start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=e1579 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Echelon analysis and its software for spatial lattice data en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, we explore the use of echelon analysis and its software named EcheScan for spatial lattice data. EcheScan is developed as a web application via an internet browser in R language and Shiny server for echelon analysis. The technique of echelon is proposed to analyze the topological structure for spatial lattice data. The echelon tree provides a dendrogram representation. Regional features, such as hierarchical spatial data structure and hotspots clusters, are shown in an echelon dendrogram. In addition, we introduce the conception of echelon with the values and neighbors for lattice data. We also explain the use of EcheScan for one- and two-dimensional regular lattice data. Furthermore, coronavirus disease 2019 death data corresponding to 50 US states are illustrated using EcheScan as an example of geospatial lattice data.

This article is categorized under:
 Statistical Learning and Exploratory Methods of the Data Sciences > Exploratory Data Analysis
 Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and Classification
 Data: Types and Structure > Image and Spatial Data en-copyright= kn-copyright= en-aut-name=KuriharaKoji en-aut-sei=Kurihara en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshiokaFumio en-aut-sei=Ishioka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=echelon analysis kn-keyword=echelon analysis en-keyword=hierarchical structure kn-keyword=hierarchical structure en-keyword=R language and shiny kn-keyword=R language and shiny en-keyword=spatial lattice data kn-keyword=spatial lattice data en-keyword=web application kn-keyword=web application END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=110 end-page=120 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Juvenile salmon patch identification and comparison using Echelon analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ODAMakiko en-aut-sei=ODA en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KOLJONENSaija en-aut-sei=KOLJONEN en-aut-mei=Saija kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ISHIOKAFumio en-aut-sei=ISHIOKA en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ALHOPetteri en-aut-sei=ALHO en-aut-mei=Petteri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SUITOHiroshi en-aut-sei=SUITO en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HUTTULATimo en-aut-sei=HUTTULA en-aut-mei=Timo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KURIHARAKoji en-aut-sei=KURIHARA en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil= kn-affil= affil-num=3 en-affil= kn-affil= affil-num=4 en-affil= kn-affil= affil-num=5 en-affil= kn-affil= affil-num=6 en-affil= kn-affil= affil-num=7 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=1 article-no= start-page=7 end-page=21 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201203 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=A Survey Study of University Students’ Awareness on Social Contribution and Regional Cooperation kn-title=大学生の社会貢献・地域連携に対する意識 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, competition among universities has a whole new face, and emphasis is given toward interdependence and interactive evolution between universities and regions. From this social perspective, universities should contribute to regional development by serving the regional society using results of intellectual work, and it is necessary for universities to accomplish social contribution and regional cooperation strategically. One of the most important parts in strategic planning is that students participate in activities for social contribution and regional cooperation. This paper presents a survey of the university students’ awareness on social contribution and regional cooperation using several statistical methods and attempts to find factors which affect activities for social contribution and regional cooperation using logistic regression analysis. en-copyright= kn-copyright= en-aut-name=NaMyungjin en-aut-sei=Na en-aut-mei=Myungjin kn-aut-name=羅明振 kn-aut-sei=羅 kn-aut-mei=明振 aut-affil-num=1 ORCID= en-aut-name=ArakiMasaru en-aut-sei=Araki en-aut-mei=Masaru kn-aut-name=荒木勝 kn-aut-sei=荒木 kn-aut-mei=勝 aut-affil-num=2 ORCID= en-aut-name=KuriharaKoji en-aut-sei=Kurihara en-aut-mei=Koji kn-aut-name=栗原考次 kn-aut-sei=栗原 kn-aut-mei=考次 aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院社会文化科学研究科 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学大学院環境学研究科 en-keyword=University students’ awareness kn-keyword=University students’ awareness en-keyword=social contribution and regional cooperation kn-keyword=social contribution and regional cooperation en-keyword=volunteer activities kn-keyword=volunteer activities en-keyword=exploratory factor analysis kn-keyword=exploratory factor analysis en-keyword=logistic regression analysis kn-keyword=logistic regression analysis END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=51 end-page=56 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Detection of Hotspot for Korea Earthquake Data using Echelon Analysis and Seismic Wave Energy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Echelon analysis (Myers et al., 1997) is a method to investigate the phase-structure of spatial data systematically and objectively. This method is also useful to prospect the areas of interest in regional monitoring of a surface variable. The spatial scan statistic (Kulldorff, 1997) is a method of detection and inference for the zones of significantly high or low rates based on the likelihood ratio. These zones are called hotspots. The purpose of this paper is to detect the hotspot area for spatial data using echelon. We perform echelon analysis for Korea earthquake data. We use ESRI’s ArcGIS that is geographical information system (GIS) software to make the meshed areas and get contiguity information of these areas. With this contiguity information on the meshed areas, we detect the hotspot area using echelon analysis and spatial scan statistics. In addition, we compare with the result of analysis based on the total of number of times simply and the seismic wave energy. en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=SanghoonHan kn-aut-sei=Sanghoon kn-aut-mei=Han aut-affil-num=1 ORCID= en-aut-name=IshiokaFumio en-aut-sei=Ishioka en-aut-mei=Fumio kn-aut-name=石岡文生 kn-aut-sei=石岡 kn-aut-mei=文生 aut-affil-num=2 ORCID= en-aut-name=KuriharaKoji en-aut-sei=Kurihara en-aut-mei=Koji kn-aut-name=栗原考次 kn-aut-sei=栗原 kn-aut-mei=考次 aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 en-keyword=Hotspot kn-keyword=Hotspot en-keyword=Echelon analysis kn-keyword=Echelon analysis en-keyword=Spatial scan statistics kn-keyword=Spatial scan statistics en-keyword=Seismic Wave Energy kn-keyword=Seismic Wave Energy END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=35 end-page=42 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Survey Study of Resident Awareness on Waste Final Disposal Site kn-title=最終処分場に関する住民の意識調査 en-subtitle= kn-subtitle= en-abstract= kn-abstract=As construction of final waste disposal site is essential recently, a problem where we should build it becomes important issue. However, public opposition occurs for the construction because the final waste disposal site has negative image such as pollution of various kinds, increase of traffic volume and noise by truck and bulldozer, and aggravation of living conditions. Public opposition is the most critical problem in constructing final waste disposal site. The source of public opposition has been characterized as NIMBY or not-in-my-yard. This paper presents a survey of the resident awareness on final waste disposal site, and attempts to find factors which affect the public opposition using logistic regression analysis and CART(classification and regression tree). en-copyright= kn-copyright= en-aut-name=NaMyungjin en-aut-sei=Na en-aut-mei=Myungjin kn-aut-name=羅明振 kn-aut-sei=羅 kn-aut-mei=明振 aut-affil-num=1 ORCID= en-aut-name=OnoYusaku en-aut-sei=Ono en-aut-mei=Yusaku kn-aut-name=小野雄策 kn-aut-sei=小野 kn-aut-mei=雄策 aut-affil-num=2 ORCID= en-aut-name=OnoYoshiro en-aut-sei=Ono en-aut-mei=Yoshiro kn-aut-name=小野芳朗 kn-aut-sei=小野 kn-aut-mei=芳朗 aut-affil-num=3 ORCID= en-aut-name=KuriharaKoji en-aut-sei=Kurihara en-aut-mei=Koji kn-aut-name=栗原考次 kn-aut-sei=栗原 kn-aut-mei=考次 aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=埼玉県環境科学国際センター affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 en-keyword=final waste disposal site kn-keyword=final waste disposal site en-keyword=resident awareness kn-keyword=resident awareness en-keyword=public opposition kn-keyword=public opposition en-keyword=logistic regression analysis kn-keyword=logistic regression analysis en-keyword=CART(classification and regression tree) kn-keyword=CART(classification and regression tree) END