start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue= article-no= start-page=102337 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Continued mycovirus discovery expanding our understanding of virus lifestyles, symptom expression, and host defense en-subtitle= kn-subtitle= en-abstract= kn-abstract=High-throughput sequencing technologies have greatly expanded the RNA virome in general and have led to an exponential increase in new fungal viruses, also known as mycoviruses. Mycoviruses are omnipresent in fungi and usually induce symptomless infections. Some mycoviruses infecting fungi pathogenic to plants, insects, and mammals are known to modify host virulence positively and negatively and attract particular interests. In addition, fungal viruses continue to provide intriguing research materials and themes that lead to discoveries of peculiar viruses as infectious entities and insights into virus evolution and diversity. In this review, we outline the diversity and neolifestyle of recently discovered fungal RNA viruses, and phenotypic alterations induced by them. Furthermore, we discuss recent advances in research regarding the fungal antiviral defense and viral counterdefense, which are closely associated with host phenotype alterations. We hope that this article will enhance understanding of the interesting and growing fungal virology field. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Institute for Plant Sciences, University of Cologne kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=334 cd-vols= no-issue= article-no= start-page=199155 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202309 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploration of the yadokari/yadonushi nature of YkV3 and RnMBV3 in the original host and a model filamentous fungus en-subtitle= kn-subtitle= en-abstract= kn-abstract=The yadokari/yadonushi nature is a recently discovered virus lifestyle; “yadokari” refers to the ability of capsidless positive-sense (+) RNA viruses (yadokariviruses) to utilize the capsids of phylogenetically distant double-stranded RNA (dsRNA) viruses possibly as the replication site, while “yadonushi” refers to the ability of dsRNA viruses to provide capsids to yadokariviruses. This virus–virus interaction, however, has been only studied with limited pathosystems. Here, we established a new study model with a capsidless (+)RNA yadokarivirus YkV3 (family Yadokariviridae) and its capsid donor RnMBV3 (family Megabirnaviridae) in the original host fungus Rosellinia necatrix and a model filamentous fungal host Cryphonectria parasitica. YkV3 has a simple genome structure with one open reading frame of 4305 nucleotides encoding a single polyprotein with an RNA-dependent RNA polymerase and a 2A-like self-cleavage peptide domain. Reverse genetics of YkV3 in R. necatrix showed that YkV3 tolerates a nucleotide substitution in the extreme 5′-terminus. The insertion of two termination codons immediately downstream of the 2A-like cleavage site abolished YkV3 viability, suggesting the importance of the C-terminal portion of the polyprotein of unknown function. Transfection of RnMBV3 and YkV3 into an RNA silencing-deficient mutant Δdcl2 of C. parasitica showed the replication competency of both viruses. Comparison between the wild-type and Δdcl2 strains of C. parasitica in virus accumulation suggested that RnMBV3 and YkV3 are susceptible to RNA silencing in C. parasitica. Taken together, we have established a platform to further explore the yadokari/yadonushi nature using genetically manipulable host fungal and virus strains. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Virus-virus interaction kn-keyword=Virus-virus interaction en-keyword=RNA viruses kn-keyword=RNA viruses en-keyword=Capsidless kn-keyword=Capsidless en-keyword=Fungal viruses kn-keyword=Fungal viruses en-keyword=Plant pathogenic fungi kn-keyword=Plant pathogenic fungi en-keyword=Yadokarivirus kn-keyword=Yadokarivirus en-keyword=Megabirnavirus kn-keyword=Megabirnavirus en-keyword=Reverse genetics kn-keyword=Reverse genetics END start-ver=1.4 cd-journal=joma no-vol=167 cd-vols= no-issue=12 article-no= start-page=2833 end-page=2838 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of novel totiviruses from the ascomycetous fungus Geotrichum candidum en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mycoviruses are widely distributed across the kingdom Fungi, including ascomycetous yeast strains of the class Saccharomycetes. Geotrichum candidum is an important fungal pathogen belonging to Saccharomycetes and has a diverse host range. Here, we report the characterization of four new classical totiviruses from two distinct Geotrichum candidum strains from Pakistan. The four identified viruses were tentatively named “Geotrichum candidum totivirus 1, 2, 3a, and 3b” (GcTV1-3b). The complete dsRNA genomes of the identified totiviruses are 4621, 4592, 4576, and 4576 bp in length, respectively. All totivirus genomes have two open reading frames, encoding a capsid protein (CP) and an RNA-dependent RNA polymerase (RdRP), respectively. The downstream RdRP domain is assumed to be expressed as a CP-RdRP fusion product via -1 frameshifting mediated by a heptameric slippery site. Sequence comparisons and phylogenetic analysis showed that each of the discovered viruses belongs to a new species of the genus Totivirus in the family Totiviridae, with GcTV1 and GcTV3 (a and b strains) clustering in one subgroup and GcTV2 in another subgroup. en-copyright= kn-copyright= en-aut-name=KhanHaris Ahmed en-aut-sei=Khan en-aut-mei=Haris Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShahiSabitree en-aut-sei=Shahi en-aut-mei=Sabitree kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BhattiMuhammad Faraz en-aut-sei=Bhatti en-aut-mei=Muhammad Faraz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=2 article-no= start-page=e1011162 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Capsid structure of a fungal dsRNA megabirnavirus reveals its previously unidentified surface architecture en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rosellinia necatrix megabirnavirus 1-W779 (RnMBV1) is a non-enveloped icosahedral double-stranded (ds)RNA virus that infects the ascomycete fungus Rosellinia necatrix, a causative agent that induces a lethal plant disease white root rot. Herein, we have first resolved the atomic structure of the RnMBV1 capsid at 3.2 angstrom resolution using cryo-electron microscopy (cryo-EM) single-particle analysis. Compared with other non-enveloped icosahedral dsRNA viruses, the RnMBV1 capsid protein structure exhibits an extra-long C-terminal arm and a surface protrusion domain. In addition, the previously unrecognized crown proteins are identified in a symmetry-expanded cryo-EM model and are present over the 3-fold axes. These exclusive structural features of the RnMBV1 capsid could have been acquired for playing essential roles in transmission and/or particle assembly of the megabirnaviruses. Our findings, therefore, will reinforce the understanding of how the structural and molecular machineries of the megabirnaviruses influence the virulence of the disease-related ascomycete fungus. Author summaryA fungal plant soil-borne pathogen, Rosellinia necatrix, which can cause devastating disease white root rot in many highly valued fruit trees, is difficult to be controlled with conventional approaches such as fungicide applications. Rosellinia necatrix megabirnavirus 1-W779 (RnMBV1) is a dsRNA virus isolated from the R. necatrix field strain, W779, and this virus can be a viro-control candidate to confer hypovirulence in its host R. necatrix. To make use of RnMBV1 in the white root rot disease control, more molecular and structural investigations will offer us more insights. Here, we have performed cryo-electron microscopy (cryo-EM) single-particle analysis, to obtain the first atomic models of RnMBV1 particles. Based on the atomic structures, we found unique both surface and interior features. In addition, we found a previously unidentified protein on the viral surface. These aforementioned structural features might play important roles in the viral life cycles, and will enable us to apply this fungal virus as a viro-control approach. en-copyright= kn-copyright= en-aut-name=WangHan en-aut-sei=Wang en-aut-mei=Han kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SalaipethLakha en-aut-sei=Salaipeth en-aut-mei=Lakha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyazakiNaoyuki en-aut-sei=Miyazaki en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkamotoKenta en-aut-sei=Okamoto en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Life Science Center of Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220830 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Three-Layered Complex Interactions among Capsidless (+)ssRNA Yadokariviruses, dsRNA Viruses, and a Fungus en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have previously discovered a virus neo-lifestyle exhibited by a capsidless positive-sense (+), single-stranded (ss) RNA virus YkV1 (family Yadokariviridae) and an unrelated double-stranded (ds) RNA virus YnV1 (proposed family "Yadonushiviridae") in a phytopathogenic ascomycete, Rosellinia necatrix. YkV1 has been proposed to replicate in the capsid provided by YnV1 as if it were a dsRNA virus and enhance YnV1 replication in return. Recently, viruses related to YkV1 (yadokariviruses) have been isolated from diverse ascomycetous fungi. However, it remains obscure whether such viruses generally show the YkV1-like lifestyle. Here, we identified partner viruses for three distinct yadokariviruses, YkV3, YkV4a, and YkV4b, isolated from R. necatrix that were coinfected with multiple dsRNA viruses phylogenetically distantly related to YnV1. We first established transformants of R. necatrix carrying single yadokarivirus cDNAs and fused them with infectants by single partner candidate dsRNA viruses. Consequently, YkV3 and YkV4s replicated only in the presence of RnMBV3 (family Megabirnaviridae) and RnMTV1 (proposed family "Megatotiviridae"), respectively. The partners were mutually interchangeable between the two YkV4 strains and three RnMTV1 strains but not between other combinations involving YkV1 or YkV3. In contrast to YkV1 enhancing YnV1 accumulation, YkV4s reduced RnMTV1 accumulation to different degrees according to strains. Interestingly, YkV4 rescued the host R. necatrix from impaired growth induced by RnMTV1. YkV3 exerted no apparent effect on its partner (RnMBV3) or host fungus. Overall, we revealed that while yadokariviruses generally require partner dsRNA viruses for replication, each yadokarivirus partners with a different dsRNA virus species in the three diverse families and shows a distinct symbiotic relation in a fungus. IMPORTANCE A capsidless (+)ssRNA virus YkV1 (family Yadokariviridae) highjacks the capsid of an unrelated dsRNA virus YnV1 (proposed family "Yadonushiviridae") in a phytopathogenic ascomycete, while YkV1 trans-enhances YnV1 replication. Herein, we identified the dsRNA virus partners of three yadokariviruses (YkV3, YkV4a, and YkV4b) with genome organization different from YkV1 as being different from YnV1 at the suborder level. Their partners were mutually interchangeable between the two YkV4 strains and three strains of the partner virus RnMTV1 (proposed family "Megatotiviridae") but not between other combinations involving YkV1 or YkV3. Unlike YkV1, YkV4s reduced RnMTV1 accumulation and rescued the host fungus from impaired growth induced by RnMTV1. YkV3 exerted no apparent effect on its partner (RnMBV3, family Megabirnaviridae) or host fungus. These revealed that while each yadokarivirus has a species-specific partnership with a dsRNA virus, yadokariviruses collectively partner extremely diverse dsRNA viruses and show three-layered complex mutualistic/antagonistic interactions in a fungus. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Lopez-HerreraCarlos Jose en-aut-sei=Lopez-Herrera en-aut-mei=Carlos Jose kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Instituto de Agricultura Sostenible C.S.I.C., Alameda del Obispo kn-affil= affil-num=4 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=virus-virus interaction kn-keyword=virus-virus interaction en-keyword=RNA viruses kn-keyword=RNA viruses en-keyword=capsidless kn-keyword=capsidless en-keyword=virus macroevolution kn-keyword=virus macroevolution en-keyword=fungal viruses kn-keyword=fungal viruses en-keyword=plant-pathogenic fungi kn-keyword=plant-pathogenic fungi en-keyword=mutualism and parasitism kn-keyword=mutualism and parasitism en-keyword=multilayered interaction kn-keyword=multilayered interaction END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=8 article-no= start-page=1722 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220804 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Transfectable Fusagravirus from a Japanese Strain of Cryphonectria carpinicola with Spherical Particles en-subtitle= kn-subtitle= en-abstract= kn-abstract=A novel dsRNA virus (Cryphonectria carpinicola fusagravirus 1, CcFGV1), isolated from a Japanese strain (JS13) of Cryphonectria carpinicola, was thoroughly characterized. The biological comparison of a set of isogenic CcFGV1-infected and -free (JS13VF) strains indicated asymptomatic infection by CcFGV1. The sequence analysis showed that the virus has a two open reading frame (ORF) genome of 9.6 kbp with the RNA-directed RNA polymerase domain encoded by ORF2. The N-terminal sequencing and peptide mass fingerprinting showed an N-terminally processed or degraded product (150 kDa) of the 5'-proximal ORF1-encoded protein (1462 amino acids) to make up the CcFGV1 spherical particles of similar to 40 nm in diameter. Interestingly, a portion of CcFGV1 dsRNA co-fractionated with a host protein of 70 kDa. The purified CcFGV1 particles were used to transfect protoplasts of JS13VF as well as the standard strain of an experimental model filamentous fungal host Cryphonectria parasitica. CcFGV1 was confirmed to be associated with asymptomatic infection of both fungi. RNA silencing was shown to target the virus in C. parasitica, resulting in reduced CcFGV1 accumulation by comparing the CcFGV1 content between RNA silencing-competent and -deficient strains. These results indicate the transfectability of spherical particles of a fusagravirus associated with asymptomatic infection. en-copyright= kn-copyright= en-aut-name=DasSubha en-aut-sei=Das en-aut-mei=Subha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Eusebio-CopeAna en-aut-sei=Eusebio-Cope en-aut-mei=Ana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Cryphonectria carpinicola kn-keyword=Cryphonectria carpinicola en-keyword=Cryphonectria parasitica kn-keyword=Cryphonectria parasitica en-keyword=fusagravirus kn-keyword=fusagravirus en-keyword=fungal virus kn-keyword=fungal virus en-keyword=dsRNA kn-keyword=dsRNA en-keyword=spherical virion kn-keyword=spherical virion en-keyword=transfection kn-keyword=transfection END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=913619 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220629 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mycovirus Hunting Revealed the Presence of Diverse Viruses in a Single Isolate of the Phytopathogenic Fungus Diplodia seriata From Pakistan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diplodia seriata in the family Botryosphaeriaceae is a cosmopolitan phytopathogenic fungus and is responsible for causing cankers, fruit rot and leaf spots on economically important plants. In this study, we characterized the virome of a single Pakistani strain (L3) of D. seriata. Several viral-like contig sequences were obtained via a previously conducted next-generation sequencing analysis. Multiple infection of the L3 strain by eight RNA mycoviruses was confirmed through RT-PCR using total RNA samples extracted from this strain; the entire genomes were determined via Sanger sequencing of RT-PCR and RACE clones. A BLAST search and phylogenetic analyses indicated that these eight mycoviruses belong to seven different viral families. Four identified mycoviruses belong to double-stranded RNA viral families, including Polymycoviridae, Chrysoviridae, Totiviridae and Partitiviridae, and the remaining four identified mycoviruses belong to single-stranded RNA viral families, i.e., Botourmiaviridae, and two previously proposed families "Ambiguiviridae" and "Splipalmiviridae". Of the eight, five mycoviruses appear to represent new virus species. A morphological comparison of L3 and partially cured strain L3ht1 suggested that one or more of the three viruses belonging to