start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue= article-no= start-page=54 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1996 dt-pub=199612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=編集後記 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name=石田祐之 kn-aut-sei=石田 kn-aut-mei=祐之 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=82 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1992 dt-pub=19921215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=編集後記 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name=石田祐之 kn-aut-sei=石田 kn-aut-mei=祐之 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=69 cd-vols= no-issue=1 article-no= start-page=147 end-page=152 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Observation of micropores in hard-carbon using Xe-129 NMR porosimetry en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The existence of micropores and the change of surface structure in pitch-based hard-carbon in xenon atmosphere were demonstrated using Xe-129 NMR. For high-pressure (4.0 MPa) Xe-129 NMR measurements, the hard-carbon samples in Xe gas showed three peaks at 27, 34 and 210 ppm. The last was attributed to the xenon in micropores (<1 nm) in hard-carbon particles. The NMR spectrum of a sample evacuated at 773 K and exposed to 0.1 MPa Xe gas at 773 K for 24 h showed two peaks at 29 and 128 ppm, which were attributed, respectively, to the xenon atoms adsorbed in the large pores (probably mesopores) and micropores of hard-carbon. With increasing annealing time in Xe gas at 773 K, both peaks shifted and merged into one peak at 50 ppm. The diffusion of adsorbed xenon atoms is very slow, probably because the transfer of molecules or atoms among micropores in hard-carbon does not occur readily. Many micropores are isolated from the outer surface. For that reason, xenon atoms are thought to be adsorbed only by micropores near the surface, which are easily accessible from the surrounding space.

en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaTakahiro en-aut-sei=Ueda en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmiHironori en-aut-sei=Omi en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EguchiTaro en-aut-sei=Eguchi en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaedaMariko en-aut-sei=Maeda en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyaharaMichihisa en-aut-sei=Miyahara en-aut-mei=Michihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AisakuNagai en-aut-sei=Aisaku en-aut-mei=Nagai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=The Museum of Osaka University affil-num=3 en-affil= kn-affil=The Museum of Osaka University affil-num=4 en-affil= kn-affil=The Museum of Osaka University affil-num=5 en-affil= kn-affil=Research Center, Kureha Corporation affil-num=6 en-affil= kn-affil=Research Center, Kureha Corporation affil-num=7 en-affil= kn-affil=Research Center, Kureha Corporation affil-num=8 en-affil= kn-affil=Okayama University en-keyword=amorphous materials kn-keyword=amorphous materials en-keyword=microporous materials kn-keyword=microporous materials en-keyword=nuclear magnetic resonance (NMR) kn-keyword=nuclear magnetic resonance (NMR) END start-ver=1.4 cd-journal=joma no-vol=162 cd-vols= no-issue=2 article-no= start-page=1322 end-page=1328 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200610 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Properties of a novel hard-carbon optimized to large size Lion secondary battery studied by 7Li NMR en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The state of lithium in a novel hard-carbon optimized to the anode of large size Li ion secondary battery, which has been recently commercialized, was investigated and compared with other existing hard-carbon samples by 7Li NMR method. The new carbon material showed a peak at 85 ppm with a shoulder signal at 7 ppm at room temperature in static NMR spectrum, and the former shifted to 210 ppm at 180 K. The latter at room temperature was attributed to Li doped in small particles contained in the sample. The new carbon sample showed weaker intensity of cluster-lithium signal than the other hard-carbon samples in NMR, which corresponded to a tendency of less "Constant Voltage" (CV) capacity in charge-discharge curves of electrochemical evaluation. Smaller CV capacity and initial irreversible capacity, which are the features of the novel hard-carbon, are considered to correspond to a blockade of the diffusion of Li into pore of carbon.

en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaMariko en-aut-sei=Maeda en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaiAisaku en-aut-sei=Nagai en-aut-mei=Aisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoAtsushi en-aut-sei=Goto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanshoMasataka en-aut-sei=Tansho en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashiKenjiro en-aut-sei=Hashi en-aut-mei=Kenjiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShimizuTadashi en-aut-sei=Shimizu en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Kureha Corporation affil-num=3 en-affil= kn-affil=Kureha Corporation affil-num=4 en-affil= kn-affil=National Institute for Materials Science affil-num=5 en-affil= kn-affil=National Institute for Materials Science affil-num=6 en-affil= kn-affil=National Institute for Materials Science affil-num=7 en-affil= kn-affil=National Institute for Materials Science affil-num=8 en-affil= kn-affil=Okayama University en-keyword=hard carbon kn-keyword=hard carbon en-keyword=Lithium kn-keyword=Lithium en-keyword=battery kn-keyword=battery en-keyword=7Li NMR kn-keyword=7Li NMR en-keyword=anode kn-keyword=anode en-keyword=electric vehicle kn-keyword=electric vehicle END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=8 article-no= start-page=2120 end-page=2124 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The use of graphite oxide to produce mesoporous carbon supporting Pt, Ru, or Pd nanoparticles en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mesoporous carbon having platinum, ruthenium or palladium nanoparticles on exfoliated graphene sheets were produced from graphite oxide (GO) and metal complexes. The Pt included carbon was made by heating of the intercalation compound including tetraammineplatinum (II) chloride monohydrate. Samples having Ru or Pd are producible by heating in nitrogen gas atmosphere using hexaammineruthenium (III) chloride or tetraamminepalladium (II) chloride monohydrate instead of Pt complex. The particle sizes of platinum, ruthenium, and palladium were, respectively, 1–3, 1–2, and 3–7 nm. The platinum- or palladium-containing sample showed catalytic activity for oxygen reduction. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawabataKoji en-aut-sei=Kawabata en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiEiji en-aut-sei=Fujii en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorishigeKunimitsu en-aut-sei=Morishige en-aut-mei=Kunimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KinumotoTaro en-aut-sei=Kinumoto en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyazakiYuki en-aut-sei=Miyazaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Industrial Technology Center of Okayama Prefecture affil-num=3 en-affil= kn-affil=Industrial Technology Center of Okayama Prefecture affil-num=4 en-affil= kn-affil=Okayama University of Science affil-num=5 en-affil= kn-affil=Faculty of Engineering, Oita University affil-num=6 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=1 article-no= start-page=o17 end-page=o20 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hydrogen bonding in two solid phases of phenazine-chloranilic acid (1/1) determined at 170 and 93 K en-subtitle= kn-subtitle= en-abstract= kn-abstract=The crystal structures in two solid phases, i.e. phase II stable between 146 and 253 K and phase IV below 136 K, of the title compound [phenazine-chloranilic acid (1/1), C12H8N2 center dot C6H2Cl2O4, in phase II, and phenazinium hydrogen chloranilate, C12H9N2+center dot C6HCl2O4-, in phase IV], have been determined. Both phases crystallize in P2(1), and each structure was refined as an inversion twin. In phase II, the phenazine and chloranilic acid molecules are arranged alternately through two kinds of O-H center dot center dot center dot N hydrogen bonds. In phase IV, salt formation occurs by donation of one H atom from the chloranilic acid molecule to the phenazine molecule; the resulting monocation and monoanion are linked by N-H center dot center dot center dot O and O-H center dot center dot center dot N hydrogen bonds. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsajiTetsuo en-aut-sei=Asaji en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Graduate School of Integrated Basic Sciences, College of Humanities and Sciences, Nihon University affil-num=3 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=12 article-no= start-page=4064 end-page=4066 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis of bis(trifluoromethylsulfonyl)imide-doped paramagnetic graphite intercalation compound using F-19 very fast magic angle spinning nuclear magnetic resonance en-subtitle= kn-subtitle= en-abstract= kn-abstract=F atoms bonding to paramagnetic/conductive graphene layers in accepter-type graphite intercalation compounds (GICs) are analyzed using very fast magic angle spinning nuclear magnetic resonance, which is applied for the first time on F-19 nuclei to investigate paramagnetic materials. In the bis(trifluoromethylsulfonyl)imide(TFSI)-doped GIC, C-F bonds between fluorine atoms and graphene layers conform to a weak bonding of F to the graphene sheets. TFSI anions intercalated in the GIC do not show overall molecular motion; even at room temperature only the CF3 groups rotate. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakedaKazuyuki en-aut-sei=Takeda en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LernerMichael M. en-aut-sei=Lerner en-aut-mei=Michael M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SueishiYoshimi en-aut-sei=Sueishi en-aut-mei=Yoshimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaruyamaShinpei en-aut-sei=Maruyama en-aut-mei=Shinpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoAtsushi en-aut-sei=Goto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanshoMasataka en-aut-sei=Tansho en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhkiShinobu en-aut-sei=Ohki en-aut-mei=Shinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HashiKenjiro en-aut-sei=Hashi en-aut-mei=Kenjiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShimizuTadashi en-aut-sei=Shimizu en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ affil-num=2 en-affil= kn-affil=Kyoto Univ affil-num=3 en-affil= kn-affil=Oregon State Univ affil-num=4 en-affil= kn-affil=Okayama Univ affil-num=5 en-affil= kn-affil=Okayama Univ affil-num=6 en-affil= kn-affil=Natl Inst Mat Sci affil-num=7 en-affil= kn-affil=Natl Inst Mat Sci affil-num=8 en-affil= kn-affil=Natl Inst Mat Sci affil-num=9 en-affil= kn-affil=Natl Inst Mat Sci affil-num=10 en-affil= kn-affil=Natl Inst Mat Sci affil-num=11 en-affil= kn-affil=Okayama Univ END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=4 article-no= start-page=1118 end-page=1125 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exfoliated graphene sheets decorated with metal / metal oxide nanoparticles: simple preparation from cation exchanged graphite oxide en-subtitle= kn-subtitle= en-abstract= kn-abstract=We produced carbon hybrid materials of graphene sheets decorated with metal or metal oxide nanoparticles of gold, silver, copper, cobalt, or nickel from cation exchanged graphite oxide. Measurements using powder X-ray diffraction, transmission electron microscopy, and X-ray absorption spectra revealed that the Au and Ag in the materials (Au-Gr and Ag-Gr) existed on graphene sheets as metal nanoparticles, whereas Cu and Co in the materials (Cu-Gr and Co-Gr) existed as a metal oxide. Most Ni particles in Ni-Gr were metal, but the surfaces of large particles were partly oxidized, producing a core-shell structure. The Ag-Gr sample showed a catalytic activity for the oxygen reduction reaction in 1.0 M KOH aq. under an oxygen atmosphere. Ag-Gr is superior as a cathode in alkaline fuel cells, which should not be disturbed by the methanol cross-over problem from the anode. We established an effective approach to prepare a series of graphene-nanoparticle composite materials using heat treatment. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinumotoTaro en-aut-sei=Kinumoto en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiEiji en-aut-sei=Fujii en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoAki en-aut-sei=Yamamoto en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HashimotoHideki en-aut-sei=Hashimoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhkuboTakahiro en-aut-sei=Ohkubo en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItadaniAtsushi en-aut-sei=Itadani en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KurodaYasushige en-aut-sei=Kuroda en-aut-mei=Yasushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ affil-num=2 en-affil= kn-affil=Oita Univ affil-num=3 en-affil= kn-affil=Ind Technol Ctr affil-num=4 en-affil= kn-affil=Okayama Univ affil-num=5 en-affil= kn-affil=Okayama Univ affil-num=6 en-affil= kn-affil=Okayama Univ affil-num=7 en-affil= kn-affil=Okayama Univ affil-num=8 en-affil= kn-affil=Okayama Univ affil-num=9 en-affil= kn-affil=Okayama Univ END start-ver=1.4 cd-journal=joma no-vol=225 cd-vols= no-issue= article-no= start-page=137 end-page=140 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=201303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery en-subtitle= kn-subtitle= en-abstract= kn-abstract=The state of sodium inserted in the hard carbon electrode of a sodium ion battery having practical cyclability was investigated using solid state 23Na NMR. The spectra of carbon samples charged (reduced) above 50 mAh g−1 showed clear three components. Two peaks at 9.9 ppm and 5.2 ppm were ascribed to reversible sodium stored between disordered graphene sheets in hard carbon because the shift of the peaks was invariable with changing strength of external magnetic field. One broad signal at about −9 to −16 ppm was assigned to sodium in heterogeneously distributed closed nanopores in hard carbon. Low temperature 23Na static and magic angle spinning NMR spectra didn't split or shift whereas the spectral pattern of 7Li NMR for lithium-inserted hard carbon changes depending on the temperature. This strongly suggests that the exchange of sodium atoms between different sites in hard carbon is slow. These studies show that sodium doesn't form quasi-metallic clusters in closed nanopores of hard carbon although sodium assembles at nanopores while the cell is electrochemically charged. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaToru en-aut-sei=Ishikawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimadzuSaori en-aut-sei=Shimadzu en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YabuuchiNaoaki en-aut-sei=Yabuuchi en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KomabaShinichi en-aut-sei=Komaba en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakedaKazuyuki en-aut-sei=Takeda en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GotoAtsushi en-aut-sei=Goto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DeguchiKenzo en-aut-sei=Deguchi en-aut-mei=Kenzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OhkiShinobu en-aut-sei=Ohki en-aut-mei=Shinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HashiKenjiro en-aut-sei=Hashi en-aut-mei=Kenjiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ShimizuTadashi en-aut-sei=Shimizu en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science & Technology, Okayama University affil-num=2 en-affil= kn-affil=Department of Applied Chemistry, Tokyo University of Science affil-num=3 en-affil= kn-affil=Department of Applied Chemistry, Tokyo University of Science affil-num=4 en-affil= kn-affil=Department of Applied Chemistry, Tokyo University of Science affil-num=5 en-affil= kn-affil=Department of Applied Chemistry, Tokyo University of Science affil-num=6 en-affil= kn-affil=Division of Chemistry, Graduate School of Science, Kyoto University affil-num=7 en-affil= kn-affil=National Institute for Materials Science affil-num=8 en-affil= kn-affil=National Institute for Materials Science affil-num=9 en-affil= kn-affil=National Institute for Materials Science affil-num=10 en-affil= kn-affil=National Institute for Materials Science affil-num=11 en-affil= kn-affil=National Institute for Materials Science affil-num=12 en-affil= kn-affil=Graduate School of Natural Science & Technology, Okayama University en-keyword=Sodium ion battery kn-keyword=Sodium ion battery en-keyword=Anode kn-keyword=Anode en-keyword=Hard carbon kn-keyword=Hard carbon en-keyword=23Na kn-keyword=23Na en-keyword=Solid state NMR kn-keyword=Solid state NMR END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue= article-no= start-page=380 end-page=387 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201411 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In situ7Li nuclear magnetic resonance study of the relaxation effect in practical lithium ion batteries en-subtitle= kn-subtitle= en-abstract= kn-abstract=Lithium ion cells comprising actual components of positive electrodes (LiCoO2, LiNixCoyAlz, and LiMn2O4) and negative electrodes (graphite and hard carbon) were assembled for in situ7Li nuclear magnetic resonance (NMR) experiments. The 7Li NMR measurements of the cells revealed a “relaxation effect” after overcharging: a decrease of the signal assigned to Li metal deposited on the negative electrode surface by overcharging. The reduction of the Li metal signal was inversely proportional to the increase of the signal of lithium stored in carbon. Therefore, the effect was ascribed to absorption of deposited lithium into the carbon of negative electrodes. The effect, which occurred rapidly in a few hours, reached an equilibrium state at 8–15 h. The slight shift of deposited metal suggests that dendritic Li easily re-dissolved, although larger Li particles remained. A hard carbon electrode has a greater effect of Li metal relaxation than graphite electrodes do, which is explainable by the bufferable structure of the carbon. Results are expected to be important for the discussion of the state of lithium, and for safer battery design. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IzukaMisato en-aut-sei=Izuka en-aut-mei=Misato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AraiJuichi en-aut-sei=Arai en-aut-mei=Juichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkadaYumika en-aut-sei=Okada en-aut-mei=Yumika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugiyamaTeruyasu en-aut-sei=Sugiyama en-aut-mei=Teruyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakedaKazuyuki en-aut-sei=Takeda en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science & Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science & Technology, Okayama University affil-num=3 en-affil= kn-affil=Yamaha Motor Co., Ltd. affil-num=4 en-affil= kn-affil=Yamaha Motor Co., Ltd. affil-num=5 en-affil= kn-affil=Division of Chemistry, Graduate School of Science, Kyoto University affil-num=6 en-affil= kn-affil=Natl Inst Mat Sci affil-num=7 en-affil= kn-affil=Graduate School of Natural Science & Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=34 article-no= start-page=13183 end-page=13193 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes en-subtitle= kn-subtitle= en-abstract= kn-abstract=We examined the state of sodium electrochemically inserted in HC prepared at 700–2000 °C using solid state Na magic angle spinning (MAS) NMR and multiple quantum (MQ) MAS NMR. The 23Na MAS NMR spectra of Na-inserted HC samples showed signals only in the range between +30 and −60 ppm. Each observed spectrum was ascribed to combinations of Na+ ions from the electrolyte, reversible ionic Na components, irreversible Na components assigned to solid electrolyte interphase (SEI) or non-extractable sodium ions in HC, and decomposed Na compounds such as Na2CO3. No quasi-metallic sodium component was observed to be dissimilar to the case of Li inserted in HC. MQMAS NMR implies that heat treatment of HC higher than 1600 °C decreases defect sites in the carbon structure. To elucidate the difference in cluster formation between Na and Li in HC, the condensation mechanism and stability of Na and Li atoms on a carbon layer were also studied using DFT calculation. Na3 triangle clusters standing perpendicular to the carbon surface were obtained as a stable structure of Na, whereas Li2 linear and Li4 square clusters, all with Li atoms being attached directly to the surface, were estimated by optimization. Models of Na and Li storage in HC, based on the calculated cluster structures were proposed, which elucidate why the adequate heat treatment temperature of HC for high-capacity sodium storage is higher than the temperature for lithium storage. en-copyright= kn-copyright= en-aut-name=MoritaRyohei en-aut-sei=Morita en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name=後藤和馬 kn-aut-sei=後藤 kn-aut-mei=和馬 aut-affil-num=2 ORCID= en-aut-name=FukunishiMika en-aut-sei=Fukunishi en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KubotaKei en-aut-sei=Kubota en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KomabaShinichi en-aut-sei=Komaba en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishimuraNaoto en-aut-sei=Nishimura en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YumuraTakashi en-aut-sei=Yumura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DeguchiKenzo en-aut-sei=Deguchi en-aut-mei=Kenzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OhkiShinobu en-aut-sei=Ohki en-aut-mei=Shinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShimizueTadashi en-aut-sei=Shimizue en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name=石田祐之 kn-aut-sei=石田 kn-aut-mei=祐之 aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil=岡山大学大学院自然科学研究科 affil-num=3 en-affil=Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University kn-affil= affil-num=4 en-affil=Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University kn-affil= affil-num=5 en-affil=Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University kn-affil= affil-num=6 en-affil=Department of Chemistry and Materials Technology, Kyoto Institute of Technology kn-affil= affil-num=7 en-affil=Department of Chemistry and Materials Technology, Kyoto Institute of Technology kn-affil= affil-num=8 en-affil=National Institute for Materials Science kn-affil= affil-num=9 en-affil=National Institute for Materials Science kn-affil= affil-num=10 en-affil=National Institute for Materials Science kn-affil= affil-num=11 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=10 article-no= start-page=1552 end-page=1557 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201910 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structures of 3-chloro-2-nitrobenzoic acid with quinoline derivatives: 3-chloro-2-nitrobenzoic acid-5-mtroqumohne (1/1), 3-chioro-2-nitrobenzoic acid-6-mtroquinoline (1/1) and 8-hydroxyquinolinium 3-chioro-2-nitrobenzoate en-subtitle= kn-subtitle= en-abstract= kn-abstract= The structures of three compounds of 3-chloro-2-nitrobenzoic acid with 5-nitroquinoline, (I), 6-nitroquinoline, (II), and 8-hydroxyquinoline, (III), have been determined at 190 K. In each of the two isomeric compounds, (I) and (II), C7H4ClNO4 center dot C9H6N2O2, the acid and base molecules are held together by O - H center dot center dot center dot N and C - H center dot center dot center dot O hydrogen bonds. In compound (III), C9H8NO+center dot-C7H3ClNO4-, an acid-base interaction involving H-atom transfer