start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=2 article-no= start-page=594 end-page=603 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Continuous vagus nerve stimulation exerts beneficial effects on rats with experimentally induced Parkinson's disease: Evidence suggesting involvement of a vagal afferent pathway en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Vagus nerve stimulation (VNS) exerts neuroprotective and anti-inflammatory effects in preclinical models of central nervous system disorders, including Parkinson's disease (PD). VNS setting applied for experimental models is limited into single-time or intermittent short-duration stimulation. We developed a VNS device which could deliver continuous stimulation for rats. To date, the effects of vagal afferent-or efferent-selective stimulation on PD using continuous electrical stimulation remains to be determined.
Objective: To investigate the effects of continuous and selective stimulation of vagal afferent or efferent fiber on Parkinsonian rats.
Methods: Rats were divided into 5 group: intact VNS, afferent VNS (left VNS in the presence of left caudal vagotomy), efferent VNS (left VNS in the presence of left rostral vagotomy), sham, vagotomy. Rats un-derwent the implantation of cuff-electrode on left vagus nerve and 6-hydroxydopamine administration into the left striatum simultaneously. Electrical stimulation was delivered just after 6-OHDA adminis-tration and continued for 14 days. In afferent VNS and efferent VNS group, the vagus nerve was dissected at distal or proximal portion of cuff-electrode to imitate the selective stimulation of afferent or efferent vagal fiber respectively.
Results: Intact VNS and afferent VNS reduced the behavioral impairments in cylinder test and methamphetamine-induced rotation test, which were accompanied by reduced inflammatory glial cells in substantia nigra with the increased density of the rate limiting enzyme in locus coeruleus. In contrast, efferent VNS did not exert any therapeutic effects.
Conclusion: Continuous VNS promoted neuroprotective and anti-inflammatory effect in experimental PD, highlighting the crucial role of the afferent vagal pathway in mediating these therapeutic outcomes. en-copyright= kn-copyright= en-aut-name=HosomotoKakeru en-aut-sei=Hosomoto en-aut-mei=Kakeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KinIttetsu en-aut-sei=Kin en-aut-mei=Ittetsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuwaharaKen en-aut-sei=Kuwahara en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawauchiSatoshi en-aut-sei=Kawauchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkazakiYosuke en-aut-sei=Okazaki en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YabunoSatoru en-aut-sei=Yabuno en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugaharaChiaki en-aut-sei=Sugahara en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaiKoji en-aut-sei=Kawai en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NagaseTakayuki en-aut-sei=Nagase en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TanimotoShun en-aut-sei=Tanimoto en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=BorlonganCesario V. en-aut-sei=Borlongan en-aut-mei=Cesario V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine kn-affil= affil-num=16 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Parkinson's disease kn-keyword=Parkinson's disease en-keyword=Vagus nerve stimulation kn-keyword=Vagus nerve stimulation en-keyword=Afferent pathway kn-keyword=Afferent pathway en-keyword=Locus coeruleus kn-keyword=Locus coeruleus en-keyword=Dopamine kn-keyword=Dopamine en-keyword=Noradrenaline kn-keyword=Noradrenaline END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220824 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Transplantation of modified human bone marrow-derived stromal cells affords therapeutic effects on cerebral ischemia in rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims SB623 cells are human bone marrow stromal cells transfected with Notch1 intracellular domain. In this study, we examined potential regenerative mechanisms underlying stereotaxic transplantation of SB623 cells in rats with experimental acute ischemic stroke. Methods We prepared control group, empty capsule (EC) group, SB623 cell group (SB623), and encapsulated SB623 cell (eSB623) group. Transient middle cerebral artery occlusion (MCAO) was performed on day 0, and 24 h after MCAO, stroke rats received transplantation into the envisioned ischemic penumbra. Modified neurological severity score (mNSS) was evaluated, and histological evaluations were performed. Results In the mNSS, SB623 and eSB623 groups showed significant improvement compared to the other groups. Histological analysis revealed that the infarction area in SB623 and eSB623 groups was reduced. In the eSB623 