start-ver=1.4 cd-journal=joma no-vol=174 cd-vols= no-issue=6 article-no= start-page=533 end-page=548 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230919 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phosphorylated SARM1 is involved in the pathological process of rotenone-induced neurodegeneration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a NAD+ hydrolase that plays a key role in axonal degeneration and neuronal cell death. We reported that c-Jun N-terminal kinase (JNK) activates SARM1 through phosphorylation at Ser-548. The importance of SARM1 phosphorylation in the pathological process of Parkinson’s disease (PD) has not been determined. We thus conducted the present study by using rotenone (an inducer of PD-like pathology) and neurons derived from induced pluripotent stem cells (iPSCs) from healthy donors and a patient with familial PD PARK2 (FPD2). The results showed that compared to the healthy neurons, FPD2 neurons were more vulnerable to rotenone-induced stress and had higher levels of SARM1 phosphorylation. Similar cellular events were obtained when we used PARK2-knockdown neurons derived from healthy donor iPSCs. These events in both types of PD-model neurons were suppressed in neurons treated with JNK inhibitors, Ca2+-signal inhibitors, or by a SARM1-knockdown procedure. The degenerative events were enhanced in neurons overexpressing wild-type SARM1 and conversely suppressed in neurons overexpressing the SARM1-S548A mutant. We also detected elevated SARM1 phosphorylation in the midbrain of PD-model mice. The results indicate that phosphorylated SARM1 plays an important role in the pathological process of rotenone-induced neurodegeneration. en-copyright= kn-copyright= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PhooMay Tha Zin en-aut-sei=Phoo en-aut-mei=May Tha Zin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OchiToshiki en-aut-sei=Ochi en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoKen-ichi en-aut-sei=Yamamoto en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=JNK kn-keyword=JNK en-keyword=PARK2 kn-keyword=PARK2 en-keyword=Parkinson’sdisease kn-keyword=Parkinson’sdisease en-keyword=Phosphorylation kn-keyword=Phosphorylation en-keyword=SARM1 kn-keyword=SARM1 END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=8386 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230524 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comprehensive hemocompatibility analysis on the application of diamond-like carbon to ePTFE artificial vascular prosthesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this study was to obtain comprehensive data regarding the hemocompatibility of diamond-like carbon (DLC)-coated expanded polytetrafluoroethylene (ePTFE). DLC increased the hydrophilicity and smoothened the surface and fibrillar structure, respectively, of the ePTFE. DLC-coated ePTFE had more albumin and fibrinogen adsorption and less platelet adhesion than uncoated ePTFE. There were scarce red cell attachments in in vitro human and in vivo animal (rat and swine) whole blood contact tests in both DLC-coated and uncoated ePTFE. DLC-coated ePTFE had a similar but marginally thicker band movement than uncoated-ePTFE with SDS-PAGE after human whole blood contact test. In addition, survival studies of aortic graft replacement in rats (1.5 mm graft) and arteriovenous shunt in goats (4 mm graft) were performed to compare the patency and clot formation between DLC-coated and uncoated ePTFE grafts. Comparable patency was observed in both animal models. However, clots were observed in the luminal surface of the patent 1.5 mm DLC-coated ePTFE grafts, but not in that of uncoated ePTFE grafts. In conclusions, hemocompatibility of DLC-coated ePTFE was high and comparable to that of uncoated ePTFE. However, it failed to improve the hemocompatibility of 1.5 mm ePTFE graft probably because increased fibrinogen adsorption canceled the other beneficial effects of DLC. en-copyright= kn-copyright= en-aut-name=GoyamaTakashi en-aut-sei=Goyama en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiYasuhiro en-aut-sei=Fujii en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MuraokaGenya en-aut-sei=Muraoka en-aut-mei=Genya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakataniTatsuyuki en-aut-sei=Nakatani en-aut-mei=Tatsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OusakaDaiki en-aut-sei=Ousaka en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ImaiYuichi en-aut-sei=Imai en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuwadaNoriaki en-aut-sei=Kuwada en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsujiTatsunori en-aut-sei=Tsuji en-aut-mei=Tatsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShukuTakayuki en-aut-sei=Shuku en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OozawaSusumu en-aut-sei=Oozawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Institute of Frontier Science and Technology, Okayama University of Science kn-affil= affil-num=5 en-affil=Department of Pharmacology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Institute of Frontier Science and Technology, Okayama University of Science kn-affil= affil-num=7 en-affil=Department of Cardiovascular Surgery, Kawasaki Medical Hospital kn-affil= affil-num=8 en-affil=Department of Cardiovascular Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Civil Engineering, Okayama University Graduate School of Environmental and Life Science kn-affil= affil-num=10 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Translational Research and Drug Development, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Division of Medical Safety Management, Safety Management Facility, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Cardiovascular Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=3 article-no= start-page=e0283426 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230329 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Consistently low levels of histidine-rich glycoprotein as a new prognostic biomarker for sepsis: A multicenter prospective observational study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Few sepsis biomarkers accurately predict severity and mortality. Previously, we had reported that first-day histidine-rich glycoprotein (HRG) levels were significantly lower in patients with sepsis and were associated with mortality. Since the time trends of HRG are unknown, this study focused on the time course of HRG in patients with sepsis and evaluated the differences between survivors and non-survivors.
Methods
A multicenter prospective observational study was conducted involving 200 patients with sepsis in 16 Japanese hospitals. Blood samples were collected on days 1, 3, 5, and 7, and 28-day mortality was used for survival analysis. Plasma HRG levels were determined using a modified quantitative sandwich enzyme-linked immunosorbent assay.
Results
First-day HRG levels in non-survivors were significantly lower than those in survivors (mean, 15.7 [95% confidence interval (CI), 13.4-18.1] vs 20.7 [19.5-21.9] mu g/mL; P = 0.006). Although there was no time x survivors/non-survivors interaction in the time courses of HRG (P = 0.34), the main effect of generalized linear mixed models was significant (P < 0.001). In a univariate Cox proportional hazards model with each variable as a time-dependent covariate, higher HRG levels were significantly associated with a lower risk of mortality (hazard ratio, 0.85 [95% CI, 0.78-0.92]; P < 0.001). Furthermore, presepsin levels (P = 0.02) and Sequential Organ Function Assessment scores (P < 0.001) were significantly associated with mortality. Harrell's C-index values for the 28-day mortality effect of HRG, presepsin, procalcitonin, and C-reactive protein were 0.72, 0.70, 0.63, and 0.59, respectively.
