start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=5602-25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Two Cases of Autosomal Recessive Spinocerebellar Ataxia-8 Showing Two Novel Variants of SYNE1 in Japanese Families
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Autosomal recessive spinocerebellar ataxia-8 (SCAR8) is a neurodegenerative disorder caused by the biallelic pathogenic variants of SYNE1. It is characterized by slowly progressive cerebellar ataxia and atrophy. We identified two SCAR8 families using exome analyses and two novel variants, c.2127delG (p.Met709Ilefs) and c.15943G>T (p.Gly5315*), in SYNE1 (NM_182961.4). Pathogenic variants of SYNE1 cause various symptoms, including cerebellar ataxia, pyramidal tract disorders, and joint disorders, and the pathogenic variants discovered in this study were located in a region prone to cerebellar ataxia.
en-copyright=
kn-copyright=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuokaChika
en-aut-sei=Matsuoka
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OsakadaYosuke
en-aut-sei=Osakada
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=SCAR8
kn-keyword=SCAR8
en-keyword=SCAR
kn-keyword=SCAR
en-keyword=cerebellar ataxia
kn-keyword=cerebellar ataxia
en-keyword=whole-exome sequencing analysis
kn-keyword=whole-exome sequencing analysis
END
start-ver=1.4
cd-journal=joma
no-vol=213
cd-vols=
no-issue=
article-no=
start-page=128
end-page=137
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The potential mechanism maintaining transactive response DNA binding protein 43 kDa in the mouse stroke model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The disruption of transactive response DNA binding protein 43 kDa (TDP-43) shuttling leads to the depletion of nuclear localization and the cytoplasmic accumulation of TDP-43. We aimed to evaluate the mechanism underlying the behavior of TDP-43 in ischemic stroke. Adult male C57BL/6 J mice were subjected to 30 or 60 min of transient middle cerebral artery occlusion (tMCAO), and examined at 1, 6, and 24 h post reperfusion. Immunostaining was used to evaluate the expression of TDP-43, G3BP1, HDAC6, and RAD23B. The total and cytoplasmic number of TDP-43–positive cells increased compared with sham operation group and peaked at 6 h post reperfusion after tMCAO. The elevated expression of G3BP1 protein peaked at 6 h after reperfusion and decreased at 24 h after reperfusion in ischemic mice brains. We also observed an increase of expression level of HDAC6 and the number of RAD23B-positive cells increased after tMCAO. RAD23B was colocalized with TDP-43 24 h after tMCAO. We proposed that the formation of stress granules might be involved in the mislocalization of TDP-43, based on an evaluation of G3BP1 and HDAC6. Subsequently, RAD23B, may also contribute to the downstream degradation of mislocalized TDP-43 in mice tMCAO model.
en-copyright=
kn-copyright=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BianZhihong
en-aut-sei=Bian
en-aut-mei=Zhihong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhaiYun
en-aut-sei=Zhai
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YuHaibo
en-aut-sei=Yu
en-aut-mei=Haibo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HuXiao
en-aut-sei=Hu
en-aut-mei=Xiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AnHangping
en-aut-sei=An
en-aut-mei=Hangping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=LiuHongzhi
en-aut-sei=Liu
en-aut-mei=Hongzhi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=TDP-43
kn-keyword=TDP-43
en-keyword=ALS
kn-keyword=ALS
en-keyword=RNA-binding protein
kn-keyword=RNA-binding protein
en-keyword=Mislocalization
kn-keyword=Mislocalization
en-keyword=G3BP1
kn-keyword=G3BP1
en-keyword=HDAC6
kn-keyword=HDAC6
en-keyword=RAD23B
kn-keyword=RAD23B
en-keyword=tMCAO
kn-keyword=tMCAO
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250108
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-Term Follow-Up of a Patient With SPG11
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We present a case of a male patient with disease-causing variants in SPG11, a causative gene for autosomal recessive spastic paraplegia with a thin corpus callosum (ARHSP-TCC), as well as juvenile amyotrophic lateral sclerosis (ALS5) and Charcot–Marie–Tooth disease (CMT2X). A neurological examination at age 18 revealed dysarthria, muscle weakness in bilateral lower extremities, hyperreflexia in patellar reflex, hyporeflexia in Achilles reflex with an extensor plantar reflex, and intellectual disability. Magnetic resonance imaging revealed a thin corpus callosum and ears of the lynx sign. At the age of 26, weakness and muscle atrophy progressed. While no sensory disturbances were noted, there was a mild decrease in sensory nerve action potentials of the sural nerve over the 8 years between 18 and 26. Clinicians should be aware that SPG11 belongs to the same spectrum of disorders as ALS5 and CMT2X and presents various phenotypes depending on the stage of the disease.
