start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=5082 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240614 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Strain-induced long-range charge-density wave order in the optimally doped Bi2Sr2-x Lax CuO6 superconductor en-subtitle= kn-subtitle= en-abstract= kn-abstract=The mechanism of high-temperature superconductivity in copper oxides (cuprate) remains elusive, with the pseudogap phase considered a potential factor. Recent attention has focused on a long-range symmetry-broken charge-density wave (CDW) order in the underdoped regime, induced by strong magnetic fields. Here by Cu-63,Cu-65-nuclear magnetic resonance, we report the discovery of a long-range CDW order in the optimally doped Bi2Sr2-xLaxCuO6 superconductor, induced by in-plane strain exceeding divided by epsilon divided by = 0.15 %, which deliberately breaks the crystal symmetry of the CuO2 plane. We find that compressive/tensile strains reduce superconductivity but enhance CDW, leaving superconductivity to coexist with CDW. The findings show that a long-range CDW order is an underlying hidden order in the pseudogap state, not limited to the underdoped regime, becoming apparent under strain. Our result sheds light on the intertwining of various orders in the cuprates. en-copyright= kn-copyright= en-aut-name=KawasakiShinji en-aut-sei=Kawasaki en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsukudaNao en-aut-sei=Tsukuda en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LinChengtian en-aut-sei=Lin en-aut-mei=Chengtian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhengGuo-Qing en-aut-sei=Zheng en-aut-mei=Guo-Qing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Max-Planck-Institut fur Festkorperforschung kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= END