start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=2015 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The cyclic GMP-AMP synthetase-STING signaling pathway is required for both the innate immune response against HBV and the suppression of HBV assembly en-subtitle= kn-subtitle= en-abstract= kn-abstract=During viral replication, the innate immune response is induced through the recognition of viral replication intermediates by host factor(s). One of these host factors, cyclic GMP-AMP synthetase (cGAS), was recently reported to be involved in the recognition of viral DNA derived from DNA viruses. However, it is uncertain whether cGAS is involved in the recognition of hepatitis B virus (HBV), which is a hepatotropic DNA virus. In the present study, we demonstrated that HBV genome-derived dsDNA induced the innate immune response through cGAS and its adaptor protein, STING, in human hepatoma Li23 cells expressing high levels of cGAS. In addition, we demonstrated that HBV infection induced ISG56 through the cGAS-STING signaling pathway. This signaling pathway also showed an antiviral response towards HBV through the suppression of viral assembly. From these results, we conclude that the cGAS-STING signaling pathway is required for not only the innate immune response against HBV but also the suppression of HBV assembly. The cGAS-STING signaling pathway may thus be a novel target for anti-HBV strategies. en-copyright= kn-copyright= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkumuraNobuaki en-aut-sei=Okumura en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatohShinya en-aut-sei=Satoh en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugiyamaMasaya en-aut-sei=Sugiyama en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MizokamiMasashi en-aut-sei=Mizokami en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine affil-num=6 en-affil= kn-affil=Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine affil-num=7 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry affil-num=8 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences en-keyword=Antiviral response kn-keyword=Antiviral response en-keyword=hepatitis B virus kn-keyword=hepatitis B virus en-keyword=innate immune response kn-keyword=innate immune response en-keyword=cGAS-STING signaling pathway kn-keyword=cGAS-STING signaling pathway en-keyword=viral assembly kn-keyword=viral assembly END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=3 article-no= start-page=e91156 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140313 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genetic Characterization of Hepatitis C Virus in Long-Term RNA Replication Using Li23 Cell Culture Systems en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background    The most distinguishing genetic feature of hepatitis C virus (HCV) is its remarkable diversity and variation. To understand this feature, we previously performed genetic analysis of HCV in the long-term culture of human hepatoma HuH-7-derived HCV RNA-replicating cell lines. On the other hand, we newly established HCV RNA-replicating cell lines using human hepatoma Li23 cells, which were distinct from HuH-7 cells.   Methodology/Principal Findings    Li23-derived HCV RNA-replicating cells were cultured for 4 years. We performed genetic analysis of HCVs recovered from these cells at 0, 2, and 4 years in culture. Most analysis was performed in two separate parts: one part covered from the 5′-terminus to NS2, which is mostly nonessential for RNA replication, and the other part covered from NS3 to NS5B, which is essential for RNA replication. Genetic mutations in both regions accumulated in a time-dependent manner, and the mutation rates in the 5′-terminus-NS2 and NS3-NS5B regions were 4.0?9.0×10?3 and 2.7?4.0×10?3 base substitutions/site/year, respectively. These results suggest that the variation in the NS3-NS5B regions is affected by the pressure of RNA replication. Several in-frame deletions (3?105 nucleotides) were detected in the structural regions of HCV RNAs obtained from 2-year or 4-year cultured cells. Phylogenetic tree analyses clearly showed that the genetic diversity of HCV was expanded in a time-dependent manner. The GC content of HCV RNA was significantly increased in a time-dependent manner, as previously observed in HuH-7-derived cell systems. This phenomenon was partially due to the alterations in codon usages for codon optimization in human cells. Furthermore, we demonstrated that these long-term cultured cells were useful as a source for the selection of HCV clones showing resistance to anti-HCV agents.   Conclusions/Significance    Long-term cultured HCV RNA-replicating cells are useful for the analysis of evolutionary dynamics and variations of HCV and for drug-resistance analysis. en-copyright= kn-copyright= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SejimaHiroe en-aut-sei=Sejima en-aut-mei=Hiroe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriKyoko en-aut-sei=Mori en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatohShinya en-aut-sei=Satoh en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences END