start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=
article-no=
start-page=100277
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of a technique to identify μm-sized organic matter in asteroidal material: An approach using machine learning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Asteroidal materials contain organic matter (OM), which records a number of extraterrestrial environments and thus provides a record of Solar System processes. OM contain essential compounds for the origin of life. To understand the origin and evolution of OM, systematic identification and detailed observation using in-situ techniques is required. While both nm- and μm-sized OM were studied previously, only a small portion of a given sample surface was investigated in each study. Here, a novel workflow was developed and applied to identify and classify μm-sized OM on mm-sized asteroidal materials. The workflow involved image processing and machine learning, enabling a comprehensive and non-biased way of identifying, classifying, and measuring the properties of OM. We found that identifying OM is more accurate by classification with machine learning than by clustering. On the approach of classification with machine learning, five algorithms were tested. The random forest algorithm was selected as it scored the highest in 4 out of 5 accuracy parameters during evaluation. The workflow gave modal OM abundances that were consistent with those identified manually, demonstrating that the workflow can accurately identify 1-15 μm-sized OM. The size distribution of OM was modeled using the power-law distribution, giving slope α values that were consistent with fragmentation processes. The shape of the OM was quantified using circularity and solidity, giving a positive correlation and indicating these properties are closely related. Overall, the workflow enabled identification of many OM quickly and accurately and the obtainment of chemical and petrographic information. Such information can help the selection of OM for further in-situ techniques, and elucidate the origin and evolution of OM preserved in asteroidal materials.
en-copyright=
kn-copyright=
en-aut-name=KumarRahul
en-aut-sei=Kumar
en-aut-mei=Rahul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiKatsura
en-aut-sei=Kobayashi
en-aut-mei=Katsura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PotiszilChristian
en-aut-sei=Potiszil
en-aut-mei=Christian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KunihiroTak
en-aut-sei=Kunihiro
en-aut-mei=Tak
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=Asteroidal material
kn-keyword=Asteroidal material
en-keyword=Organic matter
kn-keyword=Organic matter
en-keyword=Carbonaceous chondrites
kn-keyword=Carbonaceous chondrites
en-keyword=RyuguImage processing
kn-keyword=RyuguImage processing
en-keyword=Machine learning
kn-keyword=Machine learning
en-keyword=Size distribution
kn-keyword=Size distribution
END
start-ver=1.4
cd-journal=joma
no-vol=400
cd-vols=
no-issue=
article-no=
start-page=51
end-page=71
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lithium- and oxygen-isotope compositions of a Si-rich nebular reservoir determined from chondrule constituents in the Sahara 97103 EH3 chondrite
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Here we report the in situ ion-microprobe analyses of the Li- and O-isotope compositions of enstatite, FeO-rich pyroxene, olivine, glass, and cristobalite grains from six chondrule-related objects from the Sahara 97103 EH3 chondrite. The O-isotope composition of the enstatite grains scattered around the intersection between the terrestrial fractionation and primitive chondrule minerals lines. Whereas, that of olivine varied along the primitive chondrule minerals line. Based on the mineralogy, we found cristobalite formed as a result of Si saturation, instead of the reduction of FeO-rich silicates, consistent with Si-enrichment of whole rock enstatite chondrites. Based on the mineralogy and O-isotope compositions, we infer that olivines in some chondrules are relict grains. In chondrules that contained olivine, no abundant niningerite [(Mg,Fe,Mn)S] was observed. Thus, enstatite formation can be explained by the interaction of an olivine precursor with additional SiO2 (Mg2SiO4 + SiO2 → Mg2Si2O6), instead of sulfidation (Mg2SiO4 + S → 1/2 Mg2Si2O6 + MgS + 1/2 O2). Using the equation Mg2SiO4 + SiO2 → Mg2Si2O6 and the O-isotope compositions of enstatite and olivine, the O-isotope composition of the additional SiO2 was estimated. Based on the O-isotope composition, we infer that there could be a Si-rich gas with an elevated Δ17O value similar to, or greater than the second trend line (Δ17O = 0.9 ‰) suggested by Weisberg et al. (2021), during chondrule formation. The variation in the Li-isotope compositions of enstatite and olivine grains from EH3 chondrules is smaller than that for the same phases from CV3 chondrules. The variation in the Li-isotope compositions of the enstatite and olivine grains from EH3 chondrules is also smaller than that of their O-isotope compositions. During the recycling of enstatite-chondrite chondrules, both Li- and O-isotope compositions were homogenized. Although enstatite is the major carrier of Li in EH3 chondrules, the Li-isotope composition (δ7Li) of enstatite is lower than that of whole rock EH3 chondrites, suggesting the existence of a phase with higher δ7Li. Meanwhile, the Li-isotope composition and concentration (δ7Li, [Li]) of enstatite is higher than that of olivine. The Li-isotope composition of the Si-rich gas was estimated to be δ7Li = 1 ‰, using a similar mass-balance calculation as applied for the O-isotope composition. The Li-isotope composition of the Si-rich gas from the enstatite-chondrite-chondrule forming-region, is consistent with that of whole rock EH3 chondrites, and differs significantly from that of the Si-rich gas from the carbonaceous-chondrite-chondrule forming-region (δ7Li = −11 ‰) determined by a previous study. We speculate that the Si-rich gas in the carbonaceous-chondrite-chondrule forming-region maintained the Li-isotope heterogeneity inherited from light lithium synthesized by galactic cosmic-ray spallation in the interstellar medium.
en-copyright=
kn-copyright=
en-aut-name=Douglas-SongTorii
en-aut-sei=Douglas-Song
en-aut-mei=Torii
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaTsutomu
en-aut-sei=Ota
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamanakaMasahiro
en-aut-sei=Yamanaka
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitagawaHiroshi
en-aut-sei=Kitagawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaRyoji
en-aut-sei=Tanaka
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PotiszilChristian
en-aut-sei=Potiszil
en-aut-mei=Christian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KunihiroTak
en-aut-sei=Kunihiro
en-aut-mei=Tak
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=The Pheasant Memorial Laboratory Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=5
en-affil=The Pheasant Memorial Laboratory Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=6
en-affil=The Pheasant Memorial Laboratory Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=7
en-affil=The Pheasant Memorial Laboratory Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=Lithium
kn-keyword=Lithium
en-keyword=Oxygen
kn-keyword=Oxygen
en-keyword=Trace elements
kn-keyword=Trace elements
en-keyword=Chondrule
kn-keyword=Chondrule
en-keyword=Enstatite chondrite
kn-keyword=Enstatite chondrite
en-keyword=SIMS
kn-keyword=SIMS
en-keyword=Sulfidation
kn-keyword=Sulfidation
en-keyword=Silicification
kn-keyword=Silicification
END
start-ver=1.4
cd-journal=joma
no-vol=965
cd-vols=
no-issue=1
article-no=
start-page=52
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240404
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unraveling the Cr Isotopes of Ryugu: An Accurate Aqueous Alteration Age and the Least Thermally Processed Solar System Material
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The analysis of samples returned from the C-type asteroid Ryugu has drastically advanced our knowledge of the evolution of early solar system materials. However, no consensus has been obtained on the chronological data, which is important for understanding the evolution of the asteroid Ryugu. Here, the aqueous alteration age of Ryugu particles was determined by the Mn–Cr method using bulk samples, yielding an age of 4.13 + 0.62/−0.55 Myr after the formation of Ca–Al-rich inclusions (CAI). The age corresponds to 4563.17 + 0.60/−0.67 Myr ago. The higher 55Mn/52Cr, ε54Cr, and initial ε53Cr values of the Ryugu samples relative to any carbonaceous chondrite samples implies that its progenitor body formed from the least thermally processed precursors in the outermost region of the protoplanetary disk. Despite accreting at different distances from the Sun, the hydrous asteroids (Ryugu and the parent bodies of CI, CM, CR, and ungrouped C2 meteorites) underwent aqueous alteration during a period of limited duration (3.8 ± 1.8 Myr after CAI). These ages are identical to the crystallization age of the carbonaceous achondirtes NWA 6704/6693 within the error. The ε54Cr and initial ε53Cr values of Ryugu and NWA 6704/6693 are also identical, while they show distinct Δ'17O values. This suggests that the precursors that formed the progenitor bodies of Ryugu and NWA 6703/6693 were formed in close proximity and experienced a similar degree of thermal processing in the protosolar nebula. However, the progenitor body of Ryugu was formed by a higher ice/dust ratio, than NWA6703/6693, in the outer region of the protoplanetary disk.
