start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=118 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hydrogen in Transplantation: Potential Applications and Therapeutic Implications en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hydrogen gas, renowned for its antioxidant properties, has emerged as a novel therapeutic agent with applications across various medical domains, positioning it as a potential adjunct therapy in transplantation. Beyond its antioxidative properties, hydrogen also exerts anti-inflammatory effects by modulating pro-inflammatory cytokines and signaling pathways. Furthermore, hydrogen's capacity to activate cytoprotective pathways bolsters cellular resilience against stressors. In recent decades, significant advancements have been made in the critical medical procedure of transplantation. However, persistent challenges such as ischemia-reperfusion injury (IRI) and graft rejection continue to hinder transplant success rates. This comprehensive review explores the potential applications and therapeutic implications of hydrogen in transplantation, shedding light on its role in mitigating IRI, improving graft survival, and modulating immune responses. Through a meticulous analysis encompassing both preclinical and clinical studies, we aim to provide valuable insights into the promising utility of hydrogen as a complementary therapy in transplantation. en-copyright= kn-copyright= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AgetaKohei en-aut-sei=Ageta en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HisamuraMasaki en-aut-sei=Hisamura en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=hydrogen kn-keyword=hydrogen en-keyword=organ transplantation kn-keyword=organ transplantation en-keyword=ischemia reperfusion kn-keyword=ischemia reperfusion END start-ver=1.4 cd-journal=joma no-vol=174 cd-vols= no-issue=2 article-no= start-page=343 end-page=349 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hydrogen inhalation attenuates lung contusion after blunt chest trauma in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Lung contusion caused by blunt chest trauma evokes a severe inflammatory reaction in the pulmonary parenchyma that may be associated with acute respiratory distress syndrome. Although hydrogen gas has antioxidant and anti-inflammatory effects and is protective against multiple types of lung injury at safe concentrations, the effects of inhaled hydrogen gas on blunt lung injury have not been previously investigated. Therefore, using a mouse model, we tested the hypothesis that hydrogen inhalation after chest trauma would reduce pulmonary inflammation and acute lung injury associated with lung contusion.
Methods: Inbred male C57BL/6 mice were randomly divided into 3 groups: sham with air inhalation, lung contusion with air inhalation, and lung contusion with 1.3% hydrogen inhalation. Experimental lung contusion was induced using a highly reproducible and standardized apparatus. Immediately after induction of lung contusion, mice were placed in a chamber exposed to 1.3% hydrogen gas in the air. Histopathological analysis and real-time polymerase chain reaction in lung tissue and blood gas analysis were performed 6 hours after contusion.
Results: Histopathological examination of the lung tissue after contusion revealed perivascular/intra-alveolar hemorrhage, perivascular/interstitial leukocyte infiltration, and interstitial/intra-alveolar edema. These histological changes and the extent of lung contusion, as determined by computed tomography, were significantly mitigated by hydrogen inhalation. Hydrogen inhalation also significantly reduced inflammatory cytokine and chemokine mRNA levels and improved oxygenation.
Conclusion: Hydrogen inhalation therapy significantly mitigated inflammatory responses associated with lung contusion in mice. Hydrogen inhalation therapy may be a supplemental therapeutic strategy for treating lung contusion. en-copyright= kn-copyright= en-aut-name=AgetaKohei en-aut-sei=Ageta en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SeyaMizuki en-aut-sei=Seya en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MengYing en-aut-sei=Meng en-aut-mei=Ying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoHirotsugu en-aut-sei=Yamamoto en-aut-mei=Hirotsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230329 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hydrogen gas treatment improves survival in a rat model of crush syndrome by ameliorating rhabdomyolysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: Crush syndrome (CS) is characterized by a systemic manifestation of traumatic rhabdomyolysis, leading to multiple organ dysfunction and death. Ischemia-reperfusion (IR) injury is commonly responsible for systemic response. Extending studies have shown that hydrogen gas treatment ameliorated IR injury in numerous experimental models; however, its effect on CS has not been well examined. This study aimed to investigate the effects of hydrogen gas inhalation following crush injury in an experimental model of CS.