group, robust cell viability and neurogenesis were detected in the subventricular zone that increased significantly compared to all other groups. Conclusion SB623 cells with or without encapsulation showed therapeutic effects on ischemic stroke. Encapsulated SB623 cells showed enhanced neurogenesis and increased viability inside the capsules. This study reveals the mechanism of secretory function of transplanted SB623 cells, but not cell-cell interaction as primarily mediating the cells' functional benefits in ischemic stroke. en-copyright= kn-copyright= en-aut-name=KawauchiSatoshi en-aut-sei=Kawauchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KinKyohei en-aut-sei=Kin en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YabunoSatoru en-aut-sei=Yabuno en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugaharaChiaki en-aut-sei=Sugahara en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagaseTakayuki en-aut-sei=Nagase en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HosomotoKakeru en-aut-sei=Hosomoto en-aut-mei=Kakeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkazakiYosuke en-aut-sei=Okazaki en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TomitaYousuke en-aut-sei=Tomita en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UmakoshiMichiari en-aut-sei=Umakoshi en-aut-mei=Michiari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=BorlonganCesario, V en-aut-sei=Borlongan en-aut-mei=Cesario, V kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurosurgery, Osaka Medical College kn-affil= affil-num=13 en-affil=Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida kn-affil= affil-num=14 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=bone marrow stromal cells kn-keyword=bone marrow stromal cells en-keyword=cerebral infarction kn-keyword=cerebral infarction en-keyword=encapsulated cell transplantation kn-keyword=encapsulated cell transplantation en-keyword=middle cerebral artery occlusion model kn-keyword=middle cerebral artery occlusion model en-keyword=neurogenesis kn-keyword=neurogenesis END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=10 article-no= start-page=607 end-page=618 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spinal Surgery after Bilateral Subthalamic Stimulation for Patients with Parkinson's Disease: A Retrospective Outcome Analysis of Pain and Functional Control en-subtitle= kn-subtitle= en-abstract= kn-abstract=Parkinson's disease (PD) patients often suffer from spinal diseases requiring surgeries, although the risk of complications is high. There are few reports on outcomes after spinal surgery for PD patients with deep brain stimulation (DBS). The objective of this study was to explore the data on spinal surgery for PD patients with precedent DBS. We evaluated 24 consecutive PD patients with 28 spinal surgeries from 2007 to 2017 who received at least a 2-year follow-up. The characteristics and outcomes of PD patients after spinal surgery were compared to those of 156 non-PD patients with degenerative spinal diseases treated in 2013-2017. Then, the characteristics, outcomes, and spinal alignment of PD patients receiving DBS were analyzed in degenerative spinal/ lumbar diseases. The mean age at the time of spinal surgery was 68 years. The Hoehn and Yahr score regarding PD was stage 1 for 8 patients, stage 2 for 2 patients, stage 3 for 8 patients, stage 4 for 10 patients, and stage 5 for 0 patient. The median preoperative L-DOPA equivalent daily dose was 410 mg. Thirteen patients (46%) received precedent subthalamic nucleus (STN) DBS. Lumbar lesions with pain were common, and operation and anesthesia times were long in PD patients. Pain and functional improvement of PD patients persisted for 2 years after surgery with a higher complication rate than for non-PD patients. PD patients with STN DBS maintained better lumbar lordosis for 2 years after spinal surgery. STN DBS significantly maintained spinal alignment with subsequent pain and functional amelioration 2 years after surgery. The outcomes of spinal surgery for PD patients might be favorably affected by thorough treatment for PD including DBS. en-copyright= kn-copyright= en-aut-name=UmakoshiMichiari en-aut-sei=Umakoshi en-aut-mei=Michiari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorimotoJun en-aut-sei=Morimoto en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MuraiSatoshi en-aut-sei=Murai en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KinKyohei en-aut-sei=Kin en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyoshiYasuyuki en-aut-sei=Miyoshi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurosurgery, Kawasaki Medical School General Medical Center kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=abnormal posture kn-keyword=abnormal posture en-keyword=lumbago kn-keyword=lumbago en-keyword=neuromodulation kn-keyword=neuromodulation en-keyword=pain kn-keyword=pain en-keyword=spinal alignment kn-keyword=spinal alignment END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=7 article-no= start-page=789 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vagus Nerve Stimulation with Mild Stimulation Intensity Exerts Anti-Inflammatory and Neuroprotective Effects in Parkinson's Disease Model Rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The major surgical treatment for Parkinson's disease (PD) is deep brain stimulation (DBS), but a less invasive treatment is desired. Vagus nerve stimulation (VNS) is a relatively safe treatment without cerebral invasiveness. In this study, we developed a wireless controllable electrical stimulator to examine the efficacy of VNS on PD model rats. Methods: Adult female Sprague-Dawley rats underwent placement of a cuff-type electrode and stimulator on the vagus nerve. Following which, 6-hydroxydopamine (6-OHDA) was administered into the left striatum to prepare a PD model. VNS was started immediately after 6-OHDA administration and continued for 14 days. We evaluated the therapeutic effects of VNS with behavioral and immunohistochemical outcome assays under different stimulation intensity (0.1, 0.25, 0.5 and 1 mA). Results: VNS with 0.25-0.5 mA intensity remarkably improved behavioral impairment, preserved dopamine neurons, reduced inflammatory glial cells, and increased noradrenergic neurons. On the other hand, VNS with 0.1 mA and 1 mA intensity did not display significant therapeutic efficacy. Conclusions: VNS with 0.25-0.5 mA intensity has anti-inflammatory and neuroprotective effects on PD model rats induced by 6-OHDA administration. In addition, we were able to confirm the practicality and effectiveness of the new experimental device. en-copyright= kn-copyright= en-aut-name=KinIttetsu en-aut-sei=Kin en-aut-mei=Ittetsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AgariTakashi en-aut-sei=Agari en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkazakiMihoko en-aut-sei=Okazaki en-aut-mei=Mihoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HosomotoKakeru en-aut-sei=Hosomoto en-aut-mei=Kakeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkazakiYosuke en-aut-sei=Okazaki en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YabunoSatoru en-aut-sei=Yabuno en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawauchiSatoshi en-aut-sei=Kawauchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KuwaharaKen en-aut-sei=Kuwahara en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MorimotoJun en-aut-sei=Morimoto en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KinKyohei en-aut-sei=Kin en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=UmakoshiMichiari en-aut-sei=Umakoshi en-aut-mei=Michiari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TomitaYousuke en-aut-sei=Tomita en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TajiriNaoki en-aut-sei=Tajiri en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=BorlonganCesario, V en-aut-sei=Borlongan en-aut-mei=Cesario, V kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=14 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=15 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= affil-num=16 en-affil=Department of Neurophysiology and Brain Science and Medical School, Graduate School of Medical Sciences and Medical School, Nagoya City University kn-affil= affil-num=17 en-affil=Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd. kn-affil= affil-num=18 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine kn-affil= en-keyword=anti-inflammation kn-keyword=anti-inflammation en-keyword=less invasive therapy kn-keyword=less invasive therapy en-keyword=new experimental device kn-keyword=new experimental device en-keyword=Parkinson's disease kn-keyword=Parkinson's disease en-keyword=vagus nerve stimulation kn-keyword=vagus nerve stimulation END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=2 article-no= start-page=243 end-page=248 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pyogenic Ventriculitis After Anterior Skull Base Surgery Treated With Endoscopic Ventricular Irrigation And Reconstruction Using a Vascularized Flap en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ventriculitis is a rare, serious complication of neurosurgery. A 59-year-old man who had undergone a craniotomy for a paranasal adenocarcinoma, developed a right frontal cystic lesion. We performed a bifrontal craniotomy to remove the lesion. The dura was repaired with non-vascularized free fascia lata in watertight fashion. Ventriculitis occurred 3 days postoperatively. Ventricular drainage, craniectomy, and endoscopic irrigation were undertaken to remove an abscess. The dura and the resection cavity were reconstructed using a vascularized anterolateral thigh adipofascial flap. His symptoms