start-ver=1.4 cd-journal=joma no-vol=629 cd-vols= no-issue= article-no= start-page=238 end-page=244 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Acidic layer-enhanced nanoconfinement of anions in cylindrical pore of single-walled carbon nanotube en-subtitle= kn-subtitle= en-abstract= kn-abstract=The adsorption of the nitrate ion by the cylindrical pore of single-walled carbon nanotubes (SWCNT) was found to be aided by an acidic adsorbed layer. Adsorbed water in the vicinity of the pore wall can supply protons through ionization, forming the acidic layer, according to Raman spectra and results of solution pH fluctuations caused by ion species adsorption. Such an acidic adsorbed layer leads to surplus adsorption of anionic species where the adsorbed amount of nitrate ions is much larger than that of cations. Also, we could observe the Raman bands being assignable to the symmetrical stretching mode at an extremely highfrequency region for nano-restricted nitrate ions compared to any other bulk phases. The abnormal band shift of adsorbed nitrate ions indicates that the nitrate ions are confined in the pore under the effects of nanoconfinement by the pore and the strong interaction with the acidic layer in the pore. Our results warn that we have to construct the adsorption model of aqueous electrolytes confined in carbon pores by deliberating the acid layer formed by the adsorbed water. en-copyright= kn-copyright= en-aut-name=OhkuboTakahiro en-aut-sei=Ohkubo en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakayasuHiroki en-aut-sei=Nakayasu en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeuchiYuki en-aut-sei=Takeuchi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakeyasuNobuyuki en-aut-sei=Takeyasu en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KurodaYasushige en-aut-sei=Kuroda en-aut-mei=Yasushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Proton kn-keyword=Proton en-keyword=Nitrate ion kn-keyword=Nitrate ion en-keyword=Adsorption kn-keyword=Adsorption en-keyword=Confinement kn-keyword=Confinement en-keyword=Micropore kn-keyword=Micropore en-keyword=Nanospace kn-keyword=Nanospace END start-ver=1.4 cd-journal=joma no-vol=122 cd-vols= no-issue= article-no= start-page=240 end-page=245 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Speciation of arsenic in a thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi, and its culture medium by inductively coupled plasma–optical emission spectroscopy combined with flow injection pretreatment using an anion-exchange mini-column en-subtitle= kn-subtitle= en-abstract= kn-abstract=The thermoacidophilic iron-oxidizing archaeon Acidianus brierleyi is a microorganism that could be useful in the removal of inorganic As from wastewater, because it simultaneously oxidizes As(III) and Fe(II) to As(V) and Fe(III) in an acidic culture medium, resulting in the immobilization of As(V) as FeAsO4. To investigate the oxidation mechanism, speciation of the As species in both the cells and its culture media is an important issue. Here we describe the successive determination of As(III), As(V), and total As in A. brierleyi and its culture medium via a facile method based on inductively coupled plasma–optical emission spectroscopy (ICP–OES) with a flow injection pretreatment system using a mini-column packed with an anion-exchange resin. The flow-injection pretreatment system consisted of a syringe pump, a selection valve, and a switching valve, which were controlled by a personal computer. Sample solutions with the pH adjusted to 5 were flowed into the mini-column to retain the anionic As(V), whereas As(III) was introduced into ICP–OES with no adsorption on the mini-column due to its electrically neutral form. An acidic solution (1 M HNO3) was then flowed into the mini-column to elute As(V) followed by ICP–OES measurement. The same sample was also subjected to ICP–OES without being passed through the mini-column in order to determine the total amounts of As(III) and As(V). The method was verified by comparing the results of the total As with the sum of As(III) and As(V). The calibration curves showed good linearity with limits of detection of 158, 86, and 211 ppb for As(III), As(V), and total As, respectively. The method was successfully applicable to the determination of the As species contained in the pellets of A. brierleyi and their culture media. The results suggested that the oxidation of As(III) was influenced by the presence of Fe(II) in the culture medium, i.e., Fe(II) enhanced the oxidation of As(III) in A. brierleyi. In addition, we found that no soluble As species was contained in the cell pellets and more than 60% of the As(III) in the culture medium was oxidized by A. brierleyi after a 6-day incubation. en-copyright= kn-copyright= en-aut-name=HigashidaniNaoki en-aut-sei=Higashidani en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeyasuNobuyuki en-aut-sei=Takeyasu en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MotomizuShoji en-aut-sei=Motomizu en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkibeNaoko en-aut-sei=Okibe en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasakiKeiko en-aut-sei=Sasaki en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Okayama University affil-num=5 en-affil= kn-affil=Department of Earth Resources Engineering, Graduate School of Engineering, Kyushu University affil-num=6 en-affil= kn-affil=Department of Earth Resources Engineering, Graduate School of Engineering, Kyushu University en-keyword=Thermoacidophilic iron-oxidizing archaeon kn-keyword=Thermoacidophilic iron-oxidizing archaeon en-keyword=Acidianus brierleyi kn-keyword=Acidianus brierleyi en-keyword=Arsenic kn-keyword=Arsenic en-keyword=Speciation kn-keyword=Speciation en-keyword=Inductively coupled plasma–optical emission spectroscopy kn-keyword=Inductively coupled plasma–optical emission spectroscopy en-keyword=Flow injection pretreatment kn-keyword=Flow injection pretreatment END start-ver=1.4 cd-journal=joma no-vol=1288 cd-vols= no-issue= article-no= start-page=149 end-page=154 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Determination of association constants between 5 '-guanosine monophosphate gel and aromatic compounds by capillary electrophoresis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hydro gel formed by 5'-guanosine monophosphate (GMP) in the presence of a potassium ion is expected to exhibit interesting selectivity in capillary electrophoretic separations. Here, we estimated the conditional association constants between the hydro gel (G-gel) and aromatic compounds by capillary electrophoresis in order to investigate the separation selectivity that is induced by the G-gel. Several aromatic compounds were separated in a solution containing GMP and potassium ion at different concentrations. The association constants were calculated by correlating the electrophoretic mobilities of the analytes obtained experimentally using a concentration of G-gel. During semi-quantitative estimation, naphthalene derivatives had larger association constants (K-ass = 10.3-16.8) compared with those of benzene derivatives (K-ass = 3.91-5.31), which means that the binding sites of G-gel match better to a naphthalene ring than to a benzene ring. A hydrophobic interaction was also found when the association constants for alkyl resorcinol were compared with those of different hydrocarbon chains. The association constants of nucleobases and tryptophan ranged from 6.05 to 12.6, which approximated the intermediate values between benzene and naphthalene derivatives. Consequently, the selective interaction between G-gel and aromatic compounds was classified as one of three types: (1) an intercalation into stacked planar GMP tetramers; (2) a hydrophobic interaction with a long alkyl chain; or, (3) a small contribution of steric hindrance and/or hydrogen bonding with functional groups such as amino and hydroxyl groups. en-copyright= kn-copyright= en-aut-name=YamaguchiKaori en-aut-sei=Yamaguchi en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeyasuNobuyuki en-aut-sei=Takeyasu en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Nat Sci & Technol, Div Earth Life & Mol Sci, Dept Chem affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Nat Sci & Technol, Div Earth Life & Mol Sci, Dept Chem affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Nat Sci & Technol, Div Earth Life & Mol Sci, Dept Chem en-keyword=Capillary electrophoresis kn-keyword=Capillary electrophoresis en-keyword=5 '-Guanosine monophosphate (GMP) kn-keyword=5 '-Guanosine monophosphate (GMP) en-keyword=G-gel kn-keyword=G-gel en-keyword=Association constant kn-keyword=Association constant END