occurs and the H atom is located at the N site of the base molecule. In the crystal of (I), the hydrogen-bonded acid-base units are linked by C -H center dot center dot center dot O hydrogen bonds, forming a tape structure along the b-axis direction. Adjacent tapes, which are related by a twofold rotation axis, are linked by a third C - H center dot center dot center dot O hydrogen bond, forming wide ribbons parallel to the ((1) over bar 03) plane. These ribbons are stacked via pi-pi interactions between the quinoline ring systems [centroid-centroid distances = 3.4935 (5)-3.7721 (6) angstrom], forming layers parallel to the ab plane. In the crystal of (II), the hydrogen-bonded acid-base units are also linked into a tape structure along the b-axis direction via C -H center dot center dot center dot O hydrogen bonds. Inversion-related tapes are linked by further C-H center dot center dot center dot O hydrogen bonds to form wide ribbons parallel to the ((3) over bar 08) plane. The ribbons are linked by weak pi-pi interactions [centroid-centroid distances = 3.8016 (8)-3.9247 (9) angstrom], forming a three-dimensional structure. In the crystal of (III), the cations and the anions are alternately linked via N - H center dot center dot center dot O and O - H center dot center dot center dot-O hydrogen bonds, forming a 2(1) helix running along the b-axis direction. The cations and the anions are further stacked alternately in columns along the a-axis direction via pi-pi interactions [centroid-centroid distances = 3.8016 (8)-3.9247 (9) angstrom], and the molecular chains are linked into layers parallel to the ab plane through these interactions. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= en-keyword=crystal structure kn-keyword=crystal structure en-keyword=3-chloro-2-nitrobonzoic acid kn-keyword=3-chloro-2-nitrobonzoic acid en-keyword=5-nitroquinoline kn-keyword=5-nitroquinoline en-keyword=6-nitroquinoline kn-keyword=6-nitroquinoline en-keyword=8-hydroxyqunoline kn-keyword=8-hydroxyqunoline en-keyword=hydrogen bond kn-keyword=hydrogen bond END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue= article-no= start-page=1853 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201912 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structure of 4-chloro-2-nitrobenzoic acid with 4-hydroxyquinoline: a disordered structure over two states of 4-chloro-2-nitrobenzoic acid-quinolin-4(1H)-one (1/1) and 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate en-subtitle= kn-subtitle= en-abstract= kn-abstract=The title compound, C9H7.5NO center dot C7H3.5ClNO4, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto-enol tautomerization in the base molecule. The co-crystal is 4-chloro-2-nitrobenzoic acid-quinolin-4(1H)-one (1/1), C7H4ClNO4 center dot C9H7NO, and the salt is 4-hydroxy-quinolinium 4-chloro-2-nitrobenzoate, C9H8NO+center dot C7H3ClNO4. In the compound, the acid and base molecules are held together by a short hydrogen bond [O center dot center dot center dot O = 2.4393 (15) angstrom], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid-base units are linked by N-H center dot center dot center dot O and C-H center dot center dot center dot O hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the ab plane via pi-pi interactions [centroid-centroid distances = 3.5504 (8)-3.9010 (11) angstrom]. The layers are further linked by another C-H center dot center dot center dot O hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and d orm were generated to visualize the intermolecular interactions. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= en-keyword=crystal structure kn-keyword=crystal structure en-keyword=4-chloro-2-nitro-benzoic acid kn-keyword=4-chloro-2-nitro-benzoic acid en-keyword=4(1H)-quinolinone kn-keyword=4(1H)-quinolinone en-keyword=4-hydroxy-quinoline kn-keyword=4-hydroxy-quinoline en-keyword=hydrogen bond kn-keyword=hydrogen bond en-keyword=keto-enol tautomerization kn-keyword=keto-enol tautomerization en-keyword=Hirshfeld surface kn-keyword=Hirshfeld surface END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=29 article-no= start-page=14472 end-page=14481 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanisms for overcharging of carbon electrodes in lithium-ion/sodium-ion batteries analysed by operando solid-state NMR en-subtitle= kn-subtitle= en-abstract= kn-abstract=A precise understanding of the mechanism for metal (Li and Na) plating on negative electrodes that occurs with overcharging is critical to managing the safety of lithium- and sodium-ion batteries. In this work, an in-depth investigation of the overlithiation/oversodiation and subsequent delithiation/desodiation of graphite and hard carbon electrodes in the first cycle was conducted using