Methods: Male Sprague-Dawley rats were subjected to experimental CS by applying a total of 3.0 kg weight to both hindlimb under general anesthesia for 6 h. Immediately after decompression, the animals were randomly placed in a gas chamber filled with either air or 1.3% hydrogen gas. Animals were sacrificed 18 h or 24 h following gas exposure for non-survival studies or for survival study, respectively.
Results: The rats with hydrogen treatment (n = 6) had a higher 24-h survival than the rats with air treatment (n = 9) (100% vs. 44%, p = 0.035). Lactate concentrations (2.9 +/- 0.2 vs. 2.2 +/- 0.2 mmol/L, p = 0.040) and creatine kinase (34,178 +/- 13,580 vs. 5005 +/- 842 IU/L, p = 0.016) were lower in the hydrogen group compared with the air group 18 h after decompression (n = 4 in the air group, and n = 5 in the H-2 group). Histological analysis revealed that the damage to the rectus femoris muscle and kidney appeared to be ameliorated by hydrogen treatment.
Conclusion: Hydrogen gas inhalation may be a promising therapeutic approach in the treatment of CS. en-copyright= kn-copyright= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoHirotsugu en-aut-sei=Yamamoto en-aut-mei=Hirotsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Crush syndrome kn-keyword=Crush syndrome en-keyword=experimental model kn-keyword=experimental model en-keyword=hydrogen kn-keyword=hydrogen en-keyword=ischemia kn-keyword=ischemia en-keyword=reperfusion injury kn-keyword=reperfusion injury END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=1 article-no= start-page=339 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211031 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The effects of inhaling hydrogen gas on macrophage polarization, fibrosis, and lung function in mice with bleomycin-induced lung injury en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background : Acute respiratory distress syndrome, which is caused by acute lung injury, is a destructive respiratory disorder caused by a systemic inflammatory response. Persistent inflammation results in irreversible alveolar fibrosis. Because hydrogen gas possesses anti-inflammatory properties, we hypothesized that daily repeated inhalation of hydrogen gas could suppress persistent lung inflammation by inducing functional changes in macrophages, and consequently inhibit lung fibrosis during late-phase lung injury.
Methods : To test this hypothesis, lung injury was induced in mice by intratracheal administration of bleomycin (1.0 mg/kg). Mice were exposed to control gas (air) or hydrogen (3.2% in air) for 6 h every day for 7 or 21 days. Respiratory physiology, tissue pathology, markers of inflammation, and macrophage phenotypes were examined.
Results : Mice with bleomycin-induced lung injury that received daily hydrogen therapy for 21 days (BH group) exhibited higher static compliance (0.056 mL/cmH(2)O, 95% CI 0.047-0.064) than mice with bleomycin-induced lung injury exposed only to air (BA group; 0.042 mL/cmH(2)O, 95% CI 0.031-0.053, p = 0.02) and lower static elastance (BH 18.8 cmH(2)O/mL, [95% CI 15.4-22.2] vs. BA 26.7 cmH(2)O/mL [95% CI 19.6-33.8], p = 0.02). When the mRNA levels of pro-inflammatory cytokines were examined 7 days after bleomycin administration, interleukin (IL)-6, IL-4 and IL-13 were significantly lower in the BH group than in the BA group. There were significantly fewer M2-biased macrophages in the alveolar interstitium of the BH group than in the BA group (3.1% [95% CI 1.6-4.5%] vs. 1.1% [95% CI 0.3-1.8%], p = 0.008).
Conclusions The results suggest that hydrogen inhalation inhibits the deterioration of respiratory physiological function and alveolar fibrosis in this model of lung injury. en-copyright= kn-copyright= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SeyaMizuki en-aut-sei=Seya en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IketaniMasumi en-aut-sei=Iketani en-aut-mei=Masumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshikawaMichiko en-aut-sei=Ishikawa en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TerasakiYasuhiro en-aut-sei=Terasaki en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TaniguchiAkihiko en-aut-sei=Taniguchi en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyaharaNobuaki en-aut-sei=Miyahara en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OhsawaIkuroh en-aut-sei=Ohsawa en-aut-mei=Ikuroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Disaster Medicine and Management, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Primary Care and Medical Education, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology kn-affil= affil-num=6 en-affil=Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine kn-affil= affil-num=7 en-affil=Department of Analytic Human Pathology, Nippon Medical School kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=10 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology kn-affil= affil-num=12 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Acute respiratory distress syndrome kn-keyword=Acute respiratory distress syndrome en-keyword=Bleomycin-induced lung injury kn-keyword=Bleomycin-induced lung injury en-keyword=Macrophage kn-keyword=Macrophage en-keyword=Molecular hydrogen kn-keyword=Molecular hydrogen en-keyword=Lung fibrosis kn-keyword=Lung fibrosis END start-ver=1.4 cd-journal=joma no-vol=68 cd-vols= no-issue=6 article-no= start-page=323 end-page=329 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mean Lung Pressure during Adult High-Frequency Oscillatory Ventilation: An Experimental Study Using a Lung Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=In adult high-frequency oscillatory ventilation (HFOV), stroke volume (SV) and mean lung pressure (PLung) are important for lung protection. We measured the airway pressure at the Y-piece and the lung pressure during HFOV using a lung model and HFOV ventilators for adults (R100 and 3100B). The lung model was made of a 20-liter, airtight rigid plastic container (adiabatic compliance: 19.3ml/cmH2O) with or without a resistor (20cmH2O/l/sec). The ventilator settings were as follows: mean airway pressure (MAP), 30cmH2O;frequency, 5-15Hz (every 1Hz);airway pressure amplitude (AMP), maximum;and % of inspiratory time (IT), 50% for R100, 33% or 50% for 3100B. The measurements were also performed with an AMP of 2/3 or 1/3 maximum at 5, 10 and 15Hz. The PLung and the measured MAP were not consistently identical to the setting MAP in either ventilator, and decreasing IT decreased the PLung in 3100B. In conclusion, we must pay attention to the possible discrepancy between the PLung and the setting MAP during adult HFOV. en-copyright= kn-copyright= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaganoOsamu en-aut-sei=Nagano en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShibaNaoki en-aut-sei=Shiba en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoKeiji en-aut-sei=Sato en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TeradoMichihisa en-aut-sei=Terado en-aut-mei=Michihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UgawaToyomu en-aut-sei=Ugawa en-aut-mei=Toyomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchibaShingo en-aut-sei=Ichiba en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UjikeYoshihito en-aut-sei=Ujike en-aut-mei=Yoshihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Disaster and Emergency Medicine, Kochi University affil-num=3 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=HFOV kn-keyword=HFOV en-keyword=mean lung pressure kn-keyword=mean lung pressure en-keyword=mean airway pressure kn-keyword=mean airway pressure END start-ver=1.4 cd-journal=joma no-vol=66 cd-vols= no-issue=6 article-no= start-page=443 end-page=447 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluating the Need for and Effect of Percutaneous Transluminal Angioplasty on Arteriovenous Fistulas by Using Total Recirculation Rate per Dialysis Session (“Clearance Gap”) en-subtitle= kn-subtitle= en-abstract= kn-abstract=The functioning of an arteriovenous fistula (AVF) used for vascular access during hemodialysis has been assessed mainly by dilution methods. Although these techniques indicate the immediate recirculation rate, the results obtained may not correlate with Kt/V. In contrast, the clearance gap (CL-Gap) method provides the total recirculation rate per dialysis session and correlates well with Kt/V. We assessed the correlation between Kt/V and CL-Gap as well as the change in radial artery (RA) blood flow speed in the fistula before percutaneous transluminal angioplasty (PTA) in 45 patients undergoing continuous hemodialysis. The dialysis dose during the determination of CL-Gap was 1.2 to 1.4 Kt/V. Patients with a 10% elevation or more than a 10% relative increase in CL-Gap underwent PTA (n=45), and the values obtained for Kt/V and CL-Gap before PTA were compared with those obtained immediately afterward. The mean RA blood flow speed improved significantly (from 52.9 to 97.5cm/sec) after PTA, as did Kt/V (1.07 to 1.30) and CL-Gap (14.1% to -0.2%). A significant correlation between these differences was apparent (r=-0.436 and p=0.003). These findings suggest that calculating CL-Gap