Conclusions
HRG levels in non-survivors were consistently lower than those in survivors during the first seven days of sepsis. Repeatedly measured HRG levels were significantly associated with mortality. Furthermore, the predictive power of HRG for mortality may be superior to that of other singular biomarkers, including presepsin, procalcitonin, and C-reactive protein. en-copyright= kn-copyright= en-aut-name=KawanoueNaoya en-aut-sei=Kawanoue en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaKosuke en-aut-sei=Kuroda en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasudaHiroko en-aut-sei=Yasuda en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OiwaMasahiko en-aut-sei=Oiwa en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiSatoshi en-aut-sei=Suzuki en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HosoiHiroki en-aut-sei=Hosoi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Data Science Division, Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=930683 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221005 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histamine induced high mobility group box-1 release from vascular endothelial cells through H-1 receptor en-subtitle= kn-subtitle= en-abstract= kn-abstract=BackgroundSystemic allergic reaction is characterized by vasodilation and vascular leakage, which causes a rapid, precipitous and sustained decrease in arterial blood pressure with a concomitant decrease of cardiac output. Histamine is a major mediator released by mast cells in allergic inflammation and response. It causes a cascade of inflammation and strongly increases vascular permeability within minutes through its four G-protein-coupled receptors (GPCRs) on endothelial cells. High mobility group box-1 (HMGB1), a nonhistone chromatin-binding nuclear protein, can be actively secreted into the extracellular space by endothelial cells. HMGB1 has been reported to exert pro-inflammatory effects on endothelial cells and to increase vascular endothelial permeability. However, the relationship between histamine and HMGB1-mediated signaling in vascular endothelial cells and the role of HMGB1 in anaphylactic-induced hypotension have never been studied. Methods and resultsEA.hy 926 cells were treated with different concentrations of histamine for the indicated periods. The results showed that histamine induced HMGB1 translocation and release from the endothelial cells in a concentration- and time-dependent manner. These effects of histamine were concentration-dependently inhibited by d-chlorpheniramine, a specific H-1 receptor antagonist, but not by H-2 or H-3/4 receptor antagonists. Moreover, an H-1-specific agonist, 2-pyridylethylamine, mimicked the effects of histamine, whereas an H-2-receptor agonist, 4-methylhistamine, did not. Adrenaline and noradrenaline, which are commonly used in the clinical treatment of anaphylactic shock, also inhibited the histamine-induced HMGB1 translocation in endothelial cells. We therefore established a rat model of allergic shock by i.v. injection of compound 48/80, a potent histamine-releasing agent. The plasma HMGB1 levels in compound 48/80-injected rats were higher than those in controls. Moreover, the treatment with anti-HMGB1 antibody successfully facilitated the recovery from compound 48/80-induced hypotension. ConclusionHistamine induces HMGB1 release from vascular endothelial cells solely through H-1 receptor stimulation. Anti-HMGB1 therapy may provide a novel treatment for life-threatening systemic anaphylaxis. en-copyright= kn-copyright= en-aut-name=GaoShangze en-aut-sei=Gao en-aut-mei=Shangze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KuWenhan en-aut-sei=Ku en-aut-mei=Wenhan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangDengli en-aut-sei=Wang en-aut-mei=Dengli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=QiaoHandong en-aut-sei=Qiao en-aut-mei=Handong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TeshigawaraKiyoshi en-aut-sei=Teshigawara en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Histamine kn-keyword=Histamine en-keyword=HMGB1 kn-keyword=HMGB1 en-keyword=vascular endothelial cell kn-keyword=vascular endothelial cell en-keyword=H-1 receptor kn-keyword=H-1 receptor en-keyword=hypotension kn-keyword=hypotension END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=19 article-no= start-page=2970 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220923 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Treatment of Marmoset Intracerebral Hemorrhage with Humanized Anti-HMGB1 mAb en-subtitle= kn-subtitle= en-abstract= kn-abstract=Intracerebral hemorrhage (ICH) is recognized as a severe clinical problem lacking effective treatment. High mobility group box-1 (HMGB1) exhibits inflammatory cytokine-like activity once released into the extracellular space from the nuclei. We previously demonstrated that intravenous injection of rat anti-HMGB1 monoclonal antibody (mAb) remarkably ameliorated brain injury in a rat ICH model. Therefore, we developed a humanized anti-HMGB1 mAb (OKY001) for clinical use. The present study examined whether and how the humanized anti-HMGB1 mAb ameliorates ICH injury in common marmosets. The results show that administration of humanized anti-HMGB1 mAb inhibited HMGB1 release from the brain into plasma, in association with a decrease of 4-hydroxynonenal (4-HNE) accumulation and a decrease in cerebral iron deposition. In addition, humanized anti-HMGB1 mAb treatment resulted in a reduction in brain injury volume at 12 d after ICH induction. Our in vitro experiment showed that recombinant HMGB1 inhibited hemoglobin uptake by macrophages through CD163 in the presence of haptoglobin, suggesting that the release of excess HMGB1 from the brain may induce a delay in hemoglobin scavenging, thereby allowing the toxic effects of hemoglobin, heme, and Fe2+ to persist. Finally, humanized anti-HMGB1 mAb reduced body weight loss and improved behavioral performance after ICH. Taken together, these results suggest that intravenous injection of humanized anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH. en-copyright= kn-copyright= en-aut-name=WangDengli en-aut-sei=Wang en-aut-mei=Dengli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OusakaDaiki en-aut-sei=Ousaka en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=QiaoHandong en-aut-sei=Qiao en-aut-mei=Handong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZhaoKun en-aut-sei=Zhao en-aut-mei=Kun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GaoShangze en-aut-sei=Gao en-aut-mei=Shangze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TeshigawaraKiyoshi en-aut-sei=Teshigawara en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakadaKenzo en-aut-sei=Takada en-aut-mei=Kenzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Research Fellow of Japan Society for the Promotion of Science kn-affil= affil-num=5 en-affil=Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=School of Pharmaceutical Sciences, Tsinghua University kn-affil= affil-num=7 en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Sapporo Laboratory, EVEC, Inc. kn-affil= affil-num=10 en-affil=Department of Translational Research and Drug Development, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=intracerebral hemorrhage kn-keyword=intracerebral hemorrhage en-keyword=HMGB1 kn-keyword=HMGB1 en-keyword=antibody therapy kn-keyword=antibody therapy en-keyword=non-human primate kn-keyword=non-human primate END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=18 article-no= start-page=10300 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histidine-Rich Glycoprotein Suppresses the S100A8/A9-Mediated Organotropic Metastasis of Melanoma Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=The dissection of the complex multistep process of metastasis exposes vulnerabilities that could be exploited to prevent metastasis. To search for possible factors that favor metastatic outgrowth, we have been focusing on secretory S100A8/A9. A heterodimer complex of the S100A8 and S100A9 proteins, S100A8/A9 functions as a strong chemoattractant, growth factor, and immune suppressor, both promoting the cancer milieu at the cancer-onset site and cultivating remote, premetastatic cancer sites. We previously reported that melanoma cells show lung-tropic metastasis owing to the abundant expression of S100A8/A9 in the lung. In the present study, we addressed the question of why melanoma cells are not metastasized into the brain at significant levels in mice despite the marked induction of S100A8/A9 in the brain. We discovered the presence of plasma histidine-rich glycoprotein (HRG), a brain-metastasis suppression factor against S100A8/A9. Using S100A8/A9 as an affinity ligand, we searched for and purified the binding plasma proteins of S100A8/A9 and identified HRG as the major protein on mass spectrometric analysis. HRG prevents the binding of S100A8/A9 to the B16-BL6 melanoma cell surface via the formation of the S100A8/A9 complex. HRG also inhibited the S100A8/A9-induced migration and invasion of A375 melanoma cells. When we knocked down HRG in mice bearing skin melanoma, metastasis to both the brain and lungs was significantly enhanced. The clinical examination of plasma S100A8/A9 and HRG levels showed that lung cancer patients with brain metastasis had higher S100A8/A9 and lower HRG levels than nonmetastatic patients. These results suggest that the plasma protein HRG strongly protects the brain and lungs from the threat of melanoma metastasis. en-copyright= kn-copyright= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RumaI. Made Winarsa en-aut-sei=Ruma en-aut-mei=I. Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GoharaYuma en-aut-sei=Gohara en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KomalasariNi Luh Gede Yoni en-aut-sei=Komalasari en-aut-mei=Ni Luh Gede Yoni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoKen-Ichi en-aut-sei=Yamamoto en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SumardikaI. Wayan en-aut-sei=Sumardika en-aut-mei=I. Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KuribayashiFutoshi en-aut-sei=Kuribayashi en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pharmacology, Kindai University Faculty of Medicine kn-affil= affil-num=4 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=5 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=13 en-affil=Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University kn-affil= affil-num=14 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=15 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=16 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=17 en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=18 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=S100A8/A9 kn-keyword=S100A8/A9 en-keyword=HRG kn-keyword=HRG en-keyword=metastasis kn-keyword=metastasis END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue=1 article-no= start-page=9 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In 2016, sepsis was newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis remains one of the crucial medical problems to be solved worldwide. Although the world health organization has made sepsis a global health priority, there remain no specific and effective therapy for sepsis so far. Indeed, over the previous decades almost all attempts to develop novel drugs have failed. This may be partly ascribable to the multifactorial complexity of the septic cascade and the resultant difficulties of identifying drug targets. In addition, there might still be missing links among dysregulated host responses in vital organs. In this review article, recent advances in understanding of the complex pathophysiology of sepsis are summarized, with a focus on neutrophil extracellular traps (NETs), the significant role of NETs in thrombosis/embolism, and the functional roles of plasma proteins, histidine-rich glycoprotein (HRG) and inter-alpha-inhibitor proteins (IAIPs). The specific plasma proteins that are markedly decreased in the acute phase of sepsis may play important roles in the regulation of blood cells, vascular endothelial cells and coagulation. The accumulating evidence may provide us with insights into a novel aspect of the pathophysiology of sepsis and septic ARDS, including that in COVID-19. en-copyright= kn-copyright= en-aut-name=NishiboriM. en-aut-sei=Nishibori en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Sepsis kn-keyword=Sepsis en-keyword=Histidine-rich glycoprotein (HRG) kn-keyword=Histidine-rich glycoprotein (HRG) en-keyword=Neutrophil extracellular traps (NETs) kn-keyword=Neutrophil extracellular traps (NETs) en-keyword=Endotheliopathy kn-keyword=Endotheliopathy en-keyword=COVID-19 kn-keyword=COVID-19 END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=6 article-no= start-page=671 end-page=675 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multiple Roles of Histidine-Rich Glycoprotein in Vascular Homeostasis and Angiogenesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Histidine-rich glycoprotein (HRG) is a 75 kDa plasma protein that is synthesized in the liver of many verte-brates and present in their plasma at relatively high concentrations of 100-150 μg/mL. HRG is an abundant and well-characterized protein having a multidomain structure that enable it to interact with many ligands, func-tion as an adaptor molecule, and participate in numerous physiological and pathological processes. As a plasma protein, HRG has been reported to regulate vascular biology, including coagulation, fibrinolysis and angiogenesis, through its binding with several ligands (heparin, FXII, fibrinogen, thrombospondin, and plas-minogen) and interaction with many types of cells (endothelial cells, erythrocytes, neutrophils and platelets). This review aims to summarize the roles of HRG in maintaining vascular homeostasis and regulating angiogen-esis in various pathological conditions. en-copyright= kn-copyright= en-aut-name=GaoShangze en-aut-sei=Gao en-aut-mei=Shangze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=histidine-rich glycoprotein kn-keyword=histidine-rich glycoprotein en-keyword=vascular biology kn-keyword=vascular biology en-keyword=coagulation kn-keyword=coagulation en-keyword=angiogenesis kn-keyword=angiogenesis END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021829 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anti-high mobility group box 1 monoclonal antibody suppressed hyper-permeability and cytokine production in human pulmonary endothelial cells infected with influenza A virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective
High mobility group box-1 (HMGB1) has been reported to be involved in influenza A virus-induced acute respiratory distress syndrome (ARDS). We studied the efficacy of an anti-HMGB1 mAb using an in vitro model of TNF-α stimulation or influenza A virus infection in human pulmonary microvascular endothelial cells (HMVECs).

Methods
Vascular permeability of HMVECs was quantified using the Boyden chamber assay under tumor necrosis factor-α (TNF-α) stimulation or influenza A virus infection in the presence of anti-HMGB1 mAb or control mAb. The intracellular localization of HMGB1 was assessed by immunostaining. Extracellular cytokine concentrations and intracellular viral mRNA expression were quantified by the enzyme-linked immunosorbent assay and quantitative reverse transcription PCR, respectively.

Results
Vascular permeability was increased by TNF-α stimulation or influenza A infection; HMVECs became elongated and the intercellular gaps were extended. Anti-HMGB1 mAb suppressed both the increase in permeability and the cell morphology changes. Translocation of HMGB1 to the cytoplasm was observed in the non-infected cells. Although anti-HMGB1 mAb did not suppress viral replication, it did suppress cytokine production in HMVECs.