disappeared, indicating that endoscopic irrigation and reconstruction can effectively address ventriculitis even in patients in critical clinical condition. en-copyright= kn-copyright= en-aut-name=TomitaYusuke en-aut-sei=Tomita en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimazuYosuke en-aut-sei=Shimazu en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawakamiMasato en-aut-sei=Kawakami en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsumotoHiroshi en-aut-sei=Matsumoto en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiiKentaro en-aut-sei=Fujii en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SurugaYasuki en-aut-sei=Suruga en-aut-mei=Yasuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtaTomoyuki en-aut-sei=Ota en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KimataYoshihiro en-aut-sei=Kimata en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KurozumiKazuhiko en-aut-sei=Kurozumi en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=ventriculitis kn-keyword=ventriculitis en-keyword=surgical site infection kn-keyword=surgical site infection en-keyword=intraventricular antimicrobial therapy kn-keyword=intraventricular antimicrobial therapy en-keyword=anterior skull base surgery kn-keyword=anterior skull base surgery END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=3507 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200226 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Precise MEP monitoring with a reduced interval is safe and useful for detecting permissive duration for temporary clipping en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although temporary clipping of the parent artery is an indispensable technique in clipping surgery for intracranial aneurysms, the permissive duration of temporary clipping is still not well known. The aim of this study is to confirm the safety of precise motor evoked potential (MEP) monitoring and to estimate the permissive duration of temporary clipping for middle cerebral artery (MCA) aneurysm based on precise MEP monitoring results. Under precise MEP monitoring via direct cortical stimulation every 30 seconds to 1 minute, surgeons released a temporary clip and waited for MEP amplitude to recover following severe (>50%) reduction of MEP amplitude during temporary clipping. Precise MEP monitoring was safely performed. Twenty-eight instances of temporary clipping were performed in 42 MCA aneurysm clipping surgeries. Because precise MEP monitoring could be used to determine when to release a temporary clip even with a severe reduction in MEP amplitude due to lengthy temporary clipping, no patients experienced permanent postoperative hemiparesis. Based on logistic regression analysis, if a temporary clip is applied for 312 seconds or more, there is a higher probability of a severe reduction in MEP amplitude. We should therefore release temporary clips after 5 minutes in order to avoid permanent postoperative hemiparesis. en-copyright= kn-copyright= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HishikawaTomohito en-aut-sei=Hishikawa en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiramatsuMasafumi en-aut-sei=Hiramatsu en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KurozumiKazuhiko en-aut-sei=Kurozumi en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=epartment of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=epartment of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Stroke kn-keyword=Stroke END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=164 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200616 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in Experimental Parkinson's Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Spinal cord stimulation (SCS) exerts neuroprotective effects in animal models of Parkinsonfs disease (PD). Conventional stimulation techniques entail limited stimulation time and restricted movement of animals, warranting the need for optimizing the SCS regimen to address the progressive nature of the disease and to improve its clinical translation to PD patients.
Objective: Recognizing the limitations of conventional stimulation, we now investigated the effects of continuous SCS in freely moving parkinsonian rats.
Methods: We developed a small device that could deliver continuous SCS. At the start of the experiment, thirty female Sprague-Dawley rats received the dopamine (DA)-depleting neurotoxin, 6-hydroxydopamine, into the right striatum. The SCS device was fixed below the shoulder area of the back of the animal, and a line from this device was passed under the skin to an electrode that was then implanted epidurally over the dorsal column. The rats were divided into three groups: control, 8-h stimulation, and 24-h stimulation, and behaviorally tested then euthanized for immunohistochemical analysis.