en-copyright=
kn-copyright=
en-aut-name=TanakaRyoji
en-aut-sei=Tanaka
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=RatnayakeDilan M.
en-aut-sei=Ratnayake
en-aut-mei=Dilan M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtaTsutomu
en-aut-sei=Ota
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiklusicakNoah
en-aut-sei=Miklusicak
en-aut-mei=Noah
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunihiroTak
en-aut-sei=Kunihiro
en-aut-mei=Tak
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PotiszilChristian
en-aut-sei=Potiszil
en-aut-mei=Christian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakaguchiChie
en-aut-sei=Sakaguchi
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiKatsura
en-aut-sei=Kobayashi
en-aut-mei=Katsura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KitagawaHiroshi
en-aut-sei=Kitagawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamanakaMasahiro
en-aut-sei=Yamanaka
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AbeMasanao
en-aut-sei=Abe
en-aut-mei=Masanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyazakiAkiko
en-aut-sei=Miyazaki
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakatoAiko
en-aut-sei=Nakato
en-aut-mei=Aiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakazawaSatoru
en-aut-sei=Nakazawa
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NishimuraMasahiro
en-aut-sei=Nishimura
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OkadaTatsuaki
en-aut-sei=Okada
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SaikiTakanao
en-aut-sei=Saiki
en-aut-mei=Takanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TanakaSatoshi
en-aut-sei=Tanaka
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=TeruiFuyuto
en-aut-sei=Terui
en-aut-mei=Fuyuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TsudaYuichi
en-aut-sei=Tsuda
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=UsuiTomohiro
en-aut-sei=Usui
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=WatanabeSei-ichiro
en-aut-sei=Watanabe
en-aut-mei=Sei-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YadaToru
en-aut-sei=Yada
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=YogataKasumi
en-aut-sei=Yogata
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshikawaMakoto
en-aut-sei=Yoshikawa
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=5
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=6
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=7
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=8
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=9
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=10
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=11
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=12
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=13
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=14
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=15
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=16
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=17
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=18
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=19
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=20
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=21
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=22
en-affil=Department of Earth and Planetary Sciences, Nagoya University
kn-affil=
affil-num=23
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=24
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=25
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=26
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An investigation of the internal morphology of asbestos ferruginous bodies: constraining their role in the onset of malignant mesothelioma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Asbestos is a fibrous mineral that was widely used in the past. However, asbestos inhalation is associated with an aggressive type of cancer known as malignant mesothelioma (MM). After inhalation, an iron-rich coat forms around the asbestos fibres, together the coat and fibre are termed an "asbestos ferruginous body" (AFB). AFBs are the main features associated with asbestos-induced MM. Whilst several studies have investigated the external morphology of AFBs, none have characterised the internal morphology. Here, cross-sections of multiple AFBs from two smokers and two non-smokers are compared to investigate the effects of smoking on the onset and growth of AFBs. Morphological and chemical observations of AFBs were undertaken by transmission electron microscopy, energy dispersive x-ray spectroscopy and selected area diffraction.
Results The AFBs of all patients were composed of concentric layers of 2-line or 6-line ferrihydrite, with small spherical features being observed on the outside of the AFBs and within the cross-sections. The spherical components are of a similar size to Fe-rich inclusions found within macrophages from mice injected with asbestos fibres in a previous study. As such, the spherical components composing the AFBs may result from the deposition of Fe-rich inclusions during frustrated phagocytosis. The AFBs were also variable in terms of their Fe, P and Ca abundances, with some layers recording higher Fe concentrations (dense layers), whilst others lower Fe concentrations (porous layers). Furthermore, smokers were found to have smaller and overall denser AFBs than non-smokers.
Conclusions The AFBs of smokers and non-smokers show differences in their morphology, indicating they grew in lung environments that experienced disparate conditions. Both the asbestos fibres of smokers and non-smokers were likely subjected to frustrated phagocytosis and accreted mucopolysaccharides, resulting in Fe accumulation and AFB formation. However, smokers' AFBs experienced a more uniform Fe-supply within the lung environment compared to non-smokers, likely due to Fe complexation from cigarette smoke, yielding denser, smaller and more Fe-rich AFBs. Moreover, the lack of any non-ferrihydrite Fe phases in the AFBs may indicate that the ferritin shell was intact, and that ROS may not be the main driver for the onset of MM.