Conclusion
Anti-HMGB1 mAb might be an effective therapy for severe influenza ARDS. en-copyright= kn-copyright= en-aut-name=NambaTakahiro en-aut-sei=Namba en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoYukie en-aut-sei=Saito en-aut-mei=Yukie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MorishimaTsuneo en-aut-sei=Morishima en-aut-mei=Tsuneo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pediatrics, Aichi Medical University kn-affil= affil-num=8 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Influenza kn-keyword=Influenza en-keyword=Acute respiratory distress syndrome kn-keyword=Acute respiratory distress syndrome en-keyword=High mobility group box 1 kn-keyword=High mobility group box 1 en-keyword=Human pulmonary microvascular endothelial cell kn-keyword=Human pulmonary microvascular endothelial cell en-keyword=Cytokine kn-keyword=Cytokine en-keyword=Tumor necrosis factor-α kn-keyword=Tumor necrosis factor-α END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue= article-no= start-page=1511 end-page=1523 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021821 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neuroprotective Effects of Anti-high Mobility Group Box-1 Monoclonal Antibody Against Methamphetamine-Induced Dopaminergic Neurotoxicity en-subtitle= kn-subtitle= en-abstract= kn-abstract=High mobility group box-1 (HMGB1) is a ubiquitous non-histone nuclear protein that plays a key role as a transcriptional activator, with its extracellular release provoking inflammation. Inflammatory responses are essential in methamphetamine (METH)-induced acute dopaminergic neurotoxicity. In the present study, we examined the effects of neutralizing anti-HMGB1 monoclonal antibody (mAb) on METH-induced dopaminergic neurotoxicity in mice. BALB/c mice received a single intravenous administration of anti-HMGB1 mAb prior to intraperitoneal injections of METH (4 mg/kg x 2, at 2-h intervals). METH injections induced hyperthermia, an increase in plasma HMGB1 concentration, degeneration of dopaminergic nerve terminals, accumulation of microglia, and extracellular release of neuronal HMGB1 in the striatum. These METH-induced changes were significantly inhibited by intravenous administration of anti-HMGB1 mAb. In contrast, blood-brain barrier disruption occurred by METH injections was not suppressed. Our findings demonstrated the neuroprotective effects of anti-HMGB1 mAb against METH-induced dopaminergic neurotoxicity, suggesting that HMGB1 could play an initially important role in METH toxicity. en-copyright= kn-copyright= en-aut-name=MasaiKaori en-aut-sei=Masai en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaKeita en-aut-sei=Kuroda en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsookaNami en-aut-sei=Isooka en-aut-mei=Nami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KikuokaRyo en-aut-sei=Kikuoka en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiShinki en-aut-sei=Murakami en-aut-mei=Shinki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KamimaiSunao en-aut-sei=Kamimai en-aut-mei=Sunao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WangDengli en-aut-sei=Wang en-aut-mei=Dengli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=7 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil= kn-affil= affil-num=11 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=methamphetamine kn-keyword=methamphetamine en-keyword=dopamine neuron kn-keyword=dopamine neuron en-keyword=high mobility group box-1 kn-keyword=high mobility group box-1 en-keyword=hyperthermia kn-keyword=hyperthermia en-keyword=inflammation kn-keyword=inflammation en-keyword=neurotoxicity kn-keyword=neurotoxicity END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=10223 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210513 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histidine-rich glycoprotein as a prognostic biomarker for sepsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Various biomarkers have been proposed for sepsis; however, only a few become the standard. We previously reported that plasma histidine-rich glycoprotein (HRG) levels decreased in septic mice, and supplemental infusion of HRG improved survival in mice model of sepsis. Moreover, our previous clinical study demonstrated that HRG levels in septic patients were lower than those in noninfective systemic inflammatory response syndrome patients, and it could be a biomarker for sepsis. In this study, we focused on septic patients and assessed the differences in HRG levels between the non-survivors and survivors. We studied ICU patients newly diagnosed with sepsis. Blood samples were collected within 24 h of ICU admission, and HRG levels were determined using an enzyme-linked immunosorbent assay. Ninety-nine septic patients from 11 institutes in Japan were included. HRG levels were significantly lower in non-survivors (n=16) than in survivors (n=83) (median, 15.1 [interquartile ranges, 12.7-16.6] vs. 30.6 [22.1-39.6] mu g/ml; p<0.01). Survival analysis revealed that HRG levels were associated with mortality (hazard ratio 0.79, p<0.01), and the Harrell C-index (predictive power) for HRG was 0.90. These results suggested that HRG could be a novel prognostic biomarker for sepsis. en-copyright= kn-copyright= en-aut-name=KurodaKosuke en-aut-sei=Kuroda en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshiiKenzo en-aut-sei=Ishii en-aut-mei=Kenzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiharaYuko en-aut-sei=Mihara en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawanoueNaoya en-aut-sei=Kawanoue en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaMichihiro en-aut-sei=Yoshida en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology, Fukuyama City Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=6 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=7 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=133 cd-vols= no-issue=1 article-no= start-page=10 end-page=22 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Novel understanding of septic pathophysiology and neutrophil extracellular traps kn-title=敗血症病態の新しい理解と好中球細胞外トラップ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name=西堀正洋 kn-aut-sei=西堀 kn-aut-mei=正洋 aut-affil-num=1 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name=和氣秀徳 kn-aut-sei=和氣 kn-aut-mei=秀徳 aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 薬理学 affil-num=2 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil=近畿大学医学部 薬理学 en-keyword=敗血症 kn-keyword=敗血症 en-keyword=histidine-rich glycoprotein(HRG) kn-keyword=histidine-rich glycoprotein(HRG) en-keyword=好中球 kn-keyword=好中球 en-keyword=NETs kn-keyword=NETs en-keyword=血管内皮細胞 kn-keyword=血管内皮細胞 END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=12 article-no= start-page=2650 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High Mobility Group Box-1 and Blood-Brain Barrier Disruption en-subtitle= kn-subtitle= en-abstract= kn-abstract=Increasing evidence suggests that inflammatory responses are involved in the progression of brain injuries induced by a diverse range of insults, including ischemia, hemorrhage, trauma, epilepsy, and degenerative diseases. During the processes of inflammation, disruption of the blood–brain barrier (BBB) may play a critical role in the enhancement of inflammatory responses and may initiate brain damage because the BBB constitutes an interface between the brain parenchyma and the bloodstream containing blood cells and plasma. The BBB has a distinct structure compared with those in peripheral tissues: it is composed of vascular endothelial cells with tight junctions, numerous pericytes surrounding endothelial cells, astrocytic endfeet, and a basement membrane structure. Under physiological conditions, the BBB should function as an important element in the neurovascular unit (NVU). High mobility group box-1 (HMGB1), a nonhistone nuclear protein, is ubiquitously expressed in almost all kinds of cells. HMGB1 plays important roles in the maintenance of chromatin structure, the regulation of transcription activity, and DNA repair in nuclei. On the other hand, HMGB1 is considered to be a representative damage-associated molecular pattern (DAMP) because it is translocated and released extracellularly from different types of brain cells, including neurons and glia, contributing to the