Results: The 8- and 24-h stimulation groups displayed significant behavioral improvement compared to the control group. Both SCS-stimulated groups exhibited significantly preserved tyrosine hydroxylase (TH)-positive fibers and neurons in the striatum and substantia nigra pars compacta (SNc), respectively, compared to the control group. Notably, the 24-h stimulation group showed significantly pronounced preservation of the striatal TH-positive fibers compared to the 8-h stimulation group. Moreover, the 24-h group demonstrated significantly reduced number of microglia in the striatum and SNc and increased laminin-positive area of the cerebral cortex compared to the control group.
Conclusions: This study demonstrated the behavioral and histological benefits of continuous SCS in a time-dependent manner in freely moving PD animals, possibly mediated by anti-inflammatory and angiogenic mechanisms. en-copyright= kn-copyright= en-aut-name=KuwaharaKen en-aut-sei=Kuwahara en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkazakiYosuke en-aut-sei=Okazaki en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HosomotoKakeru en-aut-sei=Hosomoto en-aut-mei=Kakeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KinIttetsu en-aut-sei=Kin en-aut-mei=Ittetsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkazakiMihoko en-aut-sei=Okazaki en-aut-mei=Mihoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YabunoSatoru en-aut-sei=Yabuno en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawauchiSatoshi en-aut-sei=Kawauchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TomitaYousuke en-aut-sei=Tomita en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UmakoshiMichiari en-aut-sei=Umakoshi en-aut-mei=Michiari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KinKyohei en-aut-sei=Kin en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MorimotoJun en-aut-sei=Morimoto en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=LeeJea-Young en-aut-sei=Lee en-aut-mei=Jea-Young kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TajiriNaoki en-aut-sei=Tajiri en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=BorlonganCesar V. en-aut-sei=Borlongan en-aut-mei=Cesar V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida kn-affil= affil-num=16 en-affil=Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University kn-affil= affil-num=17 en-affil=Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida kn-affil= affil-num=18 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=electrical stimulation kn-keyword=electrical stimulation en-keyword=neuroinflammation kn-keyword=neuroinflammation en-keyword=neuromodulation kn-keyword=neuromodulation en-keyword=neuroprotection kn-keyword=neuroprotection en-keyword=6-hydroxydopamine kn-keyword=6-hydroxydopamine END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=4 article-no= start-page=e2797 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202004 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Utilization of a Simple Surgical Guide for Multidirectional Cranial Distraction Osteogenesis in Craniosynostosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Multidirectional cranial distraction osteogenesis (MCDO) can achieve a desired shape for deformities of the cranium. In the past, visual estimation was used to reflect on the actual skull, but it was time-consuming and inaccurate. Here we demonstrate an effective osteotomy navigation method using surgical guides made from a dental impression silicone.
Methods: Seven patients who underwent MCDO between August 2013 and September 2016 were included in the study. Five cases involved utilization of the surgical guide for osteotomy. Three-dimensional (3D) printed cranium models were made using 3D computed tomography (3DCT) imaging data and dental impression silicone sheets were molded using the printed cranium models. These surgical guides were sterilized and used for intraoperative osteotomy design. Vertical distance between nasion/porion and osteotomy lines were calculated using 3D printed cranial models and postoperative 3DCT images to assess reproducibility.
Results: The average surgical time/design time was 535/37.0 minutes for the nonsurgical guide group and 486.8/11.8 minutes for the surgical guide group (SG). Treatment using the surgical guide was significantly shorter in terms of operative time and time required for design. For the vertical distance comparison, the average distance was 5.7mm (SD = 0.3) in the non-SG and 2.5mm (SD = 0.44) in the SG, and SG was more accurate.