en-copyright=
kn-copyright=
en-aut-name=AvramescuMaya-Liliana
en-aut-sei=Avramescu
en-aut-mei=Maya-Liliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PotiszilChristian
en-aut-sei=Potiszil
en-aut-mei=Christian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KunihiroTak
en-aut-sei=Kunihiro
en-aut-mei=Tak
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkabeKazunori
en-aut-sei=Okabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=Bell Land General Hospital
kn-affil=
affil-num=5
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=Asbestos fibre
kn-keyword=Asbestos fibre
en-keyword=Asbestos body
kn-keyword=Asbestos body
en-keyword=Malignant mesothelioma
kn-keyword=Malignant mesothelioma
en-keyword=Asbestos body internal morphology
kn-keyword=Asbestos body internal morphology
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=3
article-no=
start-page=1020
end-page=1029
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220422
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lithium in garnet as a tracer of subduction zone metamorphic reactions: The record in ultrahigh-pressure metapelites at Lago di Cignana, Italy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Lithium is of great interest as a tracer of metamorphic reactions and related fluid-mineral interactions because of its potential to isotopically fractionate during inter- and intracrystalline diffusional processes. Study of its transfer through subduction zones, based on study of arc volcanic and metamorphic rocks, can yield insight regarding ocean-to-mantle chemical cycling. We investigated major- and trace-element concentrations and delta Li-7 in garnet in ultrahigh-pressure (UHP) Lago di Cignana metasedimentary rocks, relating these observations to reconstructed prograde devolatilization history. In all garnet crystals we studied, heavy rare earth elements (HREEs), Y, and Li showed strong zoning, with elevated concentrations in cores (15-50 ppm Li) and marked high-concentration anomalies (up to 117 ppm Li, 5500 ppm Y; little or no major-element shift) as growth annuli, in which some crystals showed subtle elevation in delta Li-7 greater than analytical error of similar to 3 parts per thousand (2 sigma). Rutile inclusions appeared abruptly at annuli and outward toward rims, accompanied by inclusions of a highly zoned, Ca- and rare earth element-rich phase and decreased Nb concentrations in garnet. These relationships are interpreted to reflect prograde garnet-forming reaction(s), in part involving titanite breakdown to stabilize rutile, which resulted in delivery of more abundant Y and HREEs at surfaces of growing garnet crystals to produce annuli. Co-enrichments in Li and Y + REEs are attributed to mutual incorporation via charge-coupled substitutions; thus, increased Li uptake was a passive consequence of elevated concentrations of Y + REEs. The small-scale fluctuations in delta Li-7 (overall range of similar to 9 parts per thousand) observed in some crystals may correlate with abrupt shifts in major-and trace-element concentrations, suggesting that changes in reactant phases exerted some control on the evolution of delta Li-7. For one garnet crystal, late-stage growth following partial resorption produced deviation in major- and trace-element compositions, including Li concentration, accompanied by a 10 parts per thousand-15 parts per thousand negative shift in delta Li-7, perhaps reflecting a change in the mechanism of incorporation or source of Li. These results highlight the value of measuring the major- and trace-element and isotope compositions of garnets in high-pressure and UHP metamorphic rocks in which matrix mineral assemblages are extensively overprinted by recrystallization during exhumation histories. Lithium concentrations and isotope compositions of the garnets can add valuable information regarding prograde (and retrograde) reaction history, kinetics of porphyroblast growth, intracrystalline diffusion, and fluid-rock interactions. This work, integrated with previous study of devolatilization in the Schistes Lustres/Cignana metasedimentary suite, indicates retention of a large fraction of the initially subducted sedimentary Li budget to depths approaching those beneath volcanic fronts, despite the redistribution of this Li among mineral phases during complex mineral reaction histories.
en-copyright=
kn-copyright=
en-aut-name=BeboutGray E.
en-aut-sei=Bebout
en-aut-mei=Gray E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaTsutomu
en-aut-sei=Ota
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KunihiroTakuya
en-aut-sei=Kunihiro
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=CarlsonWilliam D.
