=Manabu kn-aut-name=大野学 kn-aut-sei=大野 kn-aut-mei=学 aut-affil-num=1 ORCID= en-aut-name=TarumiTomoyuki en-aut-sei=Tarumi en-aut-mei=Tomoyuki kn-aut-name=垂水共之 kn-aut-sei=垂水 kn-aut-mei=共之 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 en-keyword=Apriori Algorithm kn-keyword=Apriori Algorithm en-keyword=Varable Selection kn-keyword=Varable Selection en-keyword=Contigency Table kn-keyword=Contigency Table en-keyword=Interaction kn-keyword=Interaction END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=1 article-no= start-page=9 end-page=17 dt-received= dt-revised= dt-accepted= dt-pub-year=2004 dt-pub=20040227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Small Geographic Area Estimation in WinBUGS with Two Approaches Prediction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Small Area Estimation (SAE) is the process of using statistical models to link survey outcome variables to a set of predictor variables known for small domains, in order to predict domain-level estimates. The need for detailed statistics on small area is constantly increasing. Small area estimation is becoming important in survey sampling due to a growing demand for reliable small area statistics from both public and private sectors. Bayesian hierarchical models provide a convenient framework for disease mapping and geographical correlation studies. Computation may be carried out using the freely-available WinBUGS software. Two approaches prediction to estimate total patient in small area i will be presented. For the purpose of this paper, the small area estimation in this context use data of Indnesia's population based on the 2000 census for the population of Jakarta and data of patient diarrhea from District Health Service of Jakarta. We interest to predict total patient of diarrhea as variable of interest and data population as auxiliary data from unsample for each small area. en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=SetiawanAgus kn-aut-sei=Setiawan kn-aut-mei=Agus aut-affil-num=1 ORCID= en-aut-name=TarumiTomoyuki en-aut-sei=Tarumi en-aut-mei=Tomoyuki kn-aut-name=垂水共之 kn-aut-sei=垂水 kn-aut-mei=共之 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 en-keyword=Auxiliary data kn-keyword=Auxiliary data en-keyword=Population density kn-keyword=Population density en-keyword=Sample survey kn-keyword=Sample survey en-keyword=Small area estimation kn-keyword=Small area estimation en-keyword=WinBUGS kn-keyword=WinBUGS END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=1 article-no= start-page=1 end-page=7 dt-received= dt-revised= dt-accepted= dt-pub-year=2004 dt-pub=20040227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Development of the Mesh Data Analysis System kn-title=地域メッシュデータ分析システムの開発 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Area mesh statistics is a kind of small area statistics. The area mesh data of Japan can be created in a lot of way and many of them can be downloaded, for example, from the land's value information service which is provided by Ministry of Land, Infrastructure and Transport of Japan. We developed database of these area mesh data. By using mesh navigator software (Makita Naoki, 1997), which needs to run on ProAtlas2000 and Microsoft Access2000, we displayed the mesh data on the map. What visualized on the map is very convenient. For extending the advantages of area mesh data to spatial geographical statistics, we used PostgreSQL to develop a new database of mesh data. We also develop some programs in Delphi for the analysis of area mesh data, such as Histogram, Echelon analysis, and etc. en-copyright= kn-copyright= en-aut-name=NiuDonghui en-aut-sei=Niu en-aut-mei=Donghui kn-aut-name=牛冬慧 kn-aut-sei=牛 kn-aut-mei=冬慧 aut-affil-num=1 ORCID= en-aut-name=TarumiTomoyuki en-aut-sei=Tarumi en-aut-mei=Tomoyuki kn-aut-name=垂水共之 kn-aut-sei=垂水 kn-aut-mei=共之 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 en-keyword=Area mesh data kn-keyword=Area mesh data en-keyword=PostgreSQL kn-keyword=PostgreSQL en-keyword=PQCompo kn-keyword=PQCompo en-keyword=ProAtlas2000 kn-keyword=ProAtlas2000 END