start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=2 article-no= start-page=162 end-page=177 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Generalized hypergeometric functions for degree k hypersurface in CPN-1 and intersection numbers of moduli space of quasimaps from CP1 with two marked points to CPN-1 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we derive the generalized hypergeometric functions used in mirror computation of degree k hypersurface in CPN-1 as generating functions of intersection numbers of the moduli space of quasimaps from CP1 with two marked points to CPN-1. en-copyright= kn-copyright= en-aut-name=JinzenjiMasao en-aut-sei=Jinzenji en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuzakaKohki en-aut-sei=Matsuzaka en-aut-mei=Kohki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Mathematics, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Integrated Media, Ikueikan University kn-affil= en-keyword=Givental's I-function kn-keyword=Givental's I-function en-keyword=Generalized hypergeometric series kn-keyword=Generalized hypergeometric series en-keyword=Moduli space of quasimaps kn-keyword=Moduli space of quasimaps en-keyword=Intersection number kn-keyword=Intersection number END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue=02 article-no= start-page=2350006 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230203 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Geometrical proof of generalized mirror transformation of projective hypersurfaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we propose a geometrical proof of the generalized mirror transformation of genus 0 Gromov?Witten invariants of degree k hypersurface in CPN-1 en-copyright= kn-copyright= en-aut-name=JinzenjiMasao en-aut-sei=Jinzenji en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Mathematics, Okayama University kn-affil= en-keyword=Mirror symmetry kn-keyword=Mirror symmetry en-keyword=moduli space of quasimaps kn-keyword=moduli space of quasimaps en-keyword=excess intersection kn-keyword=excess intersection en-keyword=generalized mirror transformation kn-keyword=generalized mirror transformation END start-ver=1.4 cd-journal=joma no-vol=180 cd-vols= no-issue= article-no= start-page=104623 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of Euler number of complex Grassmann manifold G(k,N) via Mathai-Quillen formalism en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we provide a recipe for computing Euler number of Grassmann manifold G(k, N) by using Mathai-Quillen formalism (MQ formalism) [9] and Atiyah-Jeffrey construc-tion [1]. Especially, we construct path-integral representation of Euler number of G(k, N). Our model corresponds to a finite dimensional toy-model of topological Yang-Mills theory which motivated Atiyah-Jeffrey construction. As a by-product, we construct free fermion realization of cohomology ring of G(k, N). en-copyright= kn-copyright= en-aut-name=ImanishiShoichiro en-aut-sei=Imanishi en-aut-mei=Shoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JinzenjiMasao en-aut-sei=Jinzenji en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KuwataKen en-aut-sei=Kuwata en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Division of Mathematics, Graduate School of Science, Hokkaido University kn-affil= affil-num=2 en-affil=Department of Mathematics, Okayama University kn-affil= affil-num=3 en-affil=Department of General Education, National Institute of Technology, Kagawa College kn-affil= en-keyword=Supersymmetry kn-keyword=Supersymmetry en-keyword=Topological Yang-Mills theory kn-keyword=Topological Yang-Mills theory en-keyword=Schubert calculus kn-keyword=Schubert calculus en-keyword=Grassmann manifold kn-keyword=Grassmann manifold en-keyword=Grassmann variable kn-keyword=Grassmann variable END