Polymycoviridae, "Splipalmiviridae" and "Ambiguiviridae" are involved in the irregular colony phenotype of L3. To our knowledge, this is the first report of diverse virome characterization from D. seriata. en-copyright= kn-copyright= en-aut-name=KhanHaris Ahmed en-aut-sei=Khan en-aut-mei=Haris Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BhattiMuhammad Faraz en-aut-sei=Bhatti en-aut-mei=Muhammad Faraz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=phytopathogenic fungi kn-keyword=phytopathogenic fungi en-keyword=mycovirome kn-keyword=mycovirome en-keyword=next-generation sequencing kn-keyword=next-generation sequencing en-keyword=Diplodia seriata kn-keyword=Diplodia seriata en-keyword=Botryosphaeriaceae kn-keyword=Botryosphaeriaceae en-keyword=ssRNA virus kn-keyword=ssRNA virus en-keyword=dsRNA virus kn-keyword=dsRNA virus en-keyword=virus kn-keyword=virus en-keyword=virus interaction kn-keyword=virus interaction END start-ver=1.4 cd-journal=joma no-vol=167 cd-vols= no-issue= article-no= start-page=923 end-page=929 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220203 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A novel victorivirus from the phytopathogenic fungus Neofusicoccum parvum en-subtitle= kn-subtitle= en-abstract= kn-abstract=Neofusicoccum parvum is an important plant-pathogenic ascomycetous fungus that causes trunk diseases in a variety of plants. A limited number of reports on mycoviruses from this fungus are available. Here, we report the characterization of a novel victorivirus, Neofusicoccum parvum victorivirus 3 (NpVV3). An agarose gel dsRNA profile of a Pakistani strain of N. parvum, NFN, showed a band of similar to 5 kbp that was not detectable in Japanese strains of N. parvum. Taking a high-throughput and Sanger sequencing approach, the complete genome sequence of NpVV3 was determined to be 5226 bp in length with two open reading frames (ORF1 and ORF2) that encode a capsid protein (CP) and an RNA-dependent RNA polymerase (RdRP). The RdRP appears to be translated by a stop/restart mechanism facilitated by the junction sequence AUGucUGA, as is found in some other victoriviruses. BLASTp searches showed that NpVV3 CP and RdRP share the highest amino acid sequence identity (80.5% and 72.4%, respectively) with the corresponding proteins of NpVV1 isolated from a French strain of N. parvum. However, NpVV3 was found to be different from NpVV1 in its terminal sequences and the stop/restart facilitator sequence. NpVV3 particles similar to 35 nm in diameter were partially purified and used to infect an antiviral-RNA-silencing-deficient strain (Delta cl2) of an experimental ascomycetous fungal host, Cryphonectria parasitica. NpVV3 showed symptomless infection in the new host strain. en-copyright= kn-copyright= en-aut-name=KhanHaris Ahmed en-aut-sei=Khan en-aut-mei=Haris Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=JamalAtif en-aut-sei=Jamal en-aut-mei=Atif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BhattiMuhammad Faraz en-aut-sei=Bhatti en-aut-mei=Muhammad Faraz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Crop Diseases Research Institute, National Agricultural Research Centre kn-affil= affil-num=5 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=88 cd-vols= no-issue=2 article-no= start-page=105 end-page=127 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220117 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Plant viruses and viroids in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=An increasing number of plant viruses and viroids have been reported from all over the world due largely to metavirogenomics approaches with technological innovation. Herein, the official changes of virus taxonomy, including the establishment of megataxonomy and amendments of the codes of virus classification and nomenclature, recently made by the International Committee on Taxonomy of Viruses were summarized. The continued efforts of the plant virology community of Japan to index all plant viruses and viroids occurring in Japan, which represent 407 viruses, including 303 virus species and 104 unclassified viruses, and 25 viroids, including 20 species and 5 unclassified viroids, as of October 2021, were also introduced. These viruses and viroids are collectively classified into 81 genera within 26 families of 3 kingdoms (Shotokuvirae, Orthornavirae, Pararnavirae) across 2 realms (Monodnaviria and Riboviria). This review also overviewed how Japan’s plant virus/viroid studies have contributed to advance virus/viroid taxonomy. en-copyright= kn-copyright= en-aut-name=FujiShin-ichi en-aut-sei=Fuji en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MochizukiTomofumi en-aut-sei=Mochizuki en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkudaMitsuru en-aut-sei=Okuda en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsudaShinya en-aut-sei=Tsuda en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KagiwadaSatoshi en-aut-sei=Kagiwada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SekineKen-Taro en-aut-sei=Sekine en-aut-mei=Ken-Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UgakiMasashi en-aut-sei=Ugaki en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NatsuakiKeiko T. en-aut-sei=Natsuaki en-aut-mei=Keiko T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IsogaiMasamichi en-aut-sei=Isogai en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaokaTetsuo en-aut-sei=Maoka en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeshitaMinoru en-aut-sei=Takeshita en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshikawaNobuyuki en-aut-sei=Yoshikawa en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MiseKazuyuki en-aut-sei=Mise en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SasayaTakahide en-aut-sei=Sasaya en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KubotaKenji en-aut-sei=Kubota en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YamajiYasuyuki en-aut-sei=Yamaji en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=IwanamiToru en-aut-sei=Iwanami en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=OhshimaKazusato en-aut-sei=Ohshima en-aut-mei=Kazusato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KobayashiKappei en-aut-sei=Kobayashi en-aut-mei=Kappei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HatayaTatsuji en-aut-sei=Hataya en-aut-mei=Tatsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=SanoTeruo en-aut-sei=Sano en-aut-mei=Teruo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Faculty of Bioresource Sciences, Akita Prefectural University kn-affil= affil-num=2 en-affil=Graduate School of Life and Environmental Sciences, Osaka Prefecture University kn-affil= affil-num=3 en-affil=Office of the President, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=4 en-affil=Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry kn-affil= affil-num=5 en-affil=Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University kn-affil= affil-num=6 en-affil=Faculty of Agriculture, University of the Ryukyus kn-affil= affil-num=7 en-affil=Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=8 en-affil=Tokyo University of Agriculture kn-affil= affil-num=9 en-affil=Faculty of Agriculture, Iwate University kn-affil= affil-num=10 en-affil=Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO) kn-affil= affil-num=11 en-affil=Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazak kn-affil= affil-num=12 en-affil=Agri-Innovation Center, Iwate University kn-affil= affil-num=13 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=14 en-affil=3 Department of Research Promotion, Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO) kn-affil= affil-num=15 en-affil=Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=16 en-affil=Division of Core Technology for Pest Control Research, Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO) kn-affil= affil-num=17 en-affil=Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=18 en-affil=Faculty of Agriculture, Tokyo University of Agriculture kn-affil= affil-num=19 en-affil=Department of Biological Resource Science, Faculty of Agriculture, Saga University kn-affil= affil-num=20 en-affil=Faculty of Agriculture, Ehime University kn-affil= affil-num=21 en-affil=Research Faculty of Agriculture, Hokkaido University kn-affil= affil-num=22 en-affil=Hirosaki University kn-affil= affil-num=23 