start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=9 article-no= start-page=1805 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rice Nudix Hydrolase OsNUDX2 Sanitizes Oxidized Nucleotides en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nudix hydrolase (NUDX) hydrolyzes 8-oxo-(d)GTP to reduce the levels of oxidized nucleotides in the cells. 8-oxo-(d)GTP produced by reactive oxygen species (ROS) is incorporated into DNA/RNA and mispaired with adenine, causing replicational and transcriptional errors. Here, we identified a rice OsNUDX2 gene, whose expression level was increased 15-fold under UV-C irradiation. The open reading frame of the OsNUDX2 gene, which encodes 776 amino acid residues, was cloned into Escherichia coli cells to produce the protein of 100 kDa. The recombinant protein hydrolyzed 8-oxo-dGTP, in addition to dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP), as did Arabidopsis AtNUDX1; whereas the amino acid sequence of OsNUDX2 had 18% identity with AtNUDX1. OsNUDX2 had 14% identity with barley HvNUDX12, which hydrolyzes 8-oxo-dGTP and diadenosine tetraphosphates. Suppression of the lacZ amber mutation caused by the incorporation of 8-oxo-GTP into mRNA was prevented to a significant degree when the OsNUDX2 gene was expressed in mutT-deficient E. coli cells. These results suggest that the different substrate specificity and identity among plant 8-oxo-dGTP-hydrolyzing NUDXs and OsNUDX2 reduces UV stress by sanitizing the oxidized nucleotides. en-copyright= kn-copyright= en-aut-name=KondoYuki en-aut-sei=Kondo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RikiishiKazuhide en-aut-sei=Rikiishi en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugimotoManabu en-aut-sei=Sugimoto en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=8-oxo-dGTP kn-keyword=8-oxo-dGTP en-keyword=nudix hydrolase kn-keyword=nudix hydrolase en-keyword=Oryza sativa kn-keyword=Oryza sativa en-keyword=transcriptional error kn-keyword=transcriptional error en-keyword=UV-C kn-keyword=UV-C END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=2 article-no= start-page=55 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anti-Inflammatory Effect on Colitis and Modulation of Microbiota by Fermented Plant Extract Supplementation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although results of recent studies suggest that fermented foods strongly affect the gut microbiota composition and that they relieve inflammatory bowel disease symptoms, some reports have described that fermented foods increase some inflammation markers based on differences in fermented food materials. This study evaluated the effects of fermented plant extract (FPE) on dextran sulfate sodium (DSS)-induced colitis in mice and the effects on fecal microbiota composition in humans. Mice fed 5% FPE with 3% DSS (FPE group) showed no body weight loss, atrophy of colonic length, or bloody stool, similar to mice fed a basal diet (negative group), whereas mice fed 3% DSS (positive group) exhibited those effects. Concentrations of inflammation markers IL-6 and TNF-alpha were not significantly different between FPE and negative groups; however, those concentrations became higher in the positive group. 16S ribosomal RNA gene sequencing was used to characterize fecal microbiota in healthy women before and after 3-month FPE supplementation. The FPE supplementation induced increases in Firmicutes phyla and in Clostridiales order, which play a central role in inflammation suppression. These results suggest that FPE enhances Clostridiales growth in the gut and that it has an anti-inflammatory effect. en-copyright= kn-copyright= en-aut-name=SugimotoManabu en-aut-sei=Sugimoto en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeToshiro en-aut-sei=Watanabe en-aut-mei=Toshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakaokaMotoko en-aut-sei=Takaoka en-aut-mei=Motoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiKyoko en-aut-sei=Suzuki en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiTadatoshi en-aut-sei=Murakami en-aut-mei=Tadatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MurakamiNobutada en-aut-sei=Murakami en-aut-mei=Nobutada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SumikawaShoichi