start-ver=1.4
cd-journal=joma
no-vol=135
cd-vols=
no-issue=7
article-no=
start-page=1329
end-page=1343
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250417
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Molecular polymorphisms of the nuclear and chloroplast genomes among African melon germplasms reveal abundant and unique genetic diversity, especially in Sudan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aims Africa is rich in wild species of Cucumis and is considered one of the places of origin of melon. However, our knowledge of African melon is limited, and genetic studies using melon germplasms with wide geographical coverage are required. Here, we analysed the genetic structure of African melons, with emphasis on Sudan.
Methods Ninety-seven accessions of African melon were examined along with 77 reference accessions representing Asian melon and major horticultural groups. Molecular polymorphisms in the nuclear and chloroplast genomes were investigated using 12 RAPD, 7 SSR and 3 SNP markers. Horticultural traits, including seed size, were measured for 46 accessions, mainly from Sudan.
Key Results African melons were divided into large and small seed-types based on seed length: large seed-type from Northern Africa and small seed-type from Western and Southern Africa. Both seed types are common in Sudan. Molecular genetic diversity in these geographical populations was as high as in India, the Asian centre of melon domestication. Large seed-types from Northern Africa were assigned to Pop4 by structure analysis and had Ib cytoplasm in common with Cantalupensis, Inodorus and Flexuosus. Small seed-types were highly diversified and geographically differentiated; specifically, Pop1 with Ia cytoplasm in Southern Africa and South Asia, Pop2 with Ia in East Asia, including Conomon and Makuwa, and Pop3 with Ia or Ic in Africa. Sudanese small seed-types were grouped in Pop3, while their cytoplasm type was a mixture of Ia and Ic. Sudanese Tibish had Ic cytoplasm, which was unique in Africa, common in Western Africa and Sