start-ver=1.4 cd-journal=joma no-vol=174 cd-vols= no-issue= article-no= start-page=111436 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201229 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Combined signal sequence trap and macroarray analysis identifies genes associated with differential fruit softening characteristics during ripening in European and Chinese pears en-subtitle= kn-subtitle= en-abstract= kn-abstract= During ripening, European pear (Pyrus communis L. cv. ‘La France’) fruit undergo dramatic softening in response to increased ethylene production, whereas Chinese pear (Pyrus bretschneideri Rehd. cv. ‘Yali’) fruit remain firm, despite producing large amounts of ethylene. The molecular basis of this differential softening behavior is not well understood. In this study, we combined a yeast-based signal sequence trap (YSST) and macroarray gene expression analysis to identify putative genes encoding secreted proteins that control pear fruit softening. We identified 22 cDNAs annotated as encoding proteins with diverse cell wall-associated functions that were up- or down-regulated during fruit ripening in ‘La France’. Gene expression analysis in fruit that were treated with the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) at 4 d after the onset of ripening revealed that 16 of the targeted genes are ethylene-regulated, while the others appear to be ethylene independent. Comparative gene expression analyses of ‘La France’ and ‘Yali’ fruit during ripening suggested that four ethylene-regulated cDNAs encoding cell wall modifying proteins, contig 2 (polygalacturonase 3), contig 15 (expansin), contig 19 (expansin) and contig 55 (pectate lyase) contribute to the different softening behaviors of ‘La France’ and ‘Yali’ fruit. Additionally, one ethylene-independent cell wall related gene, contig 36 (expansin), and three genes encoding proteins of unknown function, contigs 1, 13 and contig 75 showed differential expression between ‘La France’ and ‘Yali’ fruit during ripening. The results presented herein represent promising candidates for future functional analysis and elucidation of softening mechanisms. en-copyright= kn-copyright= en-aut-name=MwanikiMercy W. en-aut-sei=Mwaniki en-aut-mei=Mercy W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitaloOscar W. en-aut-sei=Mitalo en-aut-mei=Oscar W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MworiaEric G. en-aut-sei=Mworia en-aut-mei=Eric G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OwinoWillis O. en-aut-sei=Owino en-aut-mei=Willis O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Hiwasa-TanaseKyoko en-aut-sei=Hiwasa-Tanase en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RoseJocelyn K.C. en-aut-sei=Rose en-aut-mei=Jocelyn K.C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AokiKoh en-aut-sei=Aoki en-aut-mei=Koh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EsumiTomoya en-aut-sei=Esumi en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KawaiTakashi en-aut-sei=Kawai en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakanoRyohei en-aut-sei=Nakano en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KuboYasutaka en-aut-sei=Kubo en-aut-mei=Yasutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Life and Environmental Sciences, University of Tsukuba kn-affil= affil-num=6 en-affil=Plant Biology Section, School of Integrative Plant Science, Cornell University kn-affil= affil-num=7 en-affil=Graduate School of Life and Environmental Sciences, Osaka Prefecture University kn-affil= affil-num=8 en-affil=Academic Assembly Institute of Agricultural and Life Sciences, Shimane University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=12 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=YSST kn-keyword=YSST en-keyword= ‘La France’ kn-keyword= ‘La France’ en-keyword=‘Yali’ kn-keyword=‘Yali’ en-keyword=Polygalacturonase kn-keyword=Polygalacturonase en-keyword=Expansin kn-keyword=Expansin en-keyword=Pectate lyase kn-keyword=Pectate lyase END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=554158 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201126 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Postharvest Properties of Ultra-Late Maturing Peach Cultivars and Their Attributions to Melting Flesh (M) Locus: Re-evaluation of M Locus in Association With Flesh Texture en-subtitle= kn-subtitle= en-abstract= kn-abstract=The postharvest properties of two ultra-late maturing peach cultivars, "Tobihaku" (TH) and "Daijumitsuto" (DJ), were investigated. Fruit were harvested at commercial maturity and held at 25 degrees C. TH exhibited the characteristics of normal melting flesh (MF) peach, including rapid fruit softening associated with appropriate level of endogenous ethylene production In contrast, DJ did not soften at all during 3 weeks experimental period even though considerable ethylene production was observed. Fruit of TH and DJ were treated with 5,000 ppm of propylene, an ethylene analog, continuously for 7 days. TH softened rapidly whereas DJ maintained high flesh firmness in spite of an increase in endogenous ethylene production, suggesting that DJ but not TH lacked the ability to be softened in response to endogenous and exogenous ethylene/propylene. DNA-seq analysis showed that tandem endo-polygalacturonase (endoPG) genes located at melting flesh (M) locus, Pp-endoPGM (PGM), and Pp-endoPGF (PGF), were deleted in DJ. The endoPG genes at M locus are known to control flesh texture of peach fruit, and it was suggested that the non-softening property of DJ is due to the lack of endoPG genes. On the other hand, TH possessed an unidentified M haplotype that is involved in determination of MF phenotype. Structural identification of the unknown M haplotype, designated