start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue= article-no= start-page=12138 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201607 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain en-subtitle= kn-subtitle= en-abstract= kn-abstract= Rice is a major source of calories and mineral nutrients for over half the world's human population. However, little is known in rice about the genetic basis of variation in accumulation of copper (Cu), an essential but potentially toxic nutrient. Here we identify OsHMA4 as the likely causal gene of a quantitative trait locus controlling Cu accumulation in rice grain. We provide evidence that OsHMA4 functions to sequester Cu into root vacuoles, limiting Cu accumulation in the grain. The difference in grain Cu accumulation is most likely attributed to a single amino acid substitution that leads to different OsHMA4 transport activity. The allele associated with low grain Cu was found in 67 of the 1,367 rice accessions investigated. Identification of natural allelic variation in OsHMA4 may facilitate the development of rice varieties with grain Cu concentrations tuned to both the concentration of Cu in the soil and dietary needs. en-copyright= kn-copyright= en-aut-name=HuangXin-Yuan en-aut-sei=Huang en-aut-mei=Xin-Yuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DengFenglin en-aut-sei=Deng en-aut-mei=Fenglin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PinsonShannon R.M. en-aut-sei=Pinson en-aut-mei=Shannon R.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Fujii-KashinoMiho en-aut-sei=Fujii-Kashino en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DankuJohn en-aut-sei=Danku en-aut-mei=John kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DouglasAlex en-aut-sei=Douglas en-aut-mei=Alex kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GuerinotMary Lou en-aut-sei=Guerinot en-aut-mei=Mary Lou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SaltDavid E. en-aut-sei=Salt en-aut-mei=David E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Institute of Biological and Environmental Sciences, University of Aberdeen kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil= USDA-ARS Dale Bumpers National Rice Research Center kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Biological and Environmental Sciences, University of Aberdeen kn-affil= affil-num=7 en-affil= kn-affil= affil-num=8 en-affil=Department of Biological Sciences, Dartmouth College kn-affil= affil-num=9 en-affil=Institute of Biological and Environmental Sciences, University of Aberdeen kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Genetic variation kn-keyword=Genetic variation en-keyword=Natural variation in plants kn-keyword=Natural variation in plants en-keyword=Quantitative trait kn-keyword=Quantitative trait en-keyword=Rice kn-keyword=Rice END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ascorbate is an antioxidant and coenzyme for various metabolic reactions in vivo. In plant chloroplasts, high ascorbate levels are required to overcome photoinhibition caused by strong light. However, ascorbate is synthesized in the mitochondria and the molecular mechanisms underlying ascorbate transport into chloroplasts are unknown. Here we show that AtPHT4;4, a member of the phosphate transporter 4 family of Arabidopsis thaliana, functions as an ascorbate transporter. In vitro analysis shows that proteoliposomes containing the purified AtPHT4;4 protein exhibit membrane potential- and Cl-dependent ascorbate uptake. The AtPHT4;4 protein is abundantly expressed in the chloroplast envelope membrane. Knockout of AtPHT4;4 results in decreased levels of the reduced form of ascorbate in the leaves and the heat dissipation process of excessive energy during photosynthesis is compromised. Taken together, these observations indicate that the AtPHT4;4 protein is an ascorbate transporter at the chloroplast envelope membrane, which may be required for tolerance to strong light stress. en-copyright= kn-copyright= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuromoriTakashi en-aut-sei=Kuromori en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeuchiYu en-aut-sei=Takeuchi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoshoKengo en-aut-sei=Yokosho en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimazawaAtsushi en-aut-sei=Shimazawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugimotoEriko en-aut-sei=Sugimoto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OmoteHiroshi en-aut-sei=Omote en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShinozakiKazuo en-aut-sei=Shinozaki en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MoriyamaYoshinori en-aut-sei=Moriyama en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Advanced Science Research Center, Okayama University affil-num=2 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=3 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=5 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=6 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=8 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=10 