en-aut-sei=Sumikawa en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Department of Food and Nutrition, Sonoda Women’s University kn-affil= affil-num=3 en-affil=Department of Biosphere Sciences, Kobe College kn-affil= affil-num=4 en-affil=Department of Biosphere Sciences, Kobe College kn-affil= affil-num=5 en-affil=Functional Food Creation Research Institute Co., Ltd. kn-affil= affil-num=6 en-affil=Functional Food Creation Research Institute Co., Ltd. kn-affil= affil-num=7 en-affil=Functional Food Creation Research Institute Co., Ltd. kn-affil= en-keyword=fermented plant extract kn-keyword=fermented plant extract en-keyword=microbiota kn-keyword=microbiota en-keyword=dextran sulfate sodium kn-keyword=dextran sulfate sodium en-keyword=inflammatory kn-keyword=inflammatory en-keyword=Clostridiales kn-keyword=Clostridiales END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=2 article-no= start-page=155 end-page=166 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210217 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Transcriptomic analysis of developing seeds in a wheat (Triticum aestivum L.) mutant RSD32 with reduced seed dormancy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Seed dormancy, a major factor regulating pre-harvest sprouting, can severely hinder wheat cultivation. Reduced Seed Dormancy 32 (RSD32), a wheat (Triticum aestivum L.) mutant with reduced seed dormancy, is derived from the pre-harvest sprouting tolerant cultivar, 'Norin61'. RSD32 is regulated by a single recessive gene and mutant phenotype expressed in a seed-specific manner. Gene expressions in embryos of 'Norin61' and RSD32 were compared using RNA sequencing (RNA-seq) analysis at different developmental stages of 20, 30, and 40 days after pollination (DAP). Numbers of up-regulated genes in RSD32 are equivalent in all developmental stages. However, down-regulated genes in RSD32 are more numerous on DAP20 and DAP30 than on DAP40. In central components affecting the circadian clock, homologues to the morning-expressed genes are expressed at lower levels in RSD32. However, higher expressions of homologues acting as evening-expressed genes are observed in RSD32. Homologues of Ca2+ signaling pathway related genes are specifically expressed on DAP20 in 'Norin61'. Lower expression is shown in RSD32. These results suggest that RSD32 mutation expresses on DAP20 and earlier seed developmental stages and suggest that circadian clock regulation and Ca2+ signaling pathway are involved in the regulation of wheat seed dormancy. en-copyright= kn-copyright= en-aut-name=RikiishiKazuhide en-aut-sei=Rikiishi en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugimotoManabu en-aut-sei=Sugimoto en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaekawaMasahiko en-aut-sei=Maekawa en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=mutant kn-keyword=mutant en-keyword=seed development kn-keyword=seed development en-keyword=seed dormancy kn-keyword=seed dormancy en-keyword=transcriptome kn-keyword=transcriptome en-keyword=wheat kn-keyword=wheat END start-ver=1.4 cd-journal=joma no-vol=68 cd-vols= no-issue=11 article-no= start-page=1530 end-page=1536 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20076 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Serine racemases from barley, Hordeum vulgare L., and other plant species represent a distinct eukaryotic group: gene cloning and recombinant protein characterization en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Several D-amino acids have been identified in plants. However, the biosynthetic pathway to them is unclear. In this study, we cloned and sequenced a cDNA encoding a serine racemase from barley which contained an open reading frame encoding 337 amino acid residues. The deduced amino acid sequence showed significant identity to plant and mammalian serine racemases and contained conserved pyridoxal 5-phosphate (PLP)-binding lysine and PLP?interacting amino acid residues. The purified gene product catalyzed not only racemization of serine but also dehydration of serine to pyruvate. The enzyme requires PLP and divalent cations such as Ca2+, Mg2+, or Mn2+, but not ATP, whereas mammalian serine racemase activity is increased by ATP. In addition to the results regarding the effect of ATP on enzyme activity and the phylogenetic analysis of eukaryotic serine racemases, the antiserum against Arabidopsis serine racemase did not form a precipitate with barley and rice serine racemases. This suggests that plant serine racemases represent a distinct group in the eukaryotic serine racemase family and can be clustered into monocot and dicot types.