en-copyright=
kn-copyright=
en-aut-name=OsakadaYosuke
en-aut-sei=Osakada
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuokaChika
en-aut-sei=Matsuoka
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsunodaKeiichiro
en-aut-sei=Tsunoda
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DeguchiKentaro
en-aut-sei=Deguchi
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Tsuyama Chuo Hospital
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama City Hospital
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=20521
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240903
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Suppression of PTBP1 in hippocampal astrocytes promotes neurogenesis and ameliorates recognition memory in mice with cerebral ischemia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The therapeutic potential of suppressing polypyrimidine tract-binding protein 1 (Ptbp1) messenger RNA by viral transduction in a post-stroke dementia mouse model has not yet been examined. In this study, 3 days after cerebral ischemia, we injected a viral vector cocktail containing adeno-associated virus (AAV)-pGFAP-mCherry and AAV-pGFAP-CasRx (control vector) or a cocktail of AAV-pGFAP-mCherry and AAV-pGFAP-CasRx-SgRNA-(Ptbp1) (1:5, 1.0 x 1011 viral genomes) into post-stroke mice via the tail vein. We observed new mCherry/NeuN double-positive neuron-like cells in the hippocampus 56 days after cerebral ischemia. A portion of mCherry/GFAP double-positive astrocyte-like glia could have been converted into new mCherry/NeuN double-positive neuron-like cells with morphological changes. The new neuronal cells integrated into the dentate gyrus and recognition memory was significantly ameliorated. These results demonstrated that the in vivo conversion of hippocampal astrocyte-like glia into functional new neurons by the suppression of Ptbp1 might be a therapeutic strategy for post-stroke dementia.
en-copyright=
kn-copyright=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=CasRx
kn-keyword=CasRx
en-keyword=Hippocampal neurogenesis
kn-keyword=Hippocampal neurogenesis
en-keyword=In vivo direct reprogramming
kn-keyword=In vivo direct reprogramming
en-keyword=Ischemic stroke
kn-keyword=Ischemic stroke
en-keyword=PHP.eB
kn-keyword=PHP.eB
en-keyword=Ptbp1
kn-keyword=Ptbp1
en-keyword=Recognition memory
kn-keyword=Recognition memory
END
start-ver=1.4
cd-journal=joma
no-vol=100
cd-vols=
no-issue=1
article-no=
start-page=219
end-page=228
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240625
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Novel Peptidome Technology for the Diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease by Selected Reaction Monitoring
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background:With the aging of populations worldwide, Alzheimer’s disease (AD) has become a concern due to its high prevalence and the continued lack of established treatments. Early diagnosis is required as a preventive intervention to modify the disease’s progression. In our previous study, we performed peptidomic analysis of serum samples obtained from AD patients and age-matched healthy subjects to seek peptide biomarker candidates for AD by using BLOTCHIP-MS analysis, and identified four peptides as AD biomarker candidates.
Objective:The objective was to validate the serum biomarker peptides to distinguish mild cognitive impairment (MCI) and AD in comparison to cognitively healthy controls using a new peptidome technology, the Dementia Risk Test.
Methods:We enrolled 195 subjects with normal cognitive function (NC; n = 70), MCI (n = 55), and AD (n = 70), The concentrations of cognitive impairment marker peptides (Fibrinogen α chain (FAC), Fibrinogen β chain (FBC), Plasma protease C1 inhibitor (PPC1I), α2-HS-glycoprotein (AHSG)) were quantified by using a selected reaction monitoring assay based on liquid chromatography-MS/MS.
Results:The present study confirmed that three peptides, FAC, FBC, and PPC1I, were significantly upregulated during the onset of AD. This three-peptide set was both highly sensitive in determining AD (sensitivity: 85.7%, specificity: 95.7%, AUC: 0.900) and useful in distinguishing MCI (sensitivity: 61.8%, specificity: 98.6%, AUC: 0.824) from NC.
Conclusions:In this validation study, we confirmed the high diagnostic potential of the three peptides identified in our previous study as candidate serum biomarkers for AD. The Dementia Risk Test may be a powerful tool for detecting AD-related pathological changes.
en-copyright=
kn-copyright=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TadokoroKoh
en-aut-sei=Tadokoro
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaMinaki
en-aut-sei=Hamada
en-aut-mei=Minaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AsadaKyoichi
en-aut-sei=Asada
en-aut-mei=Kyoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LeeLyang-Ja
en-aut-sei=Lee
en-aut-mei=Lyang-Ja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TachikiHidehisa
en-aut-sei=Tachiki
en-aut-mei=Hidehisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Protosera, Inc.
kn-affil=
affil-num=4
en-affil=Protosera, Inc.
kn-affil=
affil-num=5
en-affil=Protosera, Inc.
kn-affil=
affil-num=6
en-affil=Protosera, Inc.
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, National Center of Neurology and Psychiatry
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Alzheimer’s disease
kn-keyword=Alzheimer’s disease
en-keyword=biochemical marker
kn-keyword=biochemical marker
en-keyword=dementia risk test
kn-keyword=dementia risk test
en-keyword=liquid chromatography-MS/MS
kn-keyword=liquid chromatography-MS/MS
en-keyword=mild cognitive impairment
kn-keyword=mild cognitive impairment
en-keyword=peptidome
kn-keyword=peptidome
en-keyword=selected reaction monitoring
kn-keyword=selected reaction monitoring
END
start-ver=1.4
cd-journal=joma
no-vol=1828
cd-vols=
no-issue=
article-no=
start-page=148790
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Protective effect of scallop-derived plasmalogen against vascular dysfunction, via the pSTAT3/PIM1/NFATc1 axis, in a novel mouse model of Alzheimer’s disease with cerebral hypoperfusion
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A strong relationship between Alzheimer’s disease (AD) and vascular dysfunction has been the focus of increasing attention in aging societies. In the present study, we examined the long-term effect of scallop-derived plasmalogen (sPlas) on vascular remodeling-related proteins in the brain of an AD with cerebral hypoperfusion (HP) mouse model. We demonstrated, for the first time, that cerebral HP activated the axis of the receptor for advanced glycation endproducts (RAGE)/phosphorylated signal transducer and activator of transcription 3 (pSTAT3)/provirus integration site for Moloney murine leukemia virus 1 (PIM1)/nuclear factor of activated T cells 1 (NFATc1), accounting for such cerebral vascular remodeling. Moreover, we also found that cerebral HP accelerated pSTAT3-mediated astrogliosis and activation of the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, probably leading to cognitive decline. On the other hand, sPlas treatment attenuated the activation of the pSTAT3/PIM1/NFATc1 axis independent of RAGE and significantly suppressed NLRP3 inflammasome activation, demonstrating the beneficial effect on AD.
en-copyright=
kn-copyright=
en-aut-name=ZhaiYun
en-aut-sei=Zhai
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FengTian
en-aut-sei=Feng
en-aut-mei=Tian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BianZhihong
en-aut-sei=Bian
en-aut-mei=Zhihong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YuHaibo
en-aut-sei=Yu
en-aut-mei=Haibo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TangYing
en-aut-sei=Tang
en-aut-mei=Ying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurology, The First Affiliated Hospital of Harbin Medical University
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Alzheimer's disease
kn-keyword=Alzheimer's disease
en-keyword=Hypoperfusion
kn-keyword=Hypoperfusion
en-keyword=Cerebral vascular remodeling
kn-keyword=Cerebral vascular remodeling
en-keyword=Scallop-derived plasmalogen
kn-keyword=Scallop-derived plasmalogen
en-keyword=pSTAT3/PIM1/NFATc1 axis
kn-keyword=pSTAT3/PIM1/NFATc1 axis
END
start-ver=1.4
cd-journal=joma
no-vol=136
cd-vols=
no-issue=1
article-no=
start-page=17
end-page=21
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Frontotemporal lobar degeneration
kn-title=前頭側頭葉変性症
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=森原隆太
kn-aut-sei=森原
kn-aut-mei=隆太
aut-affil-num=1
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=石浦浩之
kn-aut-sei=石浦
kn-aut-mei=浩之
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Hospital
kn-affil=岡山大学病院 脳神経内科
affil-num=2
en-affil=Department of Neurology, Okayama University Hospital
kn-affil=岡山大学病院 脳神経内科
en-keyword=前頭側頭葉変性症
kn-keyword=前頭側頭葉変性症
en-keyword=行動障害型前頭側頭型認知症
kn-keyword=行動障害型前頭側頭型認知症
en-keyword=意味性認知症
kn-keyword=意味性認知症
END
start-ver=1.4
cd-journal=joma
no-vol=96
cd-vols=
no-issue=2
article-no=
start-page=609
end-page=622
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231107
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Protective Effects of Rivaroxaban on White Matter Integrity and Remyelination in a Mouse Model of Alzheimer’s Disease Combined with Cerebral Hypoperfusion
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background:Alzheimer’s disease (AD) is characterized by cognitive dysfunction and memory loss that is accompanied by pathological changes to white matter. Some clinical and animal research revealed that AD combined with chronic cerebral hypoperfusion (CCH) exacerbates AD progression by inducing blood-brain barrier dysfunction and fibrinogen deposition. Rivaroxaban, an anticoagulant, has been shown to reduce the rates of dementia in atrial fibrillation patients, but its effects on white matter and the underlying mechanisms are unclear.
Objective:The main purpose of this study was to explore the therapeutic effect of rivaroxaban on the white matter of AD+CCH mice.
Methods:In this study, the therapeutic effects of rivaroxaban on white matter in a mouse AD+CCH model were investigated to explore the potential mechanisms involving fibrinogen deposition, inflammation, and oxidative stress on remyelination in white matter.
Results:The results indicate that rivaroxaban significantly attenuated fibrinogen deposition, fibrinogen-related microglia activation, oxidative stress, and enhanced demyelination in AD+CCH mice, leading to improved white matter integrity, reduced axonal damage, and restored myelin loss.
Conclusions:These findings suggest that long-term administration of rivaroxaban might reduce the risk of dementia.
en-copyright=
kn-copyright=
en-aut-name=BianZhihong
en-aut-sei=Bian
en-aut-mei=Zhihong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiuXia
en-aut-sei=Liu
en-aut-mei=Xia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YuHaibo
en-aut-sei=Yu
en-aut-mei=Haibo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Alzheimer’s disease
kn-keyword=Alzheimer’s disease
en-keyword=cerebral amyloid angiopathy
kn-keyword=cerebral amyloid angiopathy
en-keyword=chronic cerebral hypoperfusion
kn-keyword=chronic cerebral hypoperfusion
en-keyword=rivaroxaban
kn-keyword=rivaroxaban
en-keyword=white matter
kn-keyword=white matter
END
start-ver=1.4
cd-journal=joma
no-vol=1821
cd-vols=
no-issue=
article-no=
start-page=148565
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231215
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Injection of exogenous amyloid-β oligomers aggravated cognitive deficits, and activated necroptosis, in APP23 transgenic mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by the loss of synapses and neurons in the brain, and the accumulation of amyloid plaques. Aβ oligomers (AβO) play a critical role in the pathogenesis of AD. Although there is increasing evidence to support the involvement of necroptosis in the pathogenesis of AD, the exact mechanism remains elusive. In the present study, we explored the effect of exogenous AβO injection on cell necroptosis and cognitive deficits in APP23 transgenic mice. We found that intrahippocampal injection of AβO accelerated the development of AD pathology and caused cognitive impairment in APP23 mice. Specifically, AβO injection significantly accelerated the accumulation of AβO and increased the expression level of phosphorylated-tau, and also induced necroptosis. Behavioral tests showed that AβO injection was associated with cognitive impairment. Furthermore, necroptosis induced by AβO injection occurred predominantly in microglia of the AD brain. We speculate that AβO increased necroptosis by activating microglia, resulting in cognitive deficits. Our results may aid in an understanding of the role played by AβO in AD from an alternative perspective and provide new ideas and evidence for necroptosis as a potential intervention and therapeutic target for AD.