en-aut-sei=Carlson
en-aut-mei=William D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin
kn-affil=
affil-num=5
en-affil=Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210517
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Element concentrations of chondrule constituents, supplement to: Tak Kunihiro et al. (2021): The trace element composition of chondrule constituents: Implications for sample return methodologies and the chondrule silicate reservoir. Meteorit Planet Sci
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KunihiroTak
en-aut-sei=Kunihiro
en-aut-mei=Tak
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaTsutomu
en-aut-sei=Ota
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamanakaMasahiro
en-aut-sei=Yamanaka
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=95
cd-vols=
no-issue=4
article-no=
start-page=165
end-page=177
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hypervelocity collision and water-rock interaction in space preserved in the Chelyabinsk ordinary chondrite
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A comprehensive geochemical study of the Chelyabinsk meteorite reveals further details regarding its history of impact-related fragmentation and melting, and later aqueous alteration, during its transit toward Earth. We support an similar to 30 Ma age obtained by Ar-Ar method (Beard et al., 2014) for the impact-related melting, based on Rb-Sr isotope analyses of a melt domain. An irregularly shaped olivine with a distinct 0 isotope composition in a melt domain appears to be a fragment of a silicate-rich impactor. Hydrogen and Li concentrations and isotopic compositions, textures of Fe oxyhydroxides, and the presence of organic materials located in fractures, are together consistent with aqueous alteration, and this alteration could have pre-dated interaction with the Earth's atmosphere. As one model, we suggest that hypervelocity capture of the impact-related debris by a comet nucleus could have led to shock-wave-induced supercritical aqueous fluids dissolving the silicate, metallic, and organic matter, with later ice sublimation yielding a rocky rubble pile sampled by the meteorite.
en-copyright=
kn-copyright=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KunihiroTak
en-aut-sei=Kunihiro
en-aut-mei=Tak
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtaTsutomu
en-aut-sei=Ota
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaguchiChie
en-aut-sei=Sakaguchi
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaRyoji
en-aut-sei=Tanaka
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KitagawaHiroshi
en-aut-sei=Kitagawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KobayashiKatsura
en-aut-sei=Kobayashi
en-aut-mei=Katsura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamanakaMasahiro
en-aut-sei=Yamanaka
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimakiYuri
en-aut-sei=Shimaki
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=BeboutGray E.
en-aut-sei=Bebout
en-aut-mei=Gray E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MiuraHitoshi
en-aut-sei=Miura
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YamamotoTetsuo
en-aut-sei=Yamamoto
en-aut-mei=Tetsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MalkovetsVladimir
en-aut-sei=Malkovets
en-aut-mei=Vladimir
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=GrokhovskyVictor
en-aut-sei=Grokhovsky
en-aut-mei=Victor
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KorolevaOlga
en-aut-sei=Koroleva
en-aut-mei=Olga
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=LitasovKonstantin
en-aut-sei=Litasov
en-aut-mei=Konstantin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=5
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=6
en-affil=Okayama Univ, Inst Planetary Mat, Pheast Mem Lab Geochem & Cosmochem
kn-affil=
affil-num=7
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=8
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=9
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=10
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Natural Sciences, Nagoya City University
kn-affil=
affil-num=12
en-affil=Institute of Low Temperature Science, Hokkaido University
kn-affil=
affil-num=13
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=14
en-affil=Institute of Physics and Technology, Ural Federal University
kn-affil=
affil-num=15
en-affil=Institute of Mineralogy, Ural Branch of the Russian Academy of Sciences South-Ural State University
kn-affil=
affil-num=16
en-affil=V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
kn-affil=
en-keyword=ordinary chondrite
kn-keyword=ordinary chondrite
en-keyword=chronology
kn-keyword=chronology
en-keyword=geochemistry
kn-keyword=geochemistry
en-keyword=impact melting
kn-keyword=impact melting
en-keyword=asteroid
kn-keyword=asteroid
en-keyword=comet
kn-keyword=comet
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=1
article-no=
start-page=147
end-page=161
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=20181025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Determination of Abundances of Fifty-Two Elements in Natural Waters by ICP-MS with Freeze-Drying Pre-concentration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= To precisely determine the abundances of fifty-two elements found within natural water samples, with mass fractions down to fg g(-1) level, we have developed a method which combines freeze-drying pre-concentration (FDC) and isotope dilution internal standardisation (ID-IS). By sublimation of H2O, the sample solution was reduced to < 1/50 of the original volume. To determine element abundance with accuracy better than 10%, we found that for solutions being analysed by mass spectrometry the HNO3 concentration should be > 0.3 mol l(-1) to avoid hydrolysis. Matrix-affected signal suppression was not significant for the solutions with NaCl concentrations lower than 0.2 and 0.1 cg g(-1) for quadrupole ICP-MS and sector field ICP-MS, respectively. The recovery yields of elements after FDC were 97-105%. The detection limits for the sample solutions prepared by FDC were <= 10 pg g(-1), except for Na, K and Ca. Blanks prepared using FDC were at pg-levels, except for eleven elements (Na, Mg, Al, P, Ca, Mn, Fe, Co, Ni, Cu and Zn). The abundances of fifty-two elements in bottled drinking water were determined from five different geological sources with mass fractions ranging from the fg g(-1) to mu g g(-1) level with high accuracy.