pathophysiology of many diseases in the central nervous system (CNS). The regulation of HMGB1 release or the neutralization of extracellular HMGB1 produces beneficial effects on brain injuries induced by ischemia, hemorrhage, trauma, epilepsy, and Alzheimer’s amyloidpathy in animal models and is associated with improvement of the neurological symptoms. In the present review, we focus on the dynamics of HMGB1 translocation in different disease conditions in the CNS and discuss the functional roles of extracellular HMGB1 in BBB disruption and brain inflammation. There might be common as well as distinct inflammatory processes for each CNS disease. This review will provide novel insights toward an improved understanding of a common pathophysiological process of CNS diseases, namely, BBB disruption mediated by HMGB1. It is proposed that HMGB1 might be an excellent target for the treatment of CNS diseases with BBB disruption. en-copyright= kn-copyright= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangDengli en-aut-sei=Wang en-aut-mei=Dengli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OusakaDaiki en-aut-sei=Ousaka en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=high mobility group box-1 kn-keyword=high mobility group box-1 en-keyword=blood-brain barrier kn-keyword=blood-brain barrier en-keyword=inflammation kn-keyword=inflammation en-keyword=stroke kn-keyword=stroke en-keyword=trauma kn-keyword=trauma en-keyword=vascular endothelial cell kn-keyword=vascular endothelial cell en-keyword=pericyte kn-keyword=pericyte en-keyword=monoclonal antibody kn-keyword=monoclonal antibody END start-ver=1.4 cd-journal=joma no-vol=132 cd-vols= no-issue=1 article-no= start-page=39 end-page=40 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 9th International DAMPs and Alarmins Symposium (9th iDEAs) kn-title=第9回国際DAMPs と Alarmins シンポジウムを 開催して en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name=西堀正洋 kn-aut-sei=西堀 kn-aut-mei=正洋 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 薬理学 END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=7 article-no= start-page=627 end-page=640 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Critical role of the MCAM-ETV4 axis triggered by extracellular S100A8/A9 in breast cancer aggressiveness en-subtitle= kn-subtitle= en-abstract= kn-abstract=Metastatic breast cancer is the leading cause of cancer-associated death in women. The progression of this fatal disease is associated with inflammatory responses that promote cancer cell growth and dissemination, eventually leading to a reduction of overall survival. However, the mechanism(s) of the inflammation-boosted cancer progression remains unclear. In this study, we found for the first time that an extracellular cytokine, S100A8/A9, accelerates breast cancer growth and metastasis upon binding to a cell surface receptor, melanoma cell adhesion molecule (MCAM). Our molecular analyses revealed an important role of ETS translocation variant 4 (ETV4), which is significantly activated in the region downstream of MCAM upon S100A8/A9 stimulation, in breast cancer progression in vitro as well as in vivo. The MCAM-mediated activation of ETV4 induced a mobile phenotype called epithelial-mesenchymal transition (EMT) in cells, since we found that ETV4 transcriptionally upregulates ZEB1, a strong EMT inducer, at a very high level. In contrast, downregulation of either MCAM or ETV4 repressed EMT, resulting in greatly weakened tumor growth and lung metastasis. Overall, our results revealed that ETV4 is a novel transcription factor regulated by the S100A8/A9-MCAM axis, which leads to EMT through ZEB1 and thereby to metastasis in breast cancer cells. Thus, therapeutic strategies based on our findings might improve patient outcomes. en-copyright= kn-copyright= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SumardikaI Wayan en-aut-sei=Sumardika en-aut-mei=I Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IiokaHidekazu en-aut-sei=Iioka en-aut-mei=Hidekazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MitsuiYosuke en-aut-sei=Mitsui en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SaitoKen en-aut-sei=Saito en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=RumaI Made Winarsa en-aut-sei=Ruma en-aut-mei=I Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SatoHiroki en-aut-sei=Sato en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamamotoKen-ichi en-aut-sei=Yamamoto en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SohJunichi en-aut-sei=Soh en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KuboMiyoko en-aut-sei=Kubo en-aut-mei=Miyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=PutrantoEndy Widya en-aut-sei=Putranto en-aut-mei=Endy Widya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=MurakamiTakashi en-aut-sei=Murakami en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=LiuMing en-aut-sei=Liu en-aut-mei=Ming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=HibinoToshihiko en-aut-sei=Hibino en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=6 en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=7 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=9 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=12 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=19 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Pediatrics, Dr. Sardjito Hospital/Faculty of Medicine, Universitas Gadjah Mada kn-affil= affil-num=21 en-affil=Department of Microbiology, Faculty of Medicine, Saitama Medical University kn-affil= affil-num=22 en-affil=Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University kn-affil= affil-num=23 en-affil=Department of Dermatology, Tokyo Medical University kn-affil= affil-num=24 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=25 en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=26 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=27 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=8 article-no= start-page=e73640 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130821 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neuropathic Pain in Rats with a Partial Sciatic Nerve Ligation Is Alleviated by Intravenous Injection of Monoclonal Antibody to High Mobility Group Box-1 en-subtitle= kn-subtitle= en-abstract= kn-abstract=High mobility group box-1 (HMGB1) is associated with the pathogenesis of inflammatory diseases. A previous study reported that intravenous injection of anti-HMGB1 monoclonal antibody significantly attenuated brain edema in a rat model of stroke, possibly by attenuating glial activation. Peripheral nerve injury leads to increased activity of glia in the spinal cord dorsal horn. Thus, it is possible that the anti-HMGB1 antibody could also be efficacious in attenuating peripheral nerve injury-induced pain. Following partial sciatic nerve ligation (PSNL), rats were treated with either anti-HMGB1 or control IgG. Intravenous treatment with anti-HMGB1 monoclonal antibody (2 mg/kg) significantly ameliorated PSNL-induced hind paw tactile hypersensitivity at 7, 14 and 21 days, but not 3 days, after ligation, whereas control IgG had no effect on tactile hypersensitivity. The expression of HMGB1 protein in the spinal dorsal horn was significantly increased 7, 14 and 21 days after PSNL; the efficacy of the anti-HMGB1 antibody is likely related to the presence of HMGB1 protein. Also, the injury-induced translocation of HMGB1 from the nucleus to the cytosol occurred mainly in dorsal horn neurons and not in astrocytes and microglia, indicating a neuronal source of HMGB1. Markers of astrocyte (glial fibrillary acidic protein (GFAP)), microglia (ionized calcium binding adaptor molecule 1 (Iba1)) and spinal neuron (cFos) activity were greatly increased in the ipsilateral dorsal horn side compared to the sham-operated side 21 days after PSNL. Anti-HMGB1 monoclonal antibody treatment significantly decreased the injury-induced expression of cFos and Iba1, but not GFAP. The results demonstrate that nerve injury evokes the synthesis and release of HMGB1 from spinal neurons, facilitating the activity of both microglia and neurons, which in turn leads to symptoms of neuropathic pain. Thus, the targeting of HMGB1 could be a useful therapeutic strategy in the treatment of chronic pain. en-copyright= kn-copyright= en-aut-name=NakamuraYoki