en-copyright=
kn-copyright=
en-aut-name=YuHaibo
en-aut-sei=Yu
en-aut-mei=Haibo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Ota-ElliottRicardo
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BianZhihong
en-aut-sei=Bian
en-aut-mei=Zhihong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
affil-num=10
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Alzheimer's disease (AD)
kn-keyword=Alzheimer's disease (AD)
en-keyword=Amyloid-13 oligomers (A13O)
kn-keyword=Amyloid-13 oligomers (A13O)
en-keyword=Necroptosis
kn-keyword=Necroptosis
en-keyword=Microglia
kn-keyword=Microglia
en-keyword=Neurodegeneration
kn-keyword=Neurodegeneration
END
start-ver=1.4
cd-journal=joma
no-vol=447
cd-vols=
no-issue=
article-no=
start-page=120608
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230415
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neuroprotective effects of carnosine in a mice stroke model concerning oxidative stress and inflammatory response
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Carnosine (β-alanyl-L-histidine) is a natural dipeptide with multiple neuroprotective properties. Previous studies have advertised that carnosine scavenges free radicals and displays anti-inflammatory activity. However, the underlying mechanism and the efficacies of its pleiotropic effect on prevention remained obscure. In this study, we aimed to investigate the anti-oxidative, anti-inflammative, and anti-pyroptotic effects of carnosine in the transient middle cerebral artery occlusion (tMCAO) mouse model. After a daily pre-treatment of saline or carnosine (1000 mg / kg / day) for 14 days, mice (n = 24) were subjected to tMCAO for 60 min and continuously treated with saline or carnosine for additional 1 and 5 days after reperfusion. The administration of carnosine significantly decreased infarct volume 5 days after the tMCAO (*p < 0.05) and effectively suppressed the expression of 4-HNE, 8-OHdG, Nitrotyrosine 5 days, and RAGE 5 days after tMCAO. Moreover, the expression of IL-1β was also significantly suppressed 5 days after tMCAO. Our present findings demonstrated that carnosine effectively relieves oxidative stress caused by ischemic stroke and significantly attenuates neuroinflammatory responses related to IL-1β, suggesting that carnosine can be a promising therapeutic strategy for ischemic stroke.
en-copyright=
kn-copyright=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FengTian
en-aut-sei=Feng
en-aut-mei=Tian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BianZhihong
en-aut-sei=Bian
en-aut-mei=Zhihong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YuHaibo
en-aut-sei=Yu
en-aut-mei=Haibo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HuXiao
en-aut-sei=Hu
en-aut-mei=Xiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Ischemic stroke
kn-keyword=Ischemic stroke
en-keyword=Carnosine
kn-keyword=Carnosine
en-keyword=Middle cerebral artery occlusion
kn-keyword=Middle cerebral artery occlusion
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Pyroptosis
kn-keyword=Pyroptosis
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=3
article-no=
start-page=365
end-page=371
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Actual Telemedicine Needs of Japanese Patients with Neurological Disorders in the COVID-19 Pandemic
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective During the coronavirus disease 2019 (COVID-19) pandemic, many social activities have moved online using applications for digital devices (e.g. computers, smartphones). We investigated the needs of telemedicine and trends in medical status and social care situations of Japanese patients with neurological disorders in order to estimate their affinity for an online telemedicine application. Methods We designed an original questionnaire for the present study that asked participants what problems they had with hospital visits, how the COVID-19 pandemic had affected their lives, and whether or not they would like to receive telemedicine.Patients The present study included volunteer caregivers, participants with Parkinson's disease (PD), epiamyotrophic lateral sclerosis (ALS), headache, myopathy, and other neurological diseases from Okayama University Hospital. Results A total of 29.6% of patients wanted to use telemedicine. Patients with ultheadaches (60.0%) and epilepsy (38.1%) were more likely to want to use telemedicine than patients with PD (17.8%) or stroke (19.0%). Almost 90% of patients had access to a digital device, and there was no association between favoring telemedicine, ownership of a digital device, hospital visiting time, or waiting time at the hospital, although age was associated with motivation to telemedicine use (52.6 vs. 62.2 years old, p < 0.001). Conclusion We can contribute to the management of the COVID-19 pandemic and the medical economy by promoting telemedicine, especially for young patients with headaches or epilepsy.