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=11 en-affil= kn-affil=Advanced Science Research Center, Okayama University END start-ver=1.4 cd-journal=joma no-vol=269 cd-vols= no-issue= article-no= start-page=115934 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201109 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cadmium transfer in contaminated soil-rice systems: Insights from solid-state speciation analysis and stable isotope fractionation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Initial Cadmium (Cd) isotope fractionation studies in cereals ascribed the retention of Cd and its light isotopes to the binding of Cd to sulfur (S). To better understand the relation of Cd binding to S and Cd isotope fractionation in soils and plants, we combined isotope and XAS speciation analyses in soil-rice systems that were rich in Cd and S. The systems included distinct water management (flooded vs. non-flooded) and rice accessions with (excluder) and without (non-excluder) functional membrane transporter OsHMA3 that transports Cd into root vacuoles. Initially, 13% of Cd in the soil was bound to S. Through soil flooding, the proportion of Cd bound to S increased to 100%. Soil flooding enriched the rice plants towards heavy isotopes (δ114/110Cd = −0.37 to −0.39%) compared to the plants that grew on non-flooded soils (δ114/110Cd = −0.45 to −0.56%) suggesting that preferentially light Cd isotopes precipitated into Cd sulfides. Isotope compositions in CaCl2 root extracts indicated that the root surface contributed to the isotope shift between soil and plant during soil flooding. In rice roots, Cd was fully bound to S in all treatments. The roots in the excluder rice strongly retained Cd and its lights isotopes while heavy isotopes were transported to the shoots (Δ114/110Cdshoot-root 0.16–0.19‰). The non-excluder rice accumulated Cd in shoots and the apparent difference in isotope composition between roots and shoots was smaller than that of the excluder rice (Δ114/110Cdshoot-root −0.02 to 0.08‰). We ascribe the retention of light Cd isotopes in the roots of the excluder rice to the membrane transport of Cd by OsHMA3 and/or chelating Cd–S complexes in the vacuole. Cd–S was the major binding form in flooded soils and rice roots and partly contributed to the immobilization of Cd and its light isotopes in soil-rice systems. en-copyright= kn-copyright= en-aut-name=WiggenhauserMatthias en-aut-sei=Wiggenhauser en-aut-mei=Matthias kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AucourAnne-Marie en-aut-sei=Aucour en-aut-mei=Anne-Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BureauSarah en-aut-sei=Bureau en-aut-mei=Sarah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=CampilloSylvain en-aut-sei=Campillo en-aut-mei=Sylvain kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TeloukPhilippe en-aut-sei=Telouk en-aut-mei=Philippe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RomaniMarco en-aut-sei=Romani en-aut-mei=Marco kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LandrotGautier en-aut-sei=Landrot en-aut-mei=Gautier kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SarretGéraldine en-aut-sei=Sarret en-aut-mei=Géraldine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Univ. Grenoble Alpes kn-affil= affil-num=2 en-affil=Université de Lyon kn-affil= affil-num=3 en-affil=Univ. Grenoble Alpes kn-affil= affil-num=4 en-affil=Univ. Grenoble Alpes kn-affil= affil-num=5 en-affil=Université de Lyon kn-affil= affil-num=6 en-affil=Centro Ricerche sul Riso, Ente Nazionale Risi, Strada per Ceretto kn-affil= affil-num=7 en-affil=nstitute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Synchrotron SOLEIL, L’Ormes des Merisiers kn-affil= affil-num=9 en-affil=Univ. Grenoble Alpes kn-affil= en-keyword=Cadmium kn-keyword=Cadmium en-keyword=Rice kn-keyword=Rice en-keyword=Isotopes kn-keyword=Isotopes en-keyword=Speciation kn-keyword=Speciation en-keyword=Membrane transporter kn-keyword=Membrane transporter en-keyword=Vacuole kn-keyword=Vacuole en-keyword=Sulfur kn-keyword=Sulfur en-keyword=Redox kn-keyword=Redox END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue= article-no= start-page=103297 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Germplasm evaluation for crop improvement: Analysis of grain quality and cadmium accumulation in barley en-subtitle= kn-subtitle= en-abstract=Evaluating genetic variation in barley (Hordeum vulgare) germplasm, combined with genome-wide genotyping, is vital for identifying genes controlling important grain-quality traits. For example, in addition... kn-abstract=Evaluating genetic variation in barley (Hordeum vulgare) germplasm, combined with genome-wide genotyping, is vital for identifying genes controlling important grain-quality traits. For example, in addition to traditional grain quality properties such as starch and protein contents, grain safety parameters such as heavy metal content, are important in the use of barley for human food and animal feed. A number of genes affecting grain quality have been identified by map-based cloning strategies and