may be useful for determining when PTA is required and for assessing the effectiveness of PTA, toward obtaining better dialysis. en-copyright= kn-copyright= en-aut-name=UgawaToyomu en-aut-sei=Ugawa en-aut-mei=Toyomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakuramaKazufumi en-aut-sei=Sakurama en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakaokaMunenori en-aut-sei=Takaoka en-aut-mei=Munenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraYasuhiro en-aut-sei=Fujiwara en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KabashimaNarutoshi en-aut-sei=Kabashima en-aut-mei=Narutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AzumaDaisuke en-aut-sei=Azuma en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MorisadaSunao en-aut-sei=Morisada en-aut-mei=Sunao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IidaAtsuyoshi en-aut-sei=Iida en-aut-mei=Atsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TadaKeitaro en-aut-sei=Tada en-aut-mei=Keitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ShibaNaoki en-aut-sei=Shiba en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SatoNobuo en-aut-sei=Sato en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IchibaShingo en-aut-sei=Ichiba en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KinoKoichi en-aut-sei=Kino en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=FukushimaMasaki en-aut-sei=Fukushima en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=UjikeYoshihito en-aut-sei=Ujike en-aut-mei=Yoshihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil= kn-affil=Department of Emergency Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Surgery, Shigei Medical Research Hospital affil-num=3 en-affil= kn-affil=Department of Epidemiology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Kidney Center, University of Occupational and Environmental Health affil-num=7 en-affil= kn-affil=Department of Internal Medicine, Division of Nephrology, Kagawa Rosai Hospital affil-num=8 en-affil= kn-affil=Department of Emergency Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Emergency Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=10 en-affil= kn-affil=Department of Emergency Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=11 en-affil= kn-affil=Department of Emergency Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=12 en-affil= kn-affil=Department of Emergency Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=13 en-affil= kn-affil=Department of Emergency Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=14 en-affil= kn-affil=Department of Emergency Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=15 en-affil= kn-affil=Department of Emergency Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=16 en-affil= kn-affil=Department of Cardiology, Mahoshi Hospital affil-num=17 en-affil= kn-affil=Department of Internal medicine, Shigei Medical Research Hospital affil-num=18 en-affil= kn-affil=Department of Emergency Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=hemodialysis kn-keyword=hemodialysis en-keyword=recirculation kn-keyword=recirculation en-keyword=clearance gap kn-keyword=clearance gap en-keyword=vascular access kn-keyword=vascular access en-keyword=percutaneous transluminal angioplasty kn-keyword=percutaneous transluminal angioplasty END start-ver=1.4 cd-journal=joma no-vol=66 cd-vols= no-issue=4 article-no= start-page=335 end-page=341 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Humidification of Base Flow Gas during Adult High-Frequency Oscillatory Ventilation:An Experimental Study Using a Lung Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=In adult high-frequency oscillatory ventilation (HFOV) with an R100 artificial ventilator, exhaled gas from patientʼs lung may warm the temperature probe and thereby disturb the humidification of base flow (BF) gas. We measured the humidity of BF gas during HFOV with frequencies of 6, 8 and 10Hz, maximum stroke volumes (SV) of 285, 205, and 160ml at the respective frequencies, and, BFs of 20, 30, 40l/min using an original lung model. The R100 device was equipped with a heated humidifier, HummaxⅡ, consisting of a porous hollow fiber in circuit. A 50-cm length of circuit was added between temperature probe (located at 50cm proximal from Y-piece) and the hollow fiber. The lung model was made of a plastic container and a circuit equipped with another HummaxⅡ. The lung model temperature was controlled at 37℃. The HummaxⅡ of the R100 was inactivated in study-1 and was set at 35℃ or 37℃ in study-2. The humidity was measured at the distal end of the added circuit in study-1 and at the proximal end in study-2. In study-1, humidity was detected at 6Hz (SV 285ml) and BF 20l/min, indicating the direct reach of the exhaled gas from the lung model to the temperature probe. In study-2 the absolute humidity of the BF gas decreased by increasing SV and by increasing BF and it was low with setting of 35℃. In this study setting, increasing the SV induced significant reduction of humidification of the BF gas during HFOV with R100. en-copyright= kn-copyright= en-aut-name=ShibaNaoki en-aut-sei=Shiba en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaganoOsamu en-aut-sei=Nagano en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchibaShingo en-aut-sei=Ichiba en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UjikeYoshihito en-aut-sei=Ujike en-aut-mei=Yoshihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Disaster and Emergency Medicine, Kochi University affil-num=3 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=HFOV kn-keyword=HFOV en-keyword=humidification kn-keyword=humidification END