en-copyright=
kn-copyright=
en-aut-name=SasakiRyo
en-aut-sei=Sasaki
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=telemedicine
kn-keyword=telemedicine
en-keyword=neurological disorder
kn-keyword=neurological disorder
en-keyword=COVID-19
kn-keyword=COVID-19
en-keyword=headache
kn-keyword=headache
en-keyword=epilepsy
kn-keyword=epilepsy
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=58
end-page=60
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel ABCD1 mutation detected in a symptomatic female carrier of adrenoleukodystrophy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=X-linked adrenoleukodystrophy (ALD) is a major peroxisomal disorder, in which abnormal accumulation of very long-chain fatty acids (VLCFA) caused by ABCD1 gene mutation results in damage to the peripheral and central nervous system and adrenal gland. While affected male patients with ALD present severe neurological symptoms, some female carriers slowly develop spastic gait and urinary incontinence. We report a case of a symptomatic female ALD carrier with a novel ABCD1 gene mutation. She has developed progressive gait disturbance since age 40, and her father and sister had similar symptoms. When admitted to our hospital at age 66, blood analysis showed slight increase of VLCFA, and DNA analysis of ABCD1 gene revealed a novel heterozygous missense mutation (c.1700 A>C, p.Gln567Pro). The genetic testing for ABCD1 gene can be considered in female patients over middle age presenting spastic gait, because female ALD carriers tend to be symptomatic beyond age 60.
en-copyright=
kn-copyright=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TairaYuki
en-aut-sei=Taira
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiRyo
en-aut-sei=Sasaki
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TadokoroKoh
en-aut-sei=Tadokoro
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NomuraEmi
en-aut-sei=Nomura
en-aut-mei=Emi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShimozawaNobuyuki
en-aut-sei=Shimozawa
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Division of Genomics Research, Life Science Research Center, Gifu university
kn-affil=
affil-num=11
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=adrenoleukodystrophy
kn-keyword=adrenoleukodystrophy
en-keyword=symptomatic female carriers
kn-keyword=symptomatic female carriers
en-keyword=spastic paraplegia
kn-keyword=spastic paraplegia
en-keyword=ABCD1
kn-keyword=ABCD1
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=5
article-no=
start-page=266
end-page=268
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220815
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Japanese case of Charcot–Marie–Tooth disease type 2Z with severe retinitis pigmentosa
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Charcot-Marie-Tooth disease type 2Z (CMT2Z) shows highly variable clinical features. We report the first Japanese CMT2Z patient with a c.754C>T (p.R252W) substitution of the MORC2 gene, complicating severe retinitis pigmentosa. The MORC2 mutants were involved in a decrease in cell survival through induction of apoptosis. Thus, the MORC2 mutation might be involved in the degeneration of photoreceptors and the development of retinitis pigmentosa.
en-copyright=
kn-copyright=
en-aut-name=NomuraEmi
en-aut-sei=Nomura
en-aut-mei=Emi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TadokoroKoh
en-aut-sei=Tadokoro
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiRyo
en-aut-sei=Sasaki
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakataYumi
en-aut-sei=Nakata
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AndoMasahiro
en-aut-sei=Ando
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakashimaHiroshi
en-aut-sei=Takashima
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=10
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Charcot-Marie-Tooth disease type 2Z
kn-keyword=Charcot-Marie-Tooth disease type 2Z
en-keyword=MORC2
kn-keyword=MORC2
en-keyword=retinitis pigmentosa
kn-keyword=retinitis pigmentosa
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=5
article-no=
start-page=255
end-page=258
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220615
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Japanese case of successful surgical resection of cerebral cavernous malformations with a CCM2 mutation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cerebral cavernous malformations (CCMs) are congenital abnormalities of cerebral vessels. Surgical resection is rarely considered for the control of epilepsy in a first seizure patient with vascular malformation. In contrast, lesions that produce repetitive or progressive symptoms should be considered for surgical resection as treatment. Herein, we report a Japanese patient with a CCM2 mutation, c.609G>A (p.K203K) substitution, who showed drug-resistant epilepsy and dramatic improvement after surgical resection.
en-copyright=
kn-copyright=
en-aut-name=NomuraEmi
en-aut-sei=Nomura
en-aut-mei=Emi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoteYoshio
en-aut-sei=Omote
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HishikawaNozomi
en-aut-sei=Hishikawa
en-aut-mei=Nozomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SasakiTatsuya
en-aut-sei=Sasaki
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AkagawaHiroyuki
en-aut-sei=Akagawa
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Tokyo Women's Medical University Institute for Integrated Medical Sciences
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University
kn-affil=
en-keyword=CCM2
kn-keyword=CCM2
en-keyword=cerebral cavernous malformation
kn-keyword=cerebral cavernous malformation
en-keyword=drug-resistant epilepsy
kn-keyword=drug-resistant epilepsy
END
start-ver=1.4
cd-journal=joma
no-vol=86
cd-vols=
no-issue=1
article-no=
start-page=111
end-page=123
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202238
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Protective Effect of Rivaroxaban Against Amyloid Pathology and Neuroinflammation Through Inhibiting PAR-1 and PAR-2 in Alzheimer’s Disease Mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Recent studies have revealed that atrial fibrillation (AF) patients have a high risk of developing cognitive impairment, vascular dementia, and Alzheimer’s disease (AD). Some reports suggest that the application of oral anticoagulant with an appropriate dose may have a preventive effect on AD. However, which oral anticoagulant drug is more appropriate for preventing AD and the underlying mechanism(s) is still unknown. Objective: The aim of the present study was to assess the treatment effect of rivaroxaban administration as well as investigate the roles of PAR-1 and PAR-2 in the AD + CAA mice model. Methods: In the present study, we compared a traditional oral anticoagulant, warfarin, and a direct oral anticoagulant (DOAC), rivaroxaban, via long-term administration to an AD with cerebral amyloid angiopathy (CAA) mice model. Results: Rivaroxaban treatment attenuated neuroinflammation, blood-brain barrier dysfunction, memory deficits, and amyloid-β deposition through PAR-1/PAR-2 inhibition in the AD + CAA mice model compared with warfarin and no-treatment groups. Conclusion: The present study demonstrates that rivaroxaban can attenuate AD progress and can be a potential choice to prevent AD.