en-copyright=
kn-copyright=
en-aut-name=HoangQue D.
en-aut-sei=Hoang
en-aut-mei=Que D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KunihiroTak
en-aut-sei=Kunihiro
en-aut-mei=Tak
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakaguchiChie
en-aut-sei=Sakaguchi
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamanakaMasahiro
en-aut-sei=Yamanaka
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitagawaHiroshi
en-aut-sei=Kitagawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=5
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=6
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=pre-concentration
kn-keyword=pre-concentration
en-keyword=freeze-drying
kn-keyword=freeze-drying
en-keyword=ID-IS
kn-keyword=ID-IS
en-keyword=natural water
kn-keyword=natural water
en-keyword=drinking water
kn-keyword=drinking water
END
start-ver=1.4
cd-journal=joma
no-vol=252
cd-vols=
no-issue=
article-no=
start-page=107
end-page=125
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lithium- and oxygen-isotope compositions of chondrule constituents in the Allende meteorite
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We report in situ ion-microprobe analyses of Li- and O-isotope compositions for olivine, low-Ca pyroxene, high-Ca pyroxene, and chondrule mesostasis/plagioclase in nine chondrules from the Allende CV3 chondrite. Based on their mineralogy and O-isotope compositions, we infer that the chondrule mesostasis/plagioclase and ferroan olivine rims were extensively modified or formed during metasomatic alteration and metamorphism on the Allende parent asteroid. We excluded these minerals in order to determine the correlations between Li and both O and the chemical compositions of olivines and low-Ca pyroxenes in the chondrules and their igneous rims. Based on the O-isotope composition of the olivines, nine chondrules were divided into three groups. Average Δ17O of olivines (Fo>65) in group 1 and 2 chondrules are −5.3 ± 0.4 and −6.2 ± 0.4‰, respectively. Group 3 chondrules are characterized by the presence of 16O-rich relict grains and the Δ17O of their olivines range from −23.7 to −6.2‰. In group 1 olivines, as Fa content increases, variation of δ7Li becomes smaller and δ7Li approaches the whole-rock value (2.4‰; Seitz et al., 2012), suggesting nearly complete Li-isotope equilibration. In group 2 and 3 olivines, variation of δ7Li is limited even with a significant range of Fa content. We conclude that Li-isotope compositions of olivine in group 1 chondrules were modified not by an asteroidal process but by an igneous-rim formation process, thus chondrule olivines retained Li-isotope compositions acquired in the protosolar nebula. In olivines of the group 3 chondrule PO-8, we observed a correlation between O and Li isotopes: In relict 16O-rich olivine grains with Δ17O of ∼−25 to −20‰, δ7Li ranges from −23 to −3‰; in olivine grains with Δ17O > −20‰, δ7Li is nearly constant (−8 ± 4‰). Based on the Li-isotope composition of low-Ca pyroxenes, which formed from melt during the crystallization of host chondrules and igneous rims, the existence of a gaseous reservoir with a δ7Li ∼ −11‰ is inferred.
en-copyright=
kn-copyright=
en-aut-name=KunihiroTakuya
en-aut-sei=Kunihiro
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaTsutomu
en-aut-sei=Ota
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=Lithium
kn-keyword=Lithium
en-keyword=Oxygen
kn-keyword=Oxygen
en-keyword=Chondrule
kn-keyword=Chondrule
en-keyword=Chondrite
kn-keyword=Chondrite
en-keyword=Asteroid
kn-keyword=Asteroid
en-keyword=Allende
kn-keyword=Allende
en-keyword=Igneous rim
kn-keyword=Igneous rim
en-keyword=SIMS
kn-keyword=SIMS
END