en-affil=Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=17 article-no= start-page=e00467-21 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021810 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Proof of Concept of the Yadokari Nature: a Capsidless Replicase-Encoding but Replication-Dependent Positive-Sense Single-Stranded RNA Virus Hosted by an Unrelated Double-Stranded RNA Virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Viruses typically encode their own capsids that encase their genomes. However, a capsidless positive-sense single stranded RNA [(+)ssRNA] virus, YkV1, depends on an unrelated double-stranded RNA (dsRNA) virus, YnV1, for encapsidation and replication. en-copyright= kn-copyright= en-aut-name=DasSubha en-aut-sei=Das en-aut-mei=Subha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AlamMd Mahfuz en-aut-sei=Alam en-aut-mei=Md Mahfuz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZhangRui en-aut-sei=Zhang en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=715545 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210819 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of a Novel Quinvirus in the Family Betaflexiviridae That Infects Winter Wheat en-subtitle= kn-subtitle= en-abstract= kn-abstract=Yellow mosaic disease in winter wheat is usually attributed to the infection by bymoviruses or furoviruses; however, there is still limited information on whether other viral agents are also associated with this disease. To investigate the wheat viromes associated with yellow mosaic disease, we carried out de novo RNA sequencing (RNA-seq) analyses of symptomatic and asymptomatic wheat-leaf samples obtained from a field in Hokkaido, Japan, in 2018 and 2019. The analyses revealed the infection by a novel betaflexivirus, which tentatively named wheat virus Q (WVQ), together with wheat yellow mosaic virus (WYMV, a bymovirus) and northern cereal mosaic virus (a cytorhabdovirus). Basic local alignment search tool (BLAST) analyses showed that the WVQ strains (of which there are at least three) were related to the members of the genus Foveavirus in the subfamily Quinvirinae (family Betaflexiviridae). In the phylogenetic tree, they form a clade distant from that of the foveaviruses, suggesting that WVQ is a member of a novel genus in the Quinvirinae. Laboratory tests confirmed that WVQ, like WYMV, is potentially transmitted through the soil to wheat plants. WVQ was also found to infect rye plants grown in the same field. Moreover, WVQ-derived small interfering RNAs accumulated in the infected wheat plants, indicating that WVQ infection induces antiviral RNA silencing responses. Given its common coexistence with WYMV, the impact of WVQ infection on yellow mosaic disease in the field warrants detailed investigation. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaNaoto en-aut-sei=Yoshida en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujitaMiki en-aut-sei=Fujita en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamaKazuyuki en-aut-sei=Maruyama en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HisanoHiroshi en-aut-sei=Hisano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TamadaTetsuo en-aut-sei=Tamada en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=8 en-affil=College of Plant Health and Medicine, Qingdao Agricultural University kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Betaflexiviridae kn-keyword=Betaflexiviridae en-keyword=quinvirus kn-keyword=quinvirus en-keyword=bymovirus kn-keyword=bymovirus en-keyword=yellow mosaic disease kn-keyword=yellow mosaic disease en-keyword=wheat kn-keyword=wheat en-keyword=virome kn-keyword=virome en-keyword=soil borne kn-keyword=soil borne en-keyword=variants kn-keyword=variants END start-ver=1.4 cd-journal=joma no-vol=166 cd-vols= no-issue= article-no= start-page=2711 end-page=2722 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021727 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A second capsidless hadakavirus strain with 10 positive-sense single-stranded RNA genomic segments from Fusarium nygamai en-subtitle= kn-subtitle= en-abstract= kn-abstract=A unique capsidless virus with a positive-sense, single-stranded RNA genome (hadakavirus 1, HadV1), a member of the extended picorna-like supergroup, was isolated previously from the phytopathogenic fungus Fusarium oxysporum. Here, we describe the molecular and biological characterisation of a second hadakavirus strain from Fusarium nygamai, which has not been investigated in detail previously as a virus host. This virus, hadakavirus 1 strain 1NL (HadV1-1NL), has features similar to the first hadakavirus, HadV1-7n, despite having a different number of segments (10 for HadV1-1NL vs. 11 for HadV1-7n). The 10 genomic RNA segments of HadV1-1NL range in size from 0.9 kb to 2.5 kb. All HadV1-1NL segments show 67% to 86% local nucleotide sequence identity to their HadV1-7n counterparts, whereas HadV1-1NL has no homolog of HadV1-7n RNA8, which encodes a zinc-finger motif. Another interesting feature is the possible coding incapability of HadV1-1NL RNA10. HadV1-1NL was predicted to be capsidless based on the RNase A susceptibility of its replicative form dsRNA. Phenotypic comparison of multiple virus-infected and virus-free single-spore isolates indicated asymptomatic infection by HadV1-1NL. Less-efficient vertical transmission via spores was observed as the infected fungal colonies from which the spores were derived became older, as was observed for HadV1-7n. This study shows a second example of a hadakavirus that appears to have unusual features. en-copyright= kn-copyright= en-aut-name=KhanHaris Ahmed en-aut-sei=Khan en-aut-mei=Haris Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=JamalAtif en-aut-sei=Jamal en-aut-mei=Atif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BhattiMuhammad Faraz en-aut-sei=Bhatti en-aut-mei=Muhammad Faraz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Crop Diseases Research Institute, National Agricultural Research Centre kn-affil= affil-num=5 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=2 article-no= start-page=100 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210131 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of an RNA Silencing Suppressor Encoded by a Symptomless Fungal Hypovirus, Cryphonectria Hypovirus 4 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Previously, we have reported the ability of a symptomless hypovirus Cryphonectria hypovirus 4 (CHV4) of the chestnut blight fungus to facilitate stable infection by a co-infecting mycoreovirus 2 (MyRV2)—likely through the inhibitory effect of CHV4 on RNA silencing (Aulia et al., Virology, 2019). In this study, the N-terminal portion of the CHV4 polyprotein, termed p24, is identified as an autocatalytic protease capable of suppressing host antiviral RNA silencing. Using a bacterial expression system, CHV4 p24 is shown to cleave autocatalytically at the di-glycine peptide (Gly214-Gly215) of the polyprotein through its protease activity. Transgenic expression of CHV4 p24 in Cryphonectria parasitica suppresses the induction of one of the key genes of the antiviral RNA silencing, dicer-like 2, and stabilizes the infection of RNA silencing-susceptible virus MyRV2. This study shows functional similarity between CHV4 p24 and its homolog p29, encoded by the symptomatic prototype hypovirus CHV1. en-copyright= kn-copyright= en-aut-name=AuliaAnnisa en-aut-sei=Aulia en-aut-mei=Annisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HillmanBradley I. en-aut-sei=Hillman en-aut-mei=Bradley I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Plant Biology and Pathology, Rutgers University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=mycovirus kn-keyword=mycovirus en-keyword=reovirus kn-keyword=reovirus en-keyword=hypovirus kn-keyword=hypovirus en-keyword=Cryphonectria parasitica kn-keyword=Cryphonectria parasitica en-keyword=co-infection kn-keyword=co-infection en-keyword=RNA silencing kn-keyword=RNA silencing en-keyword=RNAi suppressor kn-keyword=RNAi suppressor en-keyword=chestnut blight fungus kn-keyword=chestnut blight fungus en-keyword=Dicer kn-keyword=Dicer END start-ver=1.4 cd-journal=joma no-vol=554 cd-vols= no-issue= article-no= start-page=55 end-page=62 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cryphonectria nitschkei chrysovirus 1 with unique