en-copyright=
kn-copyright=
en-aut-name=BianZhihong
en-aut-sei=Bian
en-aut-mei=Zhihong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuXia
en-aut-sei=Liu
en-aut-mei=Xia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FengTian
en-aut-sei=Feng
en-aut-mei=Tian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YuHaibo
en-aut-sei=Yu
en-aut-mei=Haibo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HuXiao
en-aut-sei=Hu
en-aut-mei=Xiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TadokoroKoh
en-aut-sei=Tadokoro
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
affil-num=16
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Alzheimer’s disease
kn-keyword=Alzheimer’s disease
en-keyword=cerebral amyloid angiopathy chronic cerebral hypoperfusion
kn-keyword=cerebral amyloid angiopathy chronic cerebral hypoperfusion
en-keyword=rivaroxaban
kn-keyword=rivaroxaban
en-keyword=warfarin
kn-keyword=warfarin
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=2
article-no=
start-page=111
end-page=119
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=2016127
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Thrombolysis with Low-Dose Tissue Plasminogen Activator 3–4.5 h After Acute Ischemic Stroke in Five Hospital Groups in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Clinical data from Japan on the safety and real-world outcomes of alteplase (tPA) thrombolysis in the extended therapeutic window are lacking. The aim of this study was to assess the safety and real-world outcomes of tPA administered within 3-4.5 h of stroke onset. The study comprised consecutive acute ischemic stroke patients (n = 177) admitted across five hospitals between September 2012 and August 2014. Patients received intravenous tPA within <3 or 3-4.5 h of stroke onset. Endovascular therapy was used for tPA-refractory patients. In the 3-4.5 h subgroup (31.6 % of patients), tPA was started 85 min later than the <3 h group (220 vs. 135 min, respectively). However, outcome measures were not significantly different between the <3 and 3-4.5 h subgroups for recanalization rate (67.8 vs. 57.1 %), symptomatic intracerebral hemorrhage (2.5 vs. 3.6 %), modified Rankin Scale score of 0-1 at 3 months (36.0 vs. 23.4 %), and mortality (6.9 vs. 8.3 %). We present data from 2005 to 2012 using a therapeutic window <3 h showing comparable results. tPA following endovascular therapy with recanalization might be superior to tPA only with recanalization (81.0 vs. 59.1 %). Compared with administration within 3 h of ischemic stroke onset, tPA administration within 3-4.5 h of ischemic stroke onset in real-world stroke emergency settings at multiple sites in Japan is as safe and has the same outcomes.
en-copyright=
kn-copyright=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KonoSyoichiro
en-aut-sei=Kono
en-aut-mei=Syoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoKota
en-aut-sei=Sato
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HishikawaNozomi
en-aut-sei=Hishikawa
en-aut-mei=Nozomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtaYasuyuki
en-aut-sei=Ohta
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DeguchiKentaro
en-aut-sei=Deguchi
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ManabeYasuhiro
en-aut-sei=Manabe
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakaoYoshiki
en-aut-sei=Takao
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KashiharaKenichi
en-aut-sei=Kashihara
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=InoueSatoshi
en-aut-sei=Inoue
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KiriyamaHideki
en-aut-sei=Kiriyama
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=
kn-affil=
affil-num=5
en-affil=epartment of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=epartment of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=epartment of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Okayama National Hospital Medical Center
kn-affil=
affil-num=9
en-affil=Okayama National Hospital Medical Center
kn-affil=
affil-num=10
en-affil=Okayama National Hospital Medical Center
kn-affil=
affil-num=11
en-affil=Okayama National Hospital Medical Center
kn-affil=
affil-num=12
en-affil=Okayama National Hospital Medical Center
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Acute stroke
kn-keyword=Acute stroke
en-keyword=edaravone
kn-keyword=edaravone
en-keyword=endovascular treatment
kn-keyword=endovascular treatment
en-keyword=intracerebral hemorrhage
kn-keyword=intracerebral hemorrhage
en-keyword=recanalization
kn-keyword=recanalization
en-keyword=tissue-type plasminogen activator
kn-keyword=tissue-type plasminogen activator
END
start-ver=1.4
cd-journal=joma
no-vol=353
cd-vols=
no-issue=1-2
article-no=
start-page=185
end-page=186
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=20156
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Selective disappearance of medial back muscles in a case of myotonic dystrophy type 1
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Here, we report a unique case of late-onset myotonic dystrophy type 1 in a 64-year-old woman, with selective disappearance of the medial lower back muscles. We compared the clinical features of this patient with those of a cohort of 29 patients with myotonic dystrophy type 1 to clarify the correlation between clinical features and lower back muscle atrophy. After classification into three subgroups according to muscle atrophy pattern, medial muscle atrophy was present in 17.2% of the patients. Affected patients were older at onset than non-affected patients, and limb muscle power and respiratory function decreased with atrophy progression.