Conclusions: Shorter operative times and higher reproducibility rates could be achieved by using the proposed surgical guide, which is accurate, low-cost, and easily accessible. en-copyright= kn-copyright= en-aut-name=MatsuiChihiro en-aut-sei=Matsui en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TokuyamaEijiro en-aut-sei=Tokuyama en-aut-mei=Eijiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SenooTakaya en-aut-sei=Senoo en-aut-mei=Takaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamadaKiyoshi en-aut-sei=Yamada en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakeuchiTetsuo en-aut-sei=Takeuchi en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimataYoshihiro en-aut-sei=Kimata en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Plastic and Reconstructive Surgery,Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Plastic and Reconstructive Surgery,Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Plastic and Reconstructive Surgery,Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Plastic and Reconstructive Surgery,Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Plastic and Reconstructive Surgery,Okayama University Hospital kn-affil= END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=21 article-no= start-page=E5402 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191030 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Animal Models for Parkinson's Disease Research: Trends in the 2000s en-subtitle= kn-subtitle= en-abstract= kn-abstract=Parkinson's disease (PD) is a chronic and progressive movement disorder and the second most common neurodegenerative disease. Although many studies have been conducted, there is an unmet clinical need to develop new treatments because, currently, only symptomatic therapies are available. To achieve this goal, clarification of the pathology is required. Attempts have been made to emulate human PD and various animal models have been developed over the decades. Neurotoxin models have been commonly used for PD research. Recently, advances in transgenic technology have enabled the development of genetic models that help to identify new approaches in PD research. However, PD animal model trends have not been investigated. Revealing the trends for PD research will be valuable for increasing our understanding of the positive and negative aspects of each model. In this article, we clarified the trends for animal models that were used to research PD in the 2000s, and we discussed each model based on these trends. en-copyright= kn-copyright= en-aut-name=KinKyohei en-aut-sei=Kin en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil= Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil= Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil= Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=animal model kn-keyword=animal model en-keyword=alpha-synuclein kn-keyword=alpha-synuclein en-keyword=DJ-1 kn-keyword=DJ-1 en-keyword=neurotoxin kn-keyword=neurotoxin en-keyword=Parkin kn-keyword=Parkin en-keyword=Parkinson's disease kn-keyword=Parkinson's disease en-keyword=pesticide kn-keyword=pesticide en-keyword=PINK1 kn-keyword=PINK1 en-keyword=1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine kn-keyword=1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine en-keyword=6-hydroxydopamine kn-keyword=6-hydroxydopamine END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=4 article-no= start-page=415 end-page=420 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cognitive functions in Parkinson's disease: Relation to disease severity and hallucination en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: We wished to relate severity of Parkinson's disease (PD) with cognitive function in relation to cerebral blood flow (CBF). Methods: Eighty-one consecutive PD patients were enrolled in this study. We used Mini-Mental State Examination (MMSE) and Wechsler Adult Intelligence Scale-Third edition (WAIS-III) to evaluate cognitive functions, and three-dimensional stereotactic ROI template (3DSRT) and Statistical Parametric Mapping (SPM) 8 to evaluate single photon emission CT (SPECT) recordings of regional CBF. Results: The mean MMSE score of PD patients was 27.4 +/- 2.4. The scores of most patients were higher than 23/30. On the other hand, the mean Full-scale IQ of PD patients was 88.4 +/- 17.3 in WAIS-III, which was lower than that of normal controls. In particular, visuospatial function score of most patients was lower. There was significant correlation between cognitive scores and Hoehn & Yahr stage and hallucinatory episodes. PD Patients with stage III and IV showed significant deterioration in cognitive functions compared to stage II patients. Analysis of CBF revealed relative reductions in perfusion in the cerebral cortex relative to that in normal control. SPM 8 showed that cognitive functions in PD patients were positively correlated with rCBF in the thalamus and cingulate gyrus. Conclusions: This is the study to demonstrate the cognitive impairments in PD patients using WAIS-III. Visuospatial dysfunction might