operando7Li/23Na solid-state NMR. In the 7Li NMR spectra of half cells of carbon electrodes and metal counter electrodes, three types of signals corresponding to Li dendrites that formed on the surface of graphite, hard carbon, and the counter electrode were distinguished from the signal of Li metal foil of the counter electrode by applying an appropriate orientation of the testing cell. For graphite overlithiation, the deposition of Li dendrites started immediately or soon after the minimum electric potential in the lithiation curve. In contrast, the deposition of Li dendrites in hard carbon started after the end of quasimetallic lithium formation for overlithiation at rates below 3.0C. Similar behaviour was also observed for the oversodiation of hard carbon. The formation of quasimetallic Li or Na in the pores of hard carbon serves as a buffer for the metal plating that occurs with overcharging of the batteries. Furthermore, some of the deposited Li/Na dendrites contribute to reversible capacities. A mechanism for the inhomogeneous disappearance of quasimetallic Li during delithiation of hard carbon is also proposed. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamakamiTomu en-aut-sei=Yamakami en-aut-mei=Tomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraIshin en-aut-sei=Nishimura en-aut-mei=Ishin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KometaniHina en-aut-sei=Kometani en-aut-mei=Hina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AndoHideka en-aut-sei=Ando en-aut-mei=Hideka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashiKenjiro en-aut-sei=Hashi en-aut-mei=Kenjiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShimizuTadashi en-aut-sei=Shimizu en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=6 en-affil=National Institute for Materials Science kn-affil= affil-num=7 en-affil=National Institute for Materials Science kn-affil= affil-num=8 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=11 article-no= start-page=1701 end-page=1707 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202011 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structures of four isomeric hydrogen-bonded co-crystals of 6-methyl­quinoline with 2-chloro-4-nitro­benzoic acid, 2-chloro-5-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid en-subtitle= kn-subtitle= en-abstract= kn-abstract=The structures of the four isomeric compounds of 6-methyl­quinoline with chloro- and nitro-substituted benzoic acids, C7H4ClNO4·C10H9N, namely, 2-chloro-4-nitro­benzoic acid–6-methyl­quinoline (1/1), (I), 2-chloro-5-nitro­benzoic acid–6-methyl­quinoline (1/1), (II), 3-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (III), and 4-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (IV), have been determined at 185–190 K. In each compound, the acid and base mol­ecules are linked by a short hydrogen bond between a carboxyl O atom and an N atom of the base. The O⋯N distances are 2.5452 (12), 2.6569 (13), 2.5640 (17) and 2.514 (2) Å, respectively, for compounds (I)–(IV). In the hydrogen-bonded acid–base units of (I), (III) and (IV), the H atoms are each disordered over two positions with O site:N site occupancies of 0.65 (3):0.35 (3), 0.59 (4):0.41 (4) and 0.48 (5):0.52 (5), respectively, for (I), (III) and (IV). The H atom in the hydrogen-bonded unit of (II) is located at the O-atom site. In all of the crystals of (I)–(IV), π–π inter­actions between the quinoline ring system and the benzene ring of the acid mol­ecule are observed. In addition, a π–π inter­action between the benzene rings of adjacent acid mol­ecules and a C—H⋯O hydrogen bond are observed in the crystal of (I), and C—H⋯O hydrogen bonds and O⋯Cl contacts occur in the crystals of (III) and (IV). These inter­molecular inter­actions connect the acid and base mol­ecules, forming a layer structure parallel to the bc plane in (I), a column along the a-axis direction in (II), a layer parallel to the ab plane in (III) and a three-dimensional network in (IV). Hirshfeld surfaces for the title compounds mapped over dnorm and shape index were generated to visualize the weak inter­molecular inter­actions. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= en-keyword=crystal structure kn-keyword=crystal structure en-keyword=2-chloro-4-nitro­benzoic acid kn-keyword=2-chloro-4-nitro­benzoic acid en-keyword=2-chloro-5-nitro­benzoic acid kn-keyword=2-chloro-5-nitro­benzoic acid en-keyword=3-chloro-2-nitro­benzoic acid kn-keyword=3-chloro-2-nitro­benzoic acid en-keyword=4-chloro-2-nitro­benzoic acid kn-keyword=4-chloro-2-nitro­benzoic acid en-keyword=6-methyl­quinoline kn-keyword=6-methyl­quinoline en-keyword=hydrogen bond kn-keyword=hydrogen bond en-keyword=disorder kn-keyword=disorder en-keyword=Hirshfeld surface kn-keyword=Hirshfeld surface END