en-copyright=
kn-copyright=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HishikawaNozomi
en-aut-sei=Hishikawa
en-aut-mei=Nozomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DeguchiKentaro
en-aut-sei=Deguchi
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KurataTomoko
en-aut-sei=Kurata
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=2
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
en-keyword=Myotonic dystrophy type 1
kn-keyword=Myotonic dystrophy type 1
en-keyword=Paraspinal muscles
kn-keyword=Paraspinal muscles
en-keyword=Late onset
kn-keyword=Late onset
END
start-ver=1.4
cd-journal=joma
no-vol=387
cd-vols=
no-issue=15
article-no=
start-page=70
end-page=74
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=20184
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Familial and sporadic chronic progressive degenerative parietal ataxia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background & objective: Parietal ataxia has been mainly reported as a consequence of acute ischemic stroke, while degenerative parietal ataxia has not been reported.
Methods: We investigated clinical characteristics, neuroimaging data, and genetic analysis of patients with cerebellar ataxia plus parietal atrophy.
Results: We identified seven patients, including five patients from two families, with chronic progressive cerebellar ataxia due to degenerative parietal atrophy but not stroke. Age at onset of ataxia was 57.6 +/- 6.9 years. All patients showed chronic progressive cerebellar ataxia with severity of ataxic gait > limb ataxia > dysarthria. Patients showed no cognitive dysfunction, muscle weakness, or parkinsonism, and only two patients showed mild sensory disturbances. The seven patients showed lateralized limb ataxia with greater contralateral parietal lobe atrophy by magnetic resonance imaging, and hypoperfusion by single photon emission computed tomography, without any abnormal cerebellar pathology (i.e., crossed cerebellar diaschisis). Pathogenic mutations in the microtubule-associated protein tau gene were not found using two single nucleotide polymorphisms.
Conclusions: This is the first description showing unique clinical features of familial and sporadic chronic progressive degenerative parietal ataxia.
en-copyright=
kn-copyright=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=DeguchiKentaro
en-aut-sei=Deguchi
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KurataTomoko
en-aut-sei=Kurata
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NomuraEmi
en-aut-sei=Nomura
en-aut-mei=Emi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoKota
en-aut-sei=Sato
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhtaYasuyuki
en-aut-sei=Ohta
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HishikawaNozomi
en-aut-sei=Hishikawa
en-aut-mei=Nozomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IkeuchiTakeshi
en-aut-sei=Ikeuchi
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KitaguchiMasataka
en-aut-sei=Kitaguchi
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=2
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=3
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=4
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=5
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=6
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=7
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=8
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=9
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Molecular Genetics, Bioresource Science Branch, Center of Bioresource, Brain Research Institute Niigata University
kn-affil=
affil-num=11
en-affil=Department of Neurology, Baba Memorial Hospital
kn-affil=
affil-num=12
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
en-keyword=parietal ataxia
kn-keyword=parietal ataxia
en-keyword=parietal lobe atrophy
kn-keyword=parietal lobe atrophy
en-keyword=crossed cerebellar diaschisis
kn-keyword=crossed cerebellar diaschisis
en-keyword=MAPT
kn-keyword=MAPT
END
start-ver=1.4
cd-journal=joma
no-vol=95
cd-vols=
no-issue=9
article-no=
start-page=1818
end-page=1828
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20161230
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Downregulation of PAR-1 and PAR-2 by Rivaroxaban
kn-title=Reduction of intracerebral hemorrhage by rivaroxaban after tPA thrombolysis is associated with downregulation of PAR-1 and PAR-2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study aimed to assess the risk of intracerebral hemorrhage (ICH) after tissue-type plasminogen activator (tPA) treatment in rivaroxaban compared with warfarin-pretreated male Wistar rat brain after ischemia in relation to activation profiles of protease-activated receptor-1, -2, -3, and -4 (PAR-1, -2, -3, and -4). After pretreatment with warfarin (0.2 mg/kg/day), low-dose rivaroxaban (60 mg/kg/day), high-dose rivaroxaban (120 mg/kg/day), or vehicle for 14 days, transient middle cerebral artery occlusion was induced for 90 min, followed by reperfusion with tPA (10 mg/kg/10 ml). Infarct volume, hemorrhagic volume, immunoglobulin G leakage, and blood parameters were examined. Twenty-four hours after reperfusion, immunohistochemistry for PARs was performed in brain sections. ICH volume was increased in the warfarin-pretreated group compared with the rivaroxaban-treated group. PAR-1, -2, -3, and -4 were widely expressed in the normal brain, and their levels were increased in the ischemic brain, especially in the peri-ischemic lesion. Warfarin pretreatment enhanced the expression of PAR-1 and PAR-2 in the peri-ischemic lesion, whereas rivaroxaban pretreatment did not. The present study shows a lower risk of brain hemorrhage in rivaroxaban-pretreated compared with warfarin-pretreated rats following tPA administration to the ischemic brain. It is suggested that the relative downregulation of PAR-1 and PAR-2 by rivaroxaban compared with warfarin pretreatment might be partly involved in the mechanism of reduced hemorrhagic complications in patients receiving rivaroxaban in clinical trials. © 2016 Wiley Periodicals, Inc.