en-aut-sei=Nakamura en-aut-mei=Yoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriokaNorimitsu en-aut-sei=Morioka en-aut-mei=Norimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AbeHiromi en-aut-sei=Abe en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhangFang Fang en-aut-sei=Zhang en-aut-mei=Fang Fang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Hisaoka-NakashimaKazue en-aut-sei=Hisaoka-Nakashima en-aut-mei=Kazue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakataYoshihiro en-aut-sei=Nakata en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University affil-num=2 en-affil= kn-affil=Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University affil-num=3 en-affil= kn-affil=Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University affil-num=4 en-affil= kn-affil=Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University affil-num=5 en-affil= kn-affil=Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University affil-num=6 en-affil= kn-affil=Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmacological Sciences, Okayama University affil-num=7 en-affil= kn-affil=Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmacological Sciences, Okayama University affil-num=8 en-affil= kn-affil=Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University END start-ver=1.4 cd-journal=joma no-vol=125 cd-vols= no-issue=2 article-no= start-page=97 end-page=102 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Anti‒high mobility group box-1 antibody therapy for traumatic brain injury kn-title=外傷性脳傷害に対する抗HMGB-1抗体治療 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OkumaYu en-aut-sei=Okuma en-aut-mei=Yu kn-aut-name=大熊佑 kn-aut-sei=大熊 kn-aut-mei=佑 aut-affil-num=1 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name=劉克約 kn-aut-sei=劉 kn-aut-mei=克約 aut-affil-num=2 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name=和気秀徳 kn-aut-sei=和気 kn-aut-mei=秀徳 aut-affil-num=3 ORCID= en-aut-name=HarumaJun en-aut-sei=Haruma en-aut-mei=Jun kn-aut-name=春間純 kn-aut-sei=春間 kn-aut-mei=純 aut-affil-num=4 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name=吉野正 kn-aut-sei=吉野 kn-aut-mei=正 aut-affil-num=5 ORCID= en-aut-name=OhtsukaAiji en-aut-sei=Ohtsuka en-aut-mei=Aiji kn-aut-name=大塚愛二 kn-aut-sei=大塚 kn-aut-mei=愛二 aut-affil-num=6 ORCID= en-aut-name=TakahashiHideo en-aut-sei=Takahashi en-aut-mei=Hideo kn-aut-name=高橋英夫 kn-aut-sei=高橋 kn-aut-mei=英夫 aut-affil-num=7 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name=森秀治 kn-aut-sei=森 kn-aut-mei=秀治 aut-affil-num=8 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name=西堀正洋 kn-aut-sei=西堀 kn-aut-mei=正洋 aut-affil-num=9 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name=伊達勲 kn-aut-sei=伊達 kn-aut-mei=勲 aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 脳神経外科学 affil-num=2 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 薬理学 affil-num=3 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 薬理学 affil-num=4 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 脳神経外科学 affil-num=5 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 病理学(腫瘍病理) affil-num=6 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 人体構成学 affil-num=7 en-affil= kn-affil=近畿大学医学部 薬理学 affil-num=8 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 就実大学薬学部 affil-num=9 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科薬理学 affil-num=10 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 脳神経外科学 en-keyword=HMGB-1 kn-keyword=HMGB-1 en-keyword=traumatic brain injury (頭部外傷) kn-keyword=traumatic brain injury (頭部外傷) en-keyword=secondary injury (二次的損傷) kn-keyword=secondary injury (二次的損傷) en-keyword=blood brain barrier (血液脳関門) kn-keyword=blood brain barrier (血液脳関門) END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=6 article-no= start-page=369 end-page=377 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gene Expression and Localization of High-mobility Group Box Chromosomal Protein-1 (HMGB-1) in Human Osteoarthritic Cartilage en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the expression and localization of high-mobility group box chromosomal protein-1 (HMGB-1) in human osteoarthritic (OA) cartilage in relation to the histopathological grade of cartilage destruction, and examined the role of HMGB-1 in the regulation of proinflammatory cytokine expression in chondrocytes. An immunohistochemical study demonstrated that total HMGB-1-positive cell ratios increase as the Osteoarthritis Research Society International (OARSI) histological grade increased. The population of cytoplasmic HMGB-1-positive chondrocytes was especially increased in the deep layers of higher-grade cartilage. The ratios and localization of receptors for advanced glycation end products (RAGE) expression by chondrocytes in Grade 2, 3, and 4 were significantly higher than those in Grade 1. In vitro stimulation with IL-1β, but not TNFα, significantly upregulated the expression of HMGB-1 mRNA by human OA chondrocytes. Both IL-1β and TNFα promoted the translocation of HMGB-1 from nuclei to cytoplasm. IL-1β and TNFα secretions were stimulated at higher levels of HMGB-1. The results of our study suggest the involvement of HMGB-1 in the pathogenesis of cartilage destruction in OA. en-copyright= kn-copyright= en-aut-name=TeradaChuji en-aut-sei=Terada en-aut-mei=Chuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NasuYoshihisa en-aut-sei=Nasu en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomonoYasuko en-aut-sei=Tomono en-aut-mei=Yasuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaMasato en-aut-sei=Tanaka en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiHideo K. en-aut-sei=Takahashi en-aut-mei=Hideo K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishidaKeiichiro en-aut-sei=Nishida en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Shigei Medical Research Institute affil-num=6 en-affil= kn-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=10 en-affil= kn-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=HMGB-1 kn-keyword=HMGB-1 en-keyword=RAGE kn-keyword=RAGE en-keyword=chondrocyte kn-keyword=chondrocyte en-keyword=osteoarthritis kn-keyword=osteoarthritis en-keyword=cartilage kn-keyword=cartilage END start-ver=1.4 cd-journal=joma no-vol=122 cd-vols= no-issue=3 article-no= start-page=275 end-page=277 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20101201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Okayama Prefectural Culture Prize (Academic Category) kn-title=岡山県文化賞(学術部門,医学分野)を受賞して en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name=西堀正洋 kn-aut-sei=西堀 kn-aut-mei=正洋 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 薬理学 END start-ver=1.4 cd-journal=joma no-vol=59 cd-vols= no-issue=1 article-no= start-page=1 end-page=9 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=200502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of recA/RAD51 family proteins in mammals. en-subtitle= kn-subtitle= en-abstract= kn-abstract=

DNA damage causes chromosomal instability leading to oncogenesis, apoptosis, and severe failure of cell functions. The DNA repair system includes base excision repair, nucleotide excision repair, mismatch repair, translesion replication, non-homologous end-joining, and recombinational repair. Homologous recombination performs the recombinational repair. The RAD51 gene is an ortholog of Esherichia coli recA, and the gene product Rad51 protein plays a central role in the homologous recombination. In mammals, 7 recA-like genes have been identified: RAD51, RAD51L1/B, RAD51L2/C, RAD51L3/D, XRCC2, XRCC3, and DMC1. These genes, with the exception of meiosis-specific DMC1, are essential for development in mammals. Disruption of the RAD51 gene leads to cell death, whereas RAD51L1/B, RAD51L2/C, RAD51L3/D, XRCC2, and XRCC3 genes (RAD51 paralogs) are not essential for viability of cells, but these gene-deficient cells exhibit a similar defective phenotype. Yeast two-hybrid analysis, co-immunoprecipitation, mutation analysis, and domain mapping of Rad51 and Rad51 paralogs have revealed protein-protein interactions among these gene products. Recent investigations have shown that Rad51 paralogs play a role not only in an early step, but also in a late step of homologous recombination. In addition, identification of alternative transcripts of some RAD51 paralogs may reflect the complexity of the homologous recombination system.