be caused by decrease in rCBF in the parietal and occipital lobes and dorsolateral prefrontal cortex. The severity of cognitive impairments in PD patients was correlated with disease severity and hallucinatory episodes. en-copyright= kn-copyright= en-aut-name=WakamoriTakaaki en-aut-sei=Wakamori en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AgariTakashi en-aut-sei=Agari en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoAkihiko en-aut-sei=Kondo en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShinkoAiko en-aut-sei=Shinko en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FurutaTomohisa en-aut-sei=Furuta en-aut-mei=Tomohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=7 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=8 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=9 en-affil= kn-affil=Kibi Int Univ, Dept Psychol affil-num=10 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg en-keyword=Parkinson's disease kn-keyword=Parkinson's disease en-keyword=Cognitive functions kn-keyword=Cognitive functions en-keyword=Disease severity kn-keyword=Disease severity en-keyword=Hallucinations kn-keyword=Hallucinations en-keyword=SPECT kn-keyword=SPECT END start-ver=1.4 cd-journal=joma no-vol=1502 cd-vols= no-issue= article-no= start-page=55 end-page=70 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130328 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The neuroprotective and neurorescue effects of carbamylated erythropoietin Fc fusion protein (CEPO-Fc) in a rat model of Parkinson's disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Parkinson's disease is characterized by progressive degeneration of dopaminergic neurons. Thus the development of therapeutic neuroprotection and neurorescue strategies to mitigate disease progression is important. In this study we evaluated the neuroprotective/rescue effects of erythropoietin Fc fusion protein (EPO-Fc) and carbamylated erythropoietin Fe fusion protein (CEPO-Fc) in a rat model of Parkinson's disease. Adult female Sprague-Dawley rats received intraperitoneal injection of EPO-Fc, CEPO-Fc or PBS. Behavioral evaluations consisted of rota-rod, cylinder and amphetamine-induced rotation tests. In the neuroprotection experiment, the CEPO-Fc group demonstrated significant improvement compared with the EPO-Fc group on the amphetamine-induced rotation test throughout the four-week follow-up period. Histologically, significantly more tyrosine hydroxylase (TH)-positive neurons were recognized in the substantia nigra (SN) pars compacta in the CEPO-Fc group than in the PBS and EPO-Fc groups. In the neurorescue experiment, rats receiving CEPO-Fc showed significantly better behavioural scores than those receiving PBS. The histological data concerning striatum also showed that the CEPO-Fc group had significantly better preservation of TH-positive fibers compared to the PBS and EPO-Fc groups. Importantly, there were no increases in hematocrit or hemoglobin levels in the CEPO-Fc group in either the neuroprotection or the neurorescue experiments. In conclusion, the newly developed CEPO-Fc might confer neuroprotective and neurorescue benefits in a rat model of Parkinson's disease without the side effects associated with polycythemia. CEPO-Fc might be a therapeutic tool for patients with Parkinson's disease. en-copyright= kn-copyright= en-aut-name=TayraJudith Thomas en-aut-sei=Tayra en-aut-mei=Judith Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KamedaMasahiro en-aut-sei=Kameda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AgariTakashi en-aut-sei=Agari en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KadotaTomohito en-aut-sei=Kadota en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WangFeifei en-aut-sei=Wang en-aut-mei=Feifei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KikuchiYoichiro en-aut-sei=Kikuchi en-aut-mei=Yoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LiangHanbai en-aut-sei=Liang en-aut-mei=Hanbai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShinkoAiko en-aut-sei=Shinko en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WakamoriTakaaki en-aut-sei=Wakamori en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=VcelarBrigitta en-aut-sei=Vcelar en-aut-mei=Brigitta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WeikRobert en-aut-sei=Weik en-aut-mei=Robert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=7 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=8 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=9 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=10 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg affil-num=11 en-affil= kn-affil=Polymun Sci GmbH affil-num=12 en-affil= kn-affil=Polymun Sci GmbH affil-num=13 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol Surg en-keyword=Carbamylated erythropoietin kn-keyword=Carbamylated erythropoietin en-keyword=Dopamine kn-keyword=Dopamine en-keyword=Neuroprotection kn-keyword=Neuroprotection en-keyword=Neurorescue kn-keyword=Neurorescue en-keyword=Parkinson's disease kn-keyword=Parkinson's disease END