functionally analyzed by genetic transformation experiments. Moreover, germplasm evaluation yielded information that enabled the introgression of a key gene controlling grain cadmium accumulation into an elite barley cultivar, reducing the content of this heavy metal in grain. Genotyping of molecular markers and resequencing of germplasm accessions may provide information about how grain quality–related loci evolved and how the current allelic diversity was established. In this review, we describe germplasm resources for barley grain quality–related traits and the methods used to analyze the functions of genes controlling these traits, illustrating cadmium accumulation as an example. We also discuss future directions for the efficient identification of grain quality–related genes. en-copyright= kn-copyright= en-aut-name=SatoKazuhiro en-aut-sei=Sato en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakedaKazuyoshi en-aut-sei=Takeda en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Barley kn-keyword=Barley en-keyword=Core collection kn-keyword=Core collection en-keyword= Genome analysis kn-keyword= Genome analysis en-keyword=Genome-wide association study kn-keyword=Genome-wide association study END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=6236 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211029 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural basis for high selectivity of a rice silicon channel Lsi1 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Silicon (Si), the most abundant mineral element in the earth’s crust, is taken up by plant roots in the form of silicic acid through Low silicon rice 1 (Lsi1). Lsi1 belongs to the Nodulin 26-like intrinsic protein subfamily in aquaporin and shows high selectivity for silicic acid. To uncover the structural basis for this high selectivity, here we show the crystal structure of the rice Lsi1 at a resolution of 1.8 Å. The structure reveals transmembrane helical orientations different from other aquaporins, characterized by a unique, widely opened, and hydrophilic selectivity filter (SF) composed of five residues. Our structural, functional, and theoretical investigations provide a solid structural basis for the Si uptake mechanism in plants, which will contribute to secure and sustainable rice production by manipulating Lsi1 selectivity for different metalloids. en-copyright= kn-copyright= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Mitani-UenoNamiki en-aut-sei=Mitani-Ueno en-aut-mei=Namiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaitoKeisuke en-aut-sei=Saito en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsukiKengo en-aut-sei=Matsuki en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HuangSheng en-aut-sei=Huang en-aut-mei=Sheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YangLingli en-aut-sei=Yang en-aut-mei=Lingli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=10 article-no= start-page=2717 end-page=2725 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=In order to respond to fluctuating zinc (Zn) in the environment, plants must have a system to control Zn homeostasis. However, how plants maintain an appropriate level of Zn during their growth and development is still poorly understood. In this study, we found that OsHMA3, a tonoplast-localized transporter for Zn/Cd, plays an important role in Zn homeostasis in rice. Accessions with the functional allele of OsHMA3 showed greater tolerance to high Zn than those with the non-functional allele based on root elongation test. A 67Zn-labeling experiment showed that accessions with loss of function of OsHMA3 had lower Zn accumulation in the roots but similar concentrations in the shoots compared with functional OsHMA3 accessions. When exposed to Zn-free growing medium, the concentration in the root cell sap was rapidly decreased in accessions with functional OsHMA3, but less dramatic changes were observed in non-functional accessions. A mobility experiment showed that more Zn in the roots was translocated to the shoots in accessions with functional OsHMA3. Higher expression levels of OsZIP4, OsZIP5, OsZIP8, and OsZIP10 were found in the roots of accessions with functional OsHMA3 in response to Zn deficiency. Taken together, our results indicate that OsHMA3 plays an important role in rice roots in both Zn detoxification and storage by sequestration into the vacuoles, depending on Zn concentration in the environment. en-copyright= kn-copyright= en-aut-name=CaiHongmei en-aut-sei=Cai en-aut-mei=Hongmei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HuangSheng en-aut-sei=Huang en-aut-mei=Sheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=CheJing en-aut-sei=Che en-aut-mei=Jing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=OsHMA3 kn-keyword=OsHMA3 en-keyword=vacuolar sequestration kn-keyword=vacuolar sequestration en-keyword=ZIP transporter kn-keyword=ZIP transporter en-keyword=Zn distribution kn-keyword=Zn distribution en-keyword= Zn root-to-shoot mobility kn-keyword= Zn root-to-shoot mobility en-keyword=Zn tolerance kn-keyword=Zn tolerance END