en-copyright= kn-copyright= en-aut-name=KawabataMasahiro en-aut-sei=Kawabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawabataTeruyuki en-aut-sei=Kawabata en-aut-mei=Teruyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Okayama University affil-num=3 en-affil= kn-affil=Okayama University en-keyword=RAD51 kn-keyword=RAD51 en-keyword=RAD51 paralogs kn-keyword=RAD51 paralogs en-keyword=recA kn-keyword=recA en-keyword=recombination kn-keyword=recombination en-keyword=DNA repair kn-keyword=DNA repair END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=1 article-no= start-page=65 end-page=69 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Specific Removal of Monocytes from Peripheral Blood of Septic Patients by Polymyxin B-immobilized Filter Column en-subtitle= kn-subtitle= en-abstract= kn-abstract=Lipopolysaccharide (LPS) is one of the major causes of septic shock. The polymyxin B-immobilized filter column (PMX) was developed for the adsorption of endotoxin by direct hemoperfusion and has been used for the treatment of LPS-induced septic shock. In this study, we demonstrated that PMX also specifically bound monocytes from the peripheral blood leukocytes of septic patients by mean of an analysis of bound cells using immunocytochemical and electron microscopic techniques. The specific removal of monocytes from septic patients may produce beneficial effects by reducing the interaction between monocytes and functionally associated cells including vascular endothelial cells. en-copyright= kn-copyright= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiHide K. en-aut-sei=Takahashi en-aut-mei=Hide K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatayamaHiroshi en-aut-sei=Katayama en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaitoShinya en-aut-sei=Saito en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwagakiHiromi en-aut-sei=Iwagaki en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaNoriaki en-aut-sei=Tanaka en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoritaKiyoshi en-aut-sei=Morita en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OhtsukaAiji en-aut-sei=Ohtsuka en-aut-mei=Aiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Departments of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=septic shock kn-keyword=septic shock en-keyword=polymixin B-immobilized column kn-keyword=polymixin B-immobilized column en-keyword=monocyte kn-keyword=monocyte en-keyword=adsorptive removal kn-keyword=adsorptive removal END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=5 article-no= start-page=249 end-page=262 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200910 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High mobility group box 1 complexed with heparin induced angiogenesis in a matrigel plug assay en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Angiogenesis involves complex processes mediated by several factors and is associated with inflammation and wound healing. High mobility group box 1 (HMGB1) is released from necrotic cells as well as macrophages and plays proinflammatory roles. In the present study, we examined whether HMGB1 would exhibit angiogenic activity in a matrigel plug assay in mice. HMGB1 in combination with heparin strongly induced angiogenesis, whereas neither HMGB1 nor heparin alone showed such angiogenic activity. The heparin-dependent induction of angiogenesis by HMGB1 was accompanied by increases in the expression of tumor necrosis factor-alpha (TNF-alpha) and vascular endothelial growth factor-A120 (VEGF-A120). It is likely that the dependence of the angiogenic activity of HMGB1 on heparin was due to the efficiency of the diffusion of the HMGB1-heparin complex from matrigel to the surrounding areas. VEGF-A165 possessing a heparin-binding domain showed a pattern of heparin-dependent angiogenic activity similar to that of HMGB1. The presence of heparin also inhibited the degradation of HMGB1 by plasmin in vitro. Taken together, these results suggested that HMGB1 in complex with heparin possesses remarkable angiogenic activity, probably through the induction of TNF-alpha and VEGF-A120.

en-copyright= kn-copyright= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiHideo K. en-aut-sei=Takahashi en-aut-mei=Hideo K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Shujitsu University, School of Pharmacy affil-num=3 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=angiogenesis kn-keyword=angiogenesis en-keyword=HMGB1 kn-keyword=HMGB1 en-keyword=heparin kn-keyword=heparin END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=4 article-no= start-page=203 end-page=211 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Establishment of in Vitro Binding Assay of High Mobility Group Box-1 and S100A12 to Receptor for Advanced Glycation Endproducts: Heparin's Effect on Binding en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Interaction between the receptor for advanced glycation end products (RAGE) and its ligands has been implicated in the pathogenesis of various inflammatory disorders. In this study, we establish an in vitro binding assay in which recombinant human high-mobility group box 1 (rhHMGB1) or recombinant human S100A12 (rhS100A12) immobilized on the microplate binds to recombinant soluble RAGE (rsRAGE). The rsRAGE binding to both rhHMGB1 and rhS100A12 was saturable and dependent on the immobilized ligands. The binding of rsRAGE to rhS100A12 depended on Ca2 and Zn2, whereas that to rhHMGB1 was not. Scatchard plot analysis showed that rsRAGE had higher affinity for rhHMGB1 than for rhS100A12. rsRAGE was demonstrated to bind to heparin, and rhS100A12, in the presence of Ca2, was also found to bind to heparin. We examined the effects of heparin preparations with different molecular sizesunfractionated native heparin (UFH), low molecular weight heparin (LMWH) 5000Da, and LMWH 3000Da on the binding of rsRAGE to rhHMGB1 and rhS100A12. All 3 preparations concentration-dependently inhibited the binding of rsRAGE to rhHMGB1 to a greater extent than did rhS100A12. These results suggested that heparin's anti-inflammatory effects can be partly explained by its blocking of the interaction between HMGB1 or S100A12 and RAGE. On the other hand, heparin would be a promising effective remedy against RAGE-related inflammatory disorders.