as M-0, through comparison with previously reported M haplotypes revealed distinct differences between PGM on M-0 haplotype (PGM-M-0) and PGM on other haplotypes (PGM-M-1). Peach M haplotypes were classified into four main haplotypes: M-0 with PGM-M-0; M-1 with both PGM-M-1 and PGF; M-2 with PGM-M-1; and M-3 lacking both PGM and PGF. Re-evaluation of M locus in association with MF/non-melting flesh (NMF) phenotypes in more than 400 accessions by using whole genome shotgun sequencing data on database and/or by PCR genotyping demonstrated that M-0 haplotype was the common haplotype in MF accessions, and M-0 and M-1 haplotypes were dominant over M-2 and M-3 haplotypes and co-dominantly determined the MF trait. It was also assumed on the basis of structural comparison of M haplotypes among Prunus species that the ancestral haplotype of M-0 diverged from those of the other haplotypes before the speciation of Prunus persica. en-copyright= kn-copyright= en-aut-name=NakanoRyohei en-aut-sei=Nakano en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiTakashi en-aut-sei=Kawai en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukamatsuYosuke en-aut-sei=Fukamatsu en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkitaKagari en-aut-sei=Akita en-aut-mei=Kagari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeSakine en-aut-sei=Watanabe en-aut-mei=Sakine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AsanoTakahiro en-aut-sei=Asano en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakataDaisuke en-aut-sei=Takata en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SatoMamoru en-aut-sei=Sato en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FukudaFumio en-aut-sei=Fukuda en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Experimental Farm of Graduate School of Agriculture, Kyoto University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Food and Agricultural Sciences, Fukushima University kn-affil= affil-num=8 en-affil=Faculty of Food and Agricultural Sciences, Fukushima University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=fruit kn-keyword=fruit en-keyword=softening kn-keyword=softening en-keyword=ethylene kn-keyword=ethylene en-keyword=Prunus persica kn-keyword=Prunus persica en-keyword=melting flesh locus kn-keyword=melting flesh locus en-keyword=endoPG kn-keyword=endoPG en-keyword=postharvest kn-keyword=postharvest END start-ver=1.4 cd-journal=joma no-vol=88 cd-vols= no-issue=1 article-no= start-page=131 end-page=139 dt-received= dt-revised= dt-accepted= dt-pub-year=1999 dt-pub=199902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Involvement of Respiration Rise at Growth Stage Ⅲ in Fruit Enlargement and Maturation of Persimmon Fruit kn-title=カキ果実の生長第3期における呼吸上昇と果実の肥大・成熟との関連について en-subtitle= kn-subtitle= en-abstract=カキ果実が成長第3期に入ると急速に肥大し、成熟を開始することはよく知られている。筆者らはカキ果実が第3期にはいると同時に果実呼吸が急激に上昇することを明らかにするとともに、この呼吸上昇の果実肥大や成熟への関与を調査し、以下のような知見を得た。1)カキ果実の樹上における呼吸速度を経時的に調査した結果、果実が第3期にはいると同時に果実の呼吸が急激に上昇することが明らかとなり、この呼吸上昇の果実肥大や成熟への関与に興味が持たれた。2)カキ果実の呼吸はその大部分がヘタを介して行われていることに注目し、ヘタ除去後その切り口をワセリンを塗布することにより(ワセリン処理)第3期の呼吸上昇を抑制したところ、果実肥大も著しく抑制され、呼吸上昇が果実肥大に密接に関与していることが明らかとなった。3)ワセリン処理により13C atom% excess, 13C蓄積量ともに著しく抑制されており、ワセリン処理による呼吸抑制がかじつのシンク力を低下させることが明らかとなった。つまり、第3期の高い呼吸活性は果実のシンク力形成において重要な役割を果たしていることが明確に示された。4)ジベレリン処理およびアブシジン酸処理によりカキ果実の成熟をそれぞれ抑制および促進すると、呼吸上昇もそれぞれ抑制および促進されており、第3期の呼吸上昇がカキ果実の成熟に関与している可能性が示唆された。5)第3期の呼吸上昇時にエチレン生成量には変化がなく、第3期の呼吸上昇にはエチレンが関与していないと思われた。つまり、第3期の呼吸上昇はクライマクテリックライズとは性質のことなるものであると判断された。 kn-abstract=Fruit growth of persimmon follows a double sigmoidal curve.With the oneset of growth stage Ⅲ,fuit srart their final swell and enter the maturation phase.We investigated the seasonal changes in respiration rates of persimmon fruit in the field condition,and discovered that fuit respiration showed a rapid increase with the onset of growth stage Ⅲ.This result indicates a possibility that this respiration rise at growth stage Ⅲ may have a close relationship to final swell and maturation. Since many somata are distributed on the calyx lobes,but not on the fruit surface, the calyx lobes are generally agreedto to 'tbe gas exchanging site'of the fruit.Therefore, by removing the calyx lobes and sealing the scars with Vaseline,we are able to markedly inhibit the respiration rise at growth Ⅲ.As a result,final fruit swell and accumulation of 13C-photoassimilate were visibly reduced.The inhibition of fuit respiration seemed to reduce the sink strength of the fruit,which in turn suppressed fuit gowth.It was concluded that the high respiration during growth stage Ⅲin persimmon fruit is important for maintaining sink strength for the final swell of fruit.Gibberellic acid treatment at growth stage Ⅱor Ⅲ delayed fruit coloring and softenig.On the other hand,abscisic acid treatment at growth stage Ⅱ promoted fruit coloring.In connection with there effects,the respiration rise was retarded by gibberellic acid treatment and advanced abscisic acid treatment.These results suggest that the respiration rise at growth stage Ⅲ may have a close relationship to the maturation of persimmon fruit.During the period when the fruit respirant rise at growth stage Ⅲ was observed, ethylene production rates showed no changes.This suggests that ethylene has no relation to the respiration rise and that the respiration rise is different from that in climacteric fuit. en-copyright= kn-copyright= en-aut-name=NakanoRyohei en-aut-sei=Nakano en-aut-mei=Ryohei kn-aut-name=中野龍平 kn-aut-sei=中野 kn-aut-mei=龍平 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 en-keyword=persimmon kn-keyword=persimmon en-keyword=Doispyros kaki kn-keyword=Doispyros kaki en-keyword=respiration kn-keyword=respiration en-keyword=fruit growth kn-keyword=fruit growth en-keyword=ripening kn-keyword=ripening END