molecular features and a very narrow host range en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cryphonectria nitschkei chrysovirus 1 (CnCV1), was described earlier from an ascomycetous fungus, Cryphonectria nitschkei strain OB5/11, collected in Japan; its partial sequence was reported a decade ago. Complete sequencing of the four genomic dsRNA segments revealed molecular features similar to but distinct from previously reported members of the family Chrysoviridae. Unique features include the presence of a mini-cistron preceding the major large open reading frame in each genomic segment. Common features include the presence of CAA repeats in the 5′-untranslated regions and conserved terminal sequences. CnCV1-OB5/11 could be laterally transferred to C. nitschkei and its relatives C. radicalis and C. naterciae via coculturing, virion transfection and protoplast fusion, but not to fungal species other than the three species mentioned above, even within the genus Cryphonectria, suggesting a very narrow host range. Phenotypic comparison of a few sets of CnCV1-infected and -free isogenic strains showed symptomless infection in new hosts. en-copyright= kn-copyright= en-aut-name=ShahiSabitree en-aut-sei=Shahi en-aut-mei=Sabitree kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChibaSotaro en-aut-sei=Chiba en-aut-mei=Sotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Bioagricultural Sciences, Nagoya University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Cryphonectria nitschkei kn-keyword=Cryphonectria nitschkei en-keyword=Cryphonectria parasitica kn-keyword=Cryphonectria parasitica en-keyword=Cryphonectria radicalis kn-keyword=Cryphonectria radicalis en-keyword=Chrysovirus kn-keyword=Chrysovirus en-keyword=Fungal virus kn-keyword=Fungal virus en-keyword=dsRNA kn-keyword=dsRNA en-keyword=Host range kn-keyword=Host range END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=5627 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Establishment of Neurospora crassa as a model organism for fungal virology en-subtitle= kn-subtitle= en-abstract= kn-abstract=The filamentous fungus Neurospora crassa is used as a model organism for genetics, developmental biology and molecular biology. Remarkably, it is not known to host or to be susceptible to infection with any viruses. Here, we identify diverse RNA viruses in N. crassa and other Neurospora species, and show that N. crassa supports the replication of these viruses as well as some viruses from other fungi. Several encapsidated double-stranded RNA viruses and capsid-less positive-sense single-stranded RNA viruses can be experimentally introduced into N. crassa protoplasts or spheroplasts. This allowed us to examine viral replication and RNAi-mediated antiviral responses in this organism. We show that viral infection upregulates the transcription of RNAi components, and that Dicer proteins (DCL-1, DCL-2) and an Argonaute (QDE-2) participate in suppression of viral replication. Our study thus establishes N. crassa as a model system for the study of host-virus interactions. The fungus Neurospora crassa is a model organism for the study of various biological processes, but it is not known to be infected by any viruses. Here, Honda et al. identify RNA viruses that infect N. crassa and examine viral replication and RNAi-mediated antiviral responses, thus establishing this fungus as a model for the study of host-virus interactions. en-copyright= kn-copyright= en-aut-name=HondaShinji en-aut-sei=Honda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Eusebio-CopeAna en-aut-sei=Eusebio-Cope en-aut-mei=Ana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyashitaShuhei en-aut-sei=Miyashita en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YokoyamaAyumi en-aut-sei=Yokoyama en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AuliaAnnisa en-aut-sei=Aulia en-aut-mei=Annisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShahiSabitree en-aut-sei=Shahi en-aut-mei=Sabitree kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Faculty of Medical Sciences, University of Fukui kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=4 en-affil=Faculty of Medical Sciences, University of Fukui kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Fungal biology kn-keyword=Fungal biology en-keyword=Virus–host interactions kn-keyword=Virus–host interactions END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=592789 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201020 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular Characterization of a Novel Polymycovirus From Penicillium janthinellum With a Focus on Its Genome-Associated PASrp en-subtitle= kn-subtitle= en-abstract= kn-abstract=The genus Polymycovirus of the family Polymycoviridae accommodates fungal RNA viruses with different genomic segment numbers (four, five, or eight). It is suggested that four members form no true capsids and one forms filamentous virus particles enclosing double-stranded RNA (dsRNA). In both cases, viral dsRNA is associated with a viral protein termed "proline-alanine-serine-rich protein" (PASrp). These forms are assumed to be the infectious entity. However, the detailed molecular characteristics of PASrps remain unclear. Here, we identified a novel five-segmented polymycovirus, Penicillium janthinellum polymycovirus 1 (PjPmV1), and characterized its purified fraction form in detail. The PjPmV1 had five dsRNA segments associated with PASrp. Density gradient ultracentrifugation of the PASrp-associated PjPmV1 dsRNA revealed its uneven structure and a broad fractionation profile distinct from that of typical encapsidated viruses. Moreover, PjPmV1-PASrp interacted in vitro with various nucleic acids in a sequence-non-specific manner. These PjPmV1 features are discussed in view of the diversification of genomic segment numbers of the genus Polymycovirus. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JamalAtif en-aut-sei=Jamal en-aut-mei=Atif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Crop Diseases Research Institute, National Agricultural Research Centre kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=fungal virus kn-keyword=fungal virus en-keyword=RNA virus kn-keyword=RNA virus en-keyword=polymycovirus kn-keyword=polymycovirus en-keyword=Penicillium janthinellum kn-keyword=Penicillium janthinellum en-keyword=capsidless kn-keyword=capsidless en-keyword=multi-segmented kn-keyword=multi-segmented en-keyword=proline-alanine-serine rich protein kn-keyword=proline-alanine-serine rich protein END start-ver=1.4 cd-journal=joma no-vol=244 cd-vols= no-issue= article-no= start-page=75 end-page=83 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180115 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: Taxonomic and evolutionary considerations en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recent studies illustrate that fungi as virus hosts provides a unique platform for hunting viruses and exploring virus/virus and virus/host interactions. Such studies have revealed a number of as-yet-unreported viruses and virus/virus interactions. Among them is a unique intimate relationship between a (+)ssRNA virus, yado-kari virus (YkV1) and an unrelated dsRNA virus, yado-nushi virus (YnV1). YkV1 dsRNA, a replicated form of YkV1, and RNA-dependent RNA polymerase, are trans-encapsidated by the capsid protein of YnV1. While YnV1 can complete its replication cycle, YkV1 relies on YnV1 for its viability. We previously proposed a model in which YkV1 diverts YnV1 capsids as the replication sites. YkV1 is neither satellite virus nor satellite RNA, because YkV1 appears to encode functional RdRp and enhances YnV1 accumulation. This represents a unique mutualistic virus/virus interplay and similar relations in other virus/host fungus systems are detectable. We propose to establish the family Yadokariviridae that accommodates YkV1 and recently discovered viruses phylogenetically related to YkV1. This article overviews what is known and unknown about the YkV1/YnV1 interactions. Also discussed are the YnV1 Phytoreo_S7 and YkV1 2A-like domains that may have been captured via horizontal transfer during the course of evolution and are conserved across extant diverse RNA viruses. Lastly, evolutionary scenarios are envisioned for YkV1 and YnV1. en-copyright= kn-copyright= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhangRui en-aut-sei=Zhang en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FarukMd. Iqbal en-aut-sei=Faruk en-aut-mei=Md. Iqbal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Yado-nushi virus kn-keyword=Yado-nushi virus en-keyword=Yado-kari virus kn-keyword=Yado-kari virus en-keyword=Mutualism kn-keyword=Mutualism en-keyword=Mycovirus kn-keyword=Mycovirus en-keyword=dsRNA kn-keyword=dsRNA en-keyword=Evolution kn-keyword=Evolution END start-ver=1.4 cd-journal=joma no-vol=1 cd-vols= no-issue=1 article-no= start-page=15001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A capsidless ssRNA virus hosted by an unrelated dsRNA virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Viruses typically encode the capsid that encases their genome, while satellite viruses do not encode a replicase and depend on a helper virus for their replication1. Here, we report interplay between two RNA viruses, yado-nushi virus 1 (YnV1) and yado-kari virus 1 (YkV1), in a phytopathogenic fungus, Rosellinia necatrix2. YkV1 has a close phylogenetic affinity to positive-sense, single-stranded (+)ssRNA viruses such as animal caliciviruses3, while YnV1 has an undivided double-stranded (ds) RNA genome with a resemblance to fungal totiviruses4. Virion transfection and infectious full-length cDNA transformation has shown that YkV1 depends on YnV1 for viability, although it probably encodes functional RNA-dependent RNA polymerase (RdRp). Immunological and molecular analyses have revealed trans-encapsidation of not only YkV1 RNA but also RdRp by the capsid protein of the other virus (YnV1), and enhancement of YnV1 accumulation by YkV1. This study demonstrates interplay in which the capsidless (+)ssRNA virus (YkV1), hijacks the capsid protein of the dsRNA virus (YnV1), and replicates as if it were a dsRNA virus. en-copyright= kn-copyright= en-aut-name=ZhangRui en-aut-sei=Zhang en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanematsuSatoko en-aut-sei=Kanematsu en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=NARO Institute of Fruit Tree Science kn-affil= affil-num=6 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Molecular evolution kn-keyword=Molecular evolution en-keyword=Viral genetics kn-keyword=Viral genetics END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=3 article-no= start-page=e00450-20 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200526 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hadaka Virus 1: a Capsidless Eleven-Segmented Positive-Sense Single-Stranded RNA Virus from a Phytopathogenic Fungus, Fusarium oxysporum en-subtitle= kn-subtitle= en-abstract= kn-abstract=The search for viruses infecting fungi, or mycoviruses, has extended our knowledge about the diversity of RNA viruses, as exemplified by the discovery of polymycoviruses, a phylogenetic group of multisegmented RNA viruses with unusual forms. The genomic RNAs of known polymycoviruses, which show a phylogenetic affinity for animal positive-sense single-stranded RNA [(+)RNA] viruses such as caliciviruses, are comprised of four conserved segments with an additional zero to four segments. The double-stranded form of polymycovirus genomic RNA is assumed to be associated with a virally encoded protein (proline-alanine-serine-rich protein [PASrp]) in either of two manners: a capsidless colloidal form or a filamentous encapsidated form. Detailed molecular characterizations of polymycoviruses, however, have been conducted for only a few strains. Here, a novel polymyco-related virus named Hadaka virus 1 (HadV1), from the phytopathogenic fungus Fusarium oxysporum, was characterized. The genomic RNA of HadV1 consisted of an 11-segmented positive-sense RNA with highly conserved terminal nucleotide sequences. HadV1 shared the three conserved segments with known polymycoviruses but lacked the PASrp-encoding segment. Unlike the known polymycoviruses and encapsidated viruses, HadV1 was not pelleted by conventional ultracentrifugation, possibly due to the lack of PASrp. This result implied that HadV1 exists only as a soluble form with naked RNA. Nevertheless, the 11 genomic segments of HadV1 have been stably maintained through host subculturing and conidiation. Taken together, the results of this study revealed a virus with a potential novel virus lifestyle, carrying many genomic segments without typical capsids or PASrp-associated forms. IMPORTANCE Fungi collectively host various RNA viruses. Examples include encapsidated double-stranded RNA (dsRNA) viruses with diverse numbers of genomic segments (from 1 to 12) and capsidless viruses with nonsegmented (+)RNA genomes. Recently, viruses with unusual intermediate features of an infectious entity between encapsidated dsRNA viruses and capsidless (+)RNA viruses were found. They are called polymycoviruses, which typically have four to eight dsRNA genomic segments associated with one of the virus-encoded proteins and are phylogenetically distantly related to animal (+)RNA caliciviruses. Here, we identified a novel virus phylogenetically related to polymycoviruses, from the phytopathogenic fungus Fusarium oxysporum. The virus, termed Hadaka virus 1 (HadV1), has 11 (+)RNA genomic segments, the largest number in known (+)RNA viruses. Nevertheless, HadV1 lacked a typical structural protein of polymycoviruses and was not pelleted by standard ultracentrifugation, implying an unusual capsidless nature of HadV1. This study reveals a potential novel lifestyle of multisegmented RNA viruses. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShamsiWajeeha en-aut-sei=Shamsi en-aut-mei=Wajeeha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JamalAtif en-aut-sei=Jamal en-aut-mei=Atif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BhattiMuhammad Faraz en-aut-sei=Bhatti en-aut-mei=Muhammad Faraz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Crop Diseases Research Institute, National Agricultural Research Centre kn-affil= affil-num=4 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=fungal virus kn-keyword=fungal virus en-keyword=polymycovirus kn-keyword=polymycovirus en-keyword=Fusarium oxysporum kn-keyword=Fusarium oxysporum en-keyword=multisegmented kn-keyword=multisegmented en-keyword=RNA virus kn-keyword=RNA virus en-keyword=capsidless kn-keyword=capsidless en-keyword=neo-virus lifestyle kn-keyword=neo-virus lifestyle END start-ver=1.4 cd-journal=joma no-vol=1 cd-vols= no-issue= article-no= start-page=100001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200720 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dicer monitoring in a model filamentous fungus host, Cryphonectria parasitica en-subtitle= kn-subtitle= en-abstract= kn-abstract=The ascomycete Cryphonectria parasitica has served as a model filamentous fungus for studying virus host interactions because of its susceptibility to diverse viruses, its genetic manipulability and the availability of many biological and molecular tools. Cryphonectria prasitica is known to activate antiviral RNA silencing upon infection by some viruses via transcriptional up-regulation of key RNA silencing genes. Here, utilizing a newly developed GFP-based reporter system to monitor dicer-like 2 (dcl2) transcript levels, we show different levels of antiviral RNA silencing activation by different viruses. Some viruses such as mycoreovirus 1, a suppressor-lacking mutant of Cryphonectria hypovirus 1 (CHV1-Δp69) and Rosellinia necatrix partitivirus 11 (RnPV11) highly induced RNA silencing, while others such as CHV3, Rosellinia necatrix victorivirus 1 and RnPV19 did not. There was considerable variation in dcl2 induction by different members within the family Hypoviridae with positive-sense single-stranded RNA genomes or Partitiviridae with double-stranded RNA genomes. Northern blotting and an in vitro Dicer assay developed recently by us using mycelial homogenates validated the reporter assay results for several representative virus strains. Taken together, this study represents a development in the monitoring of Dicer activity in virus-infected C. parasitica. en-copyright= kn-copyright= en-aut-name=AuliaAnnisa en-aut-sei=Aulia en-aut-mei=Annisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TabaraMidori en-aut-sei=Tabara en-aut-mei=Midori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukuharaToshiyuki en-aut-sei=Fukuhara