en-copyright= kn-copyright= en-aut-name=LiuRui en-aut-sei=Liu en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhangJiyong en-aut-sei=Zhang en-aut-mei=Jiyong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IzushiYasuhisa en-aut-sei=Izushi en-aut-mei=Yasuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiHideo K. en-aut-sei=Takahashi en-aut-mei=Hideo K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=PengBo en-aut-sei=Peng en-aut-mei=Bo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Shujitsu University, School of Pharmacy affil-num=3 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Shanghai University of Traditional Chinese Medicine affil-num=9 en-affil= kn-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=RAGE kn-keyword=RAGE en-keyword=HMGB1 kn-keyword=HMGB1 en-keyword=S100A12 kn-keyword=S100A12 en-keyword=heparin kn-keyword=heparin en-keyword=inflammation kn-keyword=inflammation END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=4 article-no= start-page=367 end-page=374 dt-received= dt-revised= dt-accepted= dt-pub-year=1984 dt-pub=198408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The inhibition of substance P-induced histamine release from mast cells by 6, 7-dihydro-6, 8, 8, 10-tetramethyl-8H-pyrano-[3, 2-g] chromone-2-carboxylic acid (EAA). en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In the presence of extracellular Ca2+, 6,7-dihydro-6,8,8, 10-tetramethyl-8H-pyrano [3, 2-g] chromone-2-carboxylic acid (EAA) had an inhibitory effect on the substance P-induced histamine release from rat peritoneal mast cells. Not only Ca2+ but also Mg2+, Sr2+ and Ba2+ were effective in enhancing the activity of EAA. Marked tachyphylaxis to EAA developed irrespective of the presence or absence of extracellular Ca2+. Cross-tachyphylaxis was observed between EAA and disodium cromoglycate (DSCG). These results indicate that the mode of action of EAA is similar, but not identical, with that of DSCG.

en-copyright= kn-copyright= en-aut-name=TsutsumiKoji en-aut-sei=Tsutsumi en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaekiKiyomi en-aut-sei=Saeki en-aut-mei=Kiyomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Okayama University affil-num=3 en-affil= kn-affil=Okayama Univresity en-keyword=6 kn-keyword=6 en-keyword=7-dihydro-6 kn-keyword=7-dihydro-6 en-keyword=8 kn-keyword=8 en-keyword=8 kn-keyword=8 en-keyword=10-tetramethyl-8H-pyrano(3 kn-keyword=10-tetramethyl-8H-pyrano(3 en-keyword= 2-g) chromone-2-carboxylic acid (EAA) kn-keyword= 2-g) chromone-2-carboxylic acid (EAA) en-keyword=disodium cromoglycate kn-keyword=disodium cromoglycate en-keyword=histamine release kn-keyword=histamine release en-keyword=alkaline-earth metal ions kn-keyword=alkaline-earth metal ions en-keyword=substance P kn-keyword=substance P END start-ver=1.4 cd-journal=joma no-vol=120 cd-vols= no-issue=3 article-no= start-page=271 end-page=277 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20081201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats kn-title=ラット中脳動脈閉塞・再灌流モデルにおける抗 HMGB1 単クローン抗体の治療効果 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name=劉克約 kn-aut-sei=劉 kn-aut-mei=克約 aut-affil-num=1 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name=森秀治 kn-aut-sei=森 kn-aut-mei=秀治 aut-affil-num=2 ORCID= en-aut-name=TakahashiHideo en-aut-sei=Takahashi en-aut-mei=Hideo kn-aut-name=高橋英夫 kn-aut-sei=高橋 kn-aut-mei=英夫 aut-affil-num=3 ORCID= en-aut-name=TomonoYasuko en-aut-sei=Tomono en-aut-mei=Yasuko kn-aut-name=友野靖子 kn-aut-sei=友野 kn-aut-mei=靖子 aut-affil-num=4 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name=和気秀徳 kn-aut-sei=和気 kn-aut-mei=秀徳 aut-affil-num=5 ORCID= en-aut-name=KankeToru en-aut-sei=Kanke en-aut-mei=Toru kn-aut-name=菅家徹 kn-aut-sei=菅家 kn-aut-mei=徹 aut-affil-num=6 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name=佐藤康晴 kn-aut-sei=佐藤 kn-aut-mei=康晴 aut-affil-num=7 ORCID= en-aut-name=HiragaNorihito en-aut-sei=Hiraga en-aut-mei=Norihito kn-aut-name=平賀憲人 kn-aut-sei=平賀 kn-aut-mei=憲人 aut-affil-num=8 ORCID= en-aut-name=AdachiNaoto en-aut-sei=Adachi en-aut-mei=Naoto kn-aut-name=足立尚登 kn-aut-sei=足立 kn-aut-mei=尚登 aut-affil-num=9 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name=吉野正 kn-aut-sei=吉野 kn-aut-mei=正 aut-affil-num=10 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name=西堀正洋 kn-aut-sei=西堀 kn-aut-mei=正洋 aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 薬理学 affil-num=2 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 薬理学 affil-num=3 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 薬理学 affil-num=4 en-affil= kn-affil=重井医学研究所 affil-num=5 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 薬理学 affil-num=6 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 薬理学 affil-num=7 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 病理学(腫瘍病理) affil-num=8 en-affil= kn-affil=愛媛大学大学院 麻酔蘇生学 affil-num=9 en-affil= kn-affil=愛媛大学大学院 麻酔蘇生学 affil-num=10 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 病理学(腫瘍病理) affil-num=11 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 薬理学 en-keyword=抗体医薬 kn-keyword=抗体医薬 en-keyword=炎症 kn-keyword=炎症 en-keyword=HMGB1 kn-keyword=HMGB1 en-keyword=脳梗塞 kn-keyword=脳梗塞 en-keyword=血液脳関門 kn-keyword=血液脳関門 END start-ver=1.4 cd-journal=joma no-vol=113 cd-vols= no-issue=2 article-no= start-page=179 end-page=180 dt-received= dt-revised= dt-accepted= dt-pub-year=2001 dt-pub=20010831 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=貯蔵型と誘導性ヒスタミン en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=西堀正洋 kn-aut-sei=西堀 kn-aut-mei=正洋 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院医歯学総合研究科 機能制御学講座薬理学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1985 dt-pub=19851231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=異なった哺乳動物種の脳内ヒスタミン代謝回転:神経性ヒスタミン半減期の暗示 kn-title=Histamine turnover in the brain of different mammalian species: Implications for neuronal histamine half-life en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=西堀正洋 kn-aut-sei=西堀 kn-aut-mei=正洋 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END