en-copyright= kn-copyright= en-aut-name=FujitaniYoshiyuki en-aut-sei=Fujitani en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HoriuchiTerumi en-aut-sei=Horiuchi en-aut-mei=Terumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ItoKazutoshi en-aut-sei=Ito en-aut-mei=Kazutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugimotoManabu en-aut-sei=Sugimoto en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Okayama University affil-num=3 en-affil= kn-affil=Plant Bioengineering Research Laboratories, Sapporo Breweries Ltd. affil-num=4 en-affil= kn-affil=Okayama University en-keyword=Hordeum vulgare L. kn-keyword=Hordeum vulgare L. en-keyword=Oryza sativa kn-keyword=Oryza sativa en-keyword=Gramineae kn-keyword=Gramineae en-keyword=Pyridoxal 5-phosphate kn-keyword=Pyridoxal 5-phosphate en-keyword=Serine racemase kn-keyword=Serine racemase en-keyword=Serine dehydratase kn-keyword=Serine dehydratase en-keyword=d-Amino acid kn-keyword=d-Amino acid END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=1 end-page=9 dt-received= dt-revised= dt-accepted= dt-pub-year=1997 dt-pub=1997 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ホウレンソウ種子に存在するα-グルコシダーゼの分子多型変化 kn-title=Change in the Multiple Forms of α-Glucosidase from Spinach Seeds en-subtitle= kn-subtitle= en-abstract=4℃保存したホウレンソウ種子から2種のα-グリコシダーゼをCM-セルロースカラムクロマトグラフィーとゲル濾過により精製した。α-グルコシダーゼAとBの分子量はそれぞれSDS-PAGEで78kDA、82kDa、ゲル濾過で62kDa、70kDaであった。α-グルコシダーゼAはマルトオリゴ糖だけではなく可溶性デンプンに対して強い加水分解活性を示した。至適pHは4.5-5.5であり、65℃、20分処理後に約50%の残存活性を示した。一方、α-グルコシダーゼBはマルトオリゴ等に対して強い加水分解活性を示したが、可溶性デンプンに対してほとんど活性を示さなかった。至適pHは5.0であり、65℃、20分処理後に活性を消失した。α-グルコシダーゼAとα-グルコシダーゼBは、4℃保存を行わない種子に見出されたα-グルコシダーゼT、Uとα-グルコシダーゼV、Wにそれぞれ酵素化学的性質、免疫化学的性質が類似していた。これらの結果、ホウレンソウ種子に存在するα-グルコシダーゼの分子多型は2種類に収束されることが示唆された。 kn-abstract=Two molecular forms of α-glucosidase were isolated from spinach seeds after storage at 4℃ by CM-cellulose column chromatography and gel filtration. The molecular masses of α-glucosidase A and B were 78 kDa and 82 kDa by SDS-PAGE, and 62 kDa and 70 kDa by gel filtration, respectively. α-Glucosidase A had high activity not only toward maltooligosaccharides but also toward α-glucans. The optimum pH was 4.5-5.5 and about 50% of the activity remained after incubation at 65℃ for 20 min. On the other hand, α-glucosidase B had high activity toward maltooligosaccharides but faint activity toward α-glucans. The optimum pH was 5.0 and no activity was found after incubation at 65℃ for 20 min. The enzymatic and immunological properties of α-glucosidase A and B were similar to those of α-glucosidase. Tor U, and α-glucosidase V or W, isolated from spinach seeds without 4℃ storage, respectively. These findings suggest that the α-glucosidase in spinach seeds is modified to be two molecular forms. en-copyright= kn-copyright= en-aut-name=FuruiSatoshi en-aut-sei=Furui en-aut-mei=Satoshi kn-aut-name=古井聡 kn-aut-sei=古井 kn-aut-mei=聡 aut-affil-num=1 ORCID= en-aut-name=SugimotoManabu en-aut-sei=Sugimoto en-aut-mei=Manabu kn-aut-name=杉本学 kn-aut-sei=杉本 kn-aut-mei=学 aut-affil-num=2 ORCID= en-aut-name=SuzukiYukio en-aut-sei=Suzuki en-aut-mei=Yukio kn-aut-name=鈴木幸雄 kn-aut-sei=鈴木 kn-aut-mei=幸雄 aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 en-keyword=Spinach kn-keyword=Spinach en-keyword=α-Glucosidase kn-keyword=α-Glucosidase en-keyword=Multiple molecular forms kn-keyword=Multiple molecular forms END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=2 article-no= start-page=145 end-page=153 dt-received= dt-revised= dt-accepted= dt-pub-year=1998 dt-pub=1998 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナ由来過酸化リン脂質グルタチオンペルオキシダーゼ様遺伝子のクローニングと発現 kn-title=Molecular Cloning,Sequencing and Expression of a cDNA Encoding Putative Phospholipid Hydroperoxide Glutathione Peroxidase from Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract=シロイヌナズナから過酸化リン脂質グルタチオンペルオキシダーゼと高い相同性を持つタンパク質をコードするcDNAを単離し、その塩基配列を決定した。