en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Tokyo University of Agriculture and Technology, Department of Applied Biological Sciences kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Tokyo University of Agriculture and Technology, Department of Applied Biological Sciences kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Dicer kn-keyword=Dicer en-keyword=RNA silencing kn-keyword=RNA silencing en-keyword=Fungal virus kn-keyword=Fungal virus en-keyword=RNA virus kn-keyword=RNA virus en-keyword=Antiviral defense kn-keyword=Antiviral defense END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=1064 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200626 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Diverse Partitiviruses From the Phytopathogenic Fungus,Rosellinia necatrix en-subtitle= kn-subtitle= en-abstract= kn-abstract=Partitiviruses (dsRNA viruses, familyPartitiviridae) are ubiquitously detected in plants and fungi. Although previous surveys suggested their omnipresence in the white root rot fungus,Rosellinia necatrix, only a few of them have been molecularly and biologically characterized thus far. We report the characterization of a total of 20 partitiviruses from 16R. necatrixstrains belonging to 15 new species, for which "Rosellinia necatrix partitivirus 11-Rosellinia necatrix partitivirus 25" were proposed, and 5 previously reported species. The newly identified partitiviruses have been taxonomically placed in two genera,Alphapartitivirus, andBetapartitivirus. Some partitiviruses were transfected into reference strains of the natural host,R. necatrix, and an experimental host,Cryphonectria parasitica, using purified virions. A comparative analysis of resultant transfectants revealed interesting differences and similarities between the RNA accumulation and symptom induction patterns ofR. necatrixandC. parasitica. Other interesting findings include the identification of a probable reassortment event and a quintuple partitivirus infection of a single fungal strain. These combined results provide a foundation for further studies aimed at elucidating mechanisms that underly the differences observed. en-copyright= kn-copyright= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MugambiCyrus en-aut-sei=Mugambi en-aut-mei=Cyrus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Arjona-LopezJuan Manuel en-aut-sei=Arjona-Lopez en-aut-mei=Juan Manuel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Lopez-HerreraCarlos Jose en-aut-sei=Lopez-Herrera en-aut-mei=Carlos Jose kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanematsuSatoko en-aut-sei=Kanematsu en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute for Sustainable Agriculture,Spanish Research Council kn-affil= affil-num=7 en-affil=Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=partitivirus kn-keyword=partitivirus en-keyword=dsRNA virus kn-keyword=dsRNA virus en-keyword=phytopathogenic fungus kn-keyword=phytopathogenic fungus en-keyword=Rosellinia necatrix kn-keyword=Rosellinia necatrix en-keyword=Cryphonectria parasitica kn-keyword=Cryphonectria parasitica en-keyword=diversity kn-keyword=diversity en-keyword=reassortment kn-keyword=reassortment en-keyword=horizontal transfer kn-keyword=horizontal transfer END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=509 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200407 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Virome Analysis of Aphid Populations That Infest the Barley Field: The Discovery of Two Novel Groups of Nege/Kita-Like Viruses and Other Novel RNA Viruses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aphids (order Hemiptera) are important insect pests of crops and are also vectors of many plant viruses. However, little is known about aphid-infecting viruses, particularly their diversity and relationship to plant viruses. To investigate the aphid viromes, we performed deep sequencing analyses of the aphid transcriptomes from infested barley plants in a field in Japan. We discovered virus-like sequences related to nege/kita-, flavi-, tombus-, phenui-, mononega-, narna-, chryso-, partiti-, and luteoviruses. Using RT-PCR and sequence analyses, we determined almost complete sequences of seven nege/kitavirus-like virus genomes; one of which was a variant of the Wuhan house centipede virus (WHCV-1). The other six seem to belong to four novel viruses distantly related to Wuhan insect virus 9 (WhIV-9) or Hubei nege-like virus 4 (HVLV-4). We designated the four viruses as barley aphid RNA virus 1 to 4 (BARV-1 to -4). Moreover, some nege/kitavirus-like sequences were found by searches on the transcriptome shotgun assembly (TSA) libraries of arthropods and plants. Phylogenetic analyses showed that BARV-1 forms a clade with WHCV-1 and HVLV-4, whereas BARV-2 to -4 clustered with WhIV-9 and an aphid virus, Aphis glycines virus 3. Both virus groups (tentatively designated as Centivirus and Aphiglyvirus, respectively), together with arthropod virus-like TSAs, fill the phylogenetic gaps between the negeviruses and kitaviruses lineages. We also characterized the flavi/jingmen-like and tombus-like virus sequences as well as other RNA viruses, including six putative novel viruses, designated as barley aphid RNA viruses 5 to 10. Interestingly, we also discovered that some aphid-associated viruses, including nege/kita-like viruses, were present in different aphid species, raising a speculation that these viruses might be distributed across different aphid species with plants being the reservoirs. This study provides novel information on the diversity and spread of nege/kitavirus-related viruses and other RNA viruses that are associated with aphids. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujitaMiki en-aut-sei=Fujita en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HisanoHiroshi en-aut-sei=Hisano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=College of Plant Health and Medicine, Qingdao Agricultural University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=negevirus kn-keyword=negevirus en-keyword=kitavirus kn-keyword=kitavirus en-keyword=aphid kn-keyword=aphid en-keyword=virome kn-keyword=virome en-keyword=RNA seq kn-keyword=RNA seq en-keyword=barley kn-keyword=barley en-keyword=diversity kn-keyword=diversity en-keyword=horizontal transmission kn-keyword=horizontal transmission END start-ver=1.4 cd-journal=joma no-vol=100 cd-vols= no-issue=9 article-no= start-page=1269 end-page=1270 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ICTV Virus Taxonomy Profile: Megabirnaviridae en-subtitle= kn-subtitle= en-abstract= kn-abstract= Megabirnaviridae is a family of non-enveloped spherical viruses with dsRNA genomes of two linear segments, each of 7.2-8.9 kbp, comprising 16.1 kbp in total. The genus Megabirnavirus includes the species Rosellinia necatrix megabirnavirus 1, the exemplar isolate of which infects the white root rot fungus (Rosellinia necatrix) to which it confers hypovirulence. Megabirnaviruses are characterized by their bisegmented genome with large 5'-untranslated regions (1.6 kb) upstream of both 5'-proximal coding strand ORFs, and large protrusions on the particle surface. This is a summary of the ICTV Report on the family Megabirnaviridae, which is available at ictv.global/report/megabirnaviridae. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazakiNaoyuki en-aut-sei=Miyazaki en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanematsuSatoko en-aut-sei=Kanematsu en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=XieJiatao en-aut-sei=Xie en-aut-mei=Jiatao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GhabrialSaid A. en-aut-sei=Ghabrial en-aut-mei=Said A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HillmanBradley I. en-aut-sei=Hillman en-aut-mei=Bradley I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil= Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba kn-affil= affil-num=3 en-affil= National Agriculture and Food Research Organization (NARO) Headquarters kn-affil= affil-num=4 en-affil=College of Plant Science and Technology, Huazhong Agricultural University kn-affil= affil-num=5 en-affil=Department of Plant Pathology, University of Kentucky kn-affil= affil-num=6 en-affil=Department of Plant Biology and Pathology, Rutgers University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=ICTV Report kn-keyword=ICTV Report en-keyword=Megabirnaviridae kn-keyword=Megabirnaviridae en-keyword=taxonomy kn-keyword=taxonomy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=73 end-page=88 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140916 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Detection and analysis of non-retroviral RNA virus-like elements in plant, fungal, and insect genomes. en-subtitle= kn-subtitle= en-abstract= kn-abstract= Endogenous non-retroviral RNA like sequences (NRVSs) have been discovered in the genome of a wide range of eukaryotes. These are considered as fossil RNA viral elements integrated into host genomes by as-yet-known mechanisms, and in many cases, those fossils are estimated to be millions-of-years-old. It is likely that the number of NRVS records will increase rapidly due to the growing availability of whole-genome sequences for many kinds of eukaryotes. Discovery of the novel NRVSs and understanding of their phylogenetic relationship with modern viral relatives provide important information on deep evolutionary history of RNA virus-host interactions. In this chapter, therefore, the common strategies for the identification and characterization of endogenous NRVSs from plants, insects, and fungi are described. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChibaSotaro en-aut-sei=Chiba en-aut-mei=Sotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR)Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Pareovirology kn-keyword=Pareovirology en-keyword=Molecular fossil record kn-keyword=Molecular fossil record en-keyword=Non-retrovirus-like sequence kn-keyword=Non-retrovirus-like sequence en-keyword=Database search kn-keyword=Database search en-keyword=Whole-genome shotgun kn-keyword=Whole-genome shotgun en-keyword=Genomic PCR kn-keyword=Genomic PCR en-keyword=Southern blotting kn-keyword=Southern blotting en-keyword=Phylogenetic analysis kn-keyword=Phylogenetic analysis en-keyword=Maximum-likelihood kn-keyword=Maximum-likelihood END start-ver=1.4 cd-journal=joma no-vol=159 cd-vols= no-issue=1 article-no= start-page=163 end-page=166 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Complete genome sequence of Habenaria mosaic virus, a new potyvirus infecting a terrestrial orchid (Habenaria radiata) in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract= The complete genomic sequence of Habenaria mosaic virus (HaMV), which infects terrestrial orchids (Habenaria radiata), has been determined. The genome is composed of 9,499 nucleotides excluding the 3'-terminal poly(A) tail, encoding a large polyprotein of 3,054 amino acids with the genomic features typical of a potyvirus. Putative proteolytic cleavage sites were identified by sequence comparison to those of known potyviruses. The HaMV polyprotein showed 58 % amino acid sequence identity to that encoded by the most closely related potyvirus, tobacco vein banding mosaic virus. Phylogenetic analysis of the polyprotein amino acid sequence and its coding sequences confirmed that HaMV formed a cluster with the chilli veinal mottle virus group, most of which infect solanaceous plants. These results suggest that HaMV is a distinct member of the genus Potyvirus. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaTakanori en-aut-sei=Maeda en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=I Wayan Gara en-aut-sei=I Wayan Gara en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChibaSotaro en-aut-sei=Chiba en-aut-mei=Sotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaruyamaKazuyuki en-aut-sei=Maruyama en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TamadaTetsuo en-aut-sei=Tamada en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=College of Bioresource SciencesNihon University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR)Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR)Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR)Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR)Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=160 cd-vols= no-issue=8 article-no= start-page=2099 end-page=104 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150531 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cymbidium chlorotic mosaic virus, a new sobemovirus isolated from a spring orchid (Cymbidium goeringii) in Japan. en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cymbidium chlorotic mosaic virus (CyCMV), isolated from a spring orchid (Cymbidium goeringii), was characterized molecularly. CyCMV isometric virions comprise a single, positive-strand RNA genome of 4,083 nucleotides and 30-kDa coat protein. The virus genome contains five overlapping open reading frames with a genomic organization similar to that of sobemoviruses. BLAST searches and phylogenetic analysis revealed that CyCMV is most closely related to papaya lethal yellowing virus, a proposed dicot-infecting sobemovirus (58.8 % nucleotide sequence identity), but has a relatively distant relationship to monocot-infecting sobemoviruses, with only modest sequence identities. This suggests that CyCMV is a new monocot-infecting member of the floating genus Sobemovirus. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakemotoShogo en-aut-sei=Takemoto en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaruyamaKazuyuki en-aut-sei=Maruyama en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChibaSotaro en-aut-sei=Chiba en-aut-mei=Sotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Ida Bagus Andika en-aut-sei=Ida Bagus Andika en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR)Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR)Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR)Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR)Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=533 cd-vols= no-issue= article-no= start-page=125 end-page=136 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shiitake mushroom (Lentinula edodes) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Abstract There is still limited information on the diversity of (−)ssRNA viruses that infect fungi. Here, we have discovered two novel (−)ssRNA mycoviruses in the shiitake mushroom (Lentinula edodes). The first virus has a monopartite RNA genome and relates to that of mymonaviruses (Mononegavirales), especially to Hubei rhabdo-like virus 4 from arthropods and thus designated as Lentinula edodes negative-strand RNA virus 1. The second virus has a putative bipartite RNA genome and is related to the recently discovered bipartite or tripartite phenui-like viruses (Bunyavirales) associated with plants and ticks, and designated as Lentinula edodes negative-strand RNA virus 2 (LeNSRV2). LeNSRV2 is likely the first segmented (−)ssRNA virus known to infect fungi. Its smaller RNA segment encodes a putative nucleocapsid and a plant MP-like protein using a potential ambisense coding strategy. These findings enhance our understanding of the diversity, evolution and spread of (−)ssRNA viruses in fungi. en-copyright= kn-copyright= en-aut-name=Lin Yu-Hsin en-aut-sei=Lin en-aut-mei= Yu-Hsin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Fujita Miki en-aut-sei=Fujita en-aut-mei= Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Chiba Sotaro en-aut-sei=Chiba en-aut-mei= Sotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Hyodo Kiwamu en-aut-sei=Hyodo en-aut-mei= Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Andika Ida Bagus en-aut-sei=Andika en-aut-mei= Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Suzuki Nobuhiro en-aut-sei=Suzuki en-aut-mei= Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Kondo Hideki en-aut-sei=Kondo en-aut-mei= Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Bioagricultural Sciences, Nagoya University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Ambisense kn-keyword=Ambisense en-keyword=Bipartite genome kn-keyword=Bipartite genome en-keyword=Endogenous virus element kn-keyword=Endogenous virus element en-keyword=Evolution kn-keyword=Evolution en-keyword=High-throughput sequencing kn-keyword=High-throughput sequencing en-keyword=Lentinula edodes kn-keyword=Lentinula edodes en-keyword=Mymonaviridae kn-keyword=Mymonaviridae en-keyword=Negative-strand RNA virus kn-keyword=Negative-strand RNA virus en-keyword=Phenuiviridae kn-keyword=Phenuiviridae en-keyword=Shitake mushroom kn-keyword=Shitake mushroom END