en-copyright=
kn-copyright=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KonoSyoichiro
en-aut-sei=Kono
en-aut-mei=Syoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShangJingwei
en-aut-sei=Shang
en-aut-mei=Jingwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoKota
en-aut-sei=Sato
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HishikawaNozomi
en-aut-sei=Hishikawa
en-aut-mei=Nozomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhtaYasuyuki
en-aut-sei=Ohta
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HeitmeierStefan
en-aut-sei=Heitmeier
en-aut-mei=Stefan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=PerzbornElisabeth
en-aut-sei=Perzborn
en-aut-mei=Elisabeth
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=2
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=3
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=4
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=5
en-affil=Departments of Neurology
kn-affil=
affil-num=6
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=7
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=8
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=9
en-affil=Bayer Pharma AG, Drug Discovery - Global Therapeutic Research Groups, Cardiovascular Pharmacology
kn-affil=
affil-num=10
en-affil=Bayer Pharma AG, Drug Discovery - Global Therapeutic Research Groups, Cardiovascular Pharmacology
kn-affil=
affil-num=11
en-affil=Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
en-keyword=PAR-3
kn-keyword=PAR-3
en-keyword=PAR-4
kn-keyword=PAR-4
en-keyword=tissue plasminogen activator
kn-keyword=tissue plasminogen activator
en-keyword=warfarin
kn-keyword=warfarin
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficacy and safety of spot heating and ultrasound irradiation on in vitro and in vivo thrombolysis models
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The feasibility of transcranial sonothrombolysis has been demonstrated, although little is known about the relationships between thermal or mechanical mechanisms and thrombolytic outcomes. Therefore, the present study aims to reveal the effect and safety of temperature and ultrasound through in vitro and in vivo thrombolysis models. Artificial clots in microtubes were heated in a water bath or sonicated by ultrasound irradiation, and then clots weight decrease with rising temperature and sonication time was confirmed. In the in vitro thrombotic occlusion model, based on spot heating, clot volume was reduced and clots moved to the distal side, followed by recanalization of the occlusion. In the in vivo study, the common carotid artery of rats was exposed to a spot heater or to sonication. No brain infarct or brain blood barrier disruption was shown, but endothelial junctional dysintegrity and an inflammatory response in the carotid artery were detected. The present spot heating and ultrasound irradiation models seem to be effective for disintegrating clots in vitro, but the safety of the in vivo model was not fully supported by the data. However, the data indicates that a shorter time exposure could be less invasive than a longer exposure.
en-copyright=
kn-copyright=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OsakadaYosuke
en-aut-sei=Osakada
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FengTian
en-aut-sei=Feng
en-aut-mei=Tian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TadokoroKoh
en-aut-sei=Tadokoro
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=17
article-no=
start-page=2343
end-page=2346
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=20170901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Successful Delayed Aortic Surgery for a Patient with Ischemic Stroke Secondary to Aortic Dissection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The diagnosis of aortic dissection (AD) is sometimes difficult within the limited time window of recombinant tissue plasminogen activator (tPA) for ischemic stroke (IS). A 60-year-old man developed sudden left hemiparesis due to IS. During tPA infusion, his blood pressure dropped and consciousness declined. After transfer to our hospital, carotid duplex ultrasonography led to a diagnosis of AD. Emergency surgery was postponed because of the risk of hemorrhagic transformation. The patient successfully underwent aortic surgery on day 5 and was discharged with a remarkable improvement in his symptoms. Delayed surgery may avoid hemorrhagic transformation in patients with AD-induced IS who have received tPA.
en-copyright=
kn-copyright=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=DeguchiKentaro
en-aut-sei=Deguchi
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsunodaKeiichiro
en-aut-sei=Tsunoda
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ManabeYasuhiro
en-aut-sei=Manabe
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiYoshiaki
en-aut-sei=Takahashi
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SatoKota
en-aut-sei=Sato
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KonoSyoichiro
en-aut-sei=Kono
en-aut-mei=Syoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhtaYasuyuki
en-aut-sei=Ohta
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HishikawaNozomi
en-aut-sei=Hishikawa
en-aut-mei=Nozomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Departments of Neurology, Dentistry, and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=2
en-affil=Departments of Neurology, Dentistry, and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=3
en-affil=Departments of Neurology, Dentistry, and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Japan
kn-affil=
affil-num=4
en-affil=Departments of Neurology, Dentistry, and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Japan
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama National Hospital Medical Center, Japan
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama National Hospital Medical Center, Japan
kn-affil=
affil-num=7
en-affil=Departments of Neurology, Dentistry, and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Japan
kn-affil=
affil-num=8
en-affil=Departments of Neurology, Dentistry, and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Japan
kn-affil=
affil-num=9
en-affil=Departments of Neurology, Dentistry, and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Japan
kn-affil=
affil-num=10
en-affil=Department of Neurology, Okayama National Hospital Medical Center, Japan
kn-affil=
affil-num=11
en-affil=Departments of Neurology, Dentistry, and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Japan
kn-affil=
affil-num=12
en-affil=Departments of Neurology, Dentistry, and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Japan
kn-affil=
affil-num=13
en-affil=Departments of Neurology, Dentistry, and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Japan
kn-affil=
END