本遺伝子は、全長803bpからなり、169アミノ酸残基のタンパク質をコードしていた。アミノ酸配列は植物由来過酸化リン脂質グルタチオンペルオキシダーゼ様タンパク質と約80%の相同性を、哺乳類由来過酸化リン脂質グルタチオンペルオキシダーゼと約50%の相同性を示した。本遺伝子を大腸菌中で発現させた結果、遺伝子から予測される分子量をもつタンパク質が新たに生産された。 kn-abstract=A cDNA encoding Arabidopsis purative phosphplipid hydroperoxide gultathione peroxidase (PHGPX) was cloned and sequenced by the reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends methods. The cDNA comprised 803 bp, and included an open reading frame which encodes a polypeptide of 169 amino acid residues with a molecular mass of 18,600 Da. The deduced amino acid sequence showed homology to plant putative PHGPXs and mammalian PHGPXs. The cloned gene was expressed in Escherichia coli cells to prouce an extra protein, which showed a molecular mass similar to the deduced one. en-copyright= kn-copyright= en-aut-name=SugimotoManabu en-aut-sei=Sugimoto en-aut-mei=Manabu kn-aut-name=杉本学 kn-aut-sei=杉本 kn-aut-mei=学 aut-affil-num=1 ORCID= en-aut-name=KawaiFusako en-aut-sei=Kawai en-aut-mei=Fusako kn-aut-name=河合富佐子 kn-aut-sei=河合 kn-aut-mei=富佐子 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=Phospholipid hydroperoxide glutathione peroxidase kn-keyword=Phospholipid hydroperoxide glutathione peroxidase en-keyword=Nucleotide sequence kn-keyword=Nucleotide sequence en-keyword=Gene expression kn-keyword=Gene expression END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=2 article-no= start-page=239 end-page=252 dt-received= dt-revised= dt-accepted= dt-pub-year=1996 dt-pub=1996 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Purification and Characterization of α-Glucosidases from Spinach Seeds kn-title=ホウレンソウ(Spinacia oleracea L.)種子のαグルコシダーゼの精製とその性質 en-subtitle= kn-subtitle= en-abstract=α−グルコシダーゼの分子多型が各種クロマトグラフィーによりホウレンソウ種子から単離された。α−グルコシダーゼT、U、V、Wの分子量は、それぞれSDS−PAGEにより78、78、82、82kDA、ゲル濾過のより62,62,190、70kDであった。α-グルコシダーゼTとUは、可溶性デンプンを基質とした際のKm値がマルトースよりも約10倍低く、さらに、α−グルカンだけでなくマルトオリゴ糖に対しても高い活性を示すことから、同じような酵素的特性を持つことが示された。最適pHは4.5カラ5.5を示し、温度安定性は70℃、20分処理で約50%の残存活性を示した。一方、α−グルコシダーゼVとWは、マルトースを基質とした際のKm値が可溶性デンプンよりも3−4倍低い値を示し、マルトオリゴ糖に対しては高い活性を示すが、α−グルカンに対してはほとんど活性を示さないことから、同じような酵素的特性を有することが示された。最適pHは4.5−5.5、そして70℃、20分処理では活性が認められなかった。しかしながら、抗α−グルコシダーゼV血清は、α−グルコシダーゼVに対してのみ特異的に沈降線を形成した。 kn-abstract=Four molecular forms of α-glucosidase were isolated from spinach seeds by several kinds of chromatography. The molecular masses of α-glucosidases T,U,V,and W were 78,78,82 and 82kDa by SDS-PAGE, and 62,62,190,and 70kDa by gel filtration, respectively. α-Glucosidases Tand U showed similar enzymatic properties. The Km for soluble starch was about 10 times lower than that for maltose, and they had higher activity not only towards malto-oligosaccharides but also towards α-glucans. The optimum pH was 4.5-5.5 and about 50% of the activity remained after incubation at 71℃ for 20 min. On the other hand, α-glucosidases V and W showed similar enzymatic propreties. The Km for maltose was 3-4 times lower than for solble starch, and they had high activity toward malto-oligosaccharides but faint activity towards α-glucnas. The optimum pH was 4.5-5.0 and no activity was found after incubation at 70℃ for 20 min. However, anti-α-glucosidase V serum precipitated specifically with α-glucosidase V. en-copyright= kn-copyright= en-aut-name=SugimotoManabu en-aut-sei=Sugimoto en-aut-mei=Manabu kn-aut-name=杉本学 kn-aut-sei=杉本 kn-aut-mei=学 aut-affil-num=1 ORCID= en-aut-name=FuruiSatoshi en-aut-sei=Furui en-aut-mei=Satoshi kn-aut-name=古井聡 kn-aut-sei=古井 kn-aut-mei=聡 aut-affil-num=2 ORCID= en-aut-name=SuzukiYukio en-aut-sei=Suzuki en-aut-mei=Yukio kn-aut-name=鈴木幸雄 kn-aut-sei=鈴木 kn-aut-mei=幸雄 aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 en-keyword=α-Glucosidase kn-keyword=α-Glucosidase en-keyword=Spinach kn-keyword=Spinach en-keyword=Seed kn-keyword=Seed en-keyword=Spinacia oleracea L. kn-keyword=Spinacia oleracea L. en-keyword=Molecular form kn-keyword=Molecular form END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1994 dt-pub=19940325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ヒトIV型コラーゲンα4鎖のcDNAの分離,同定と一部の遺伝子構造の解析 kn-title=cDNA isolation and partial gene structure of the human α 4 (W) collagen chain en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=杉本学 kn-aut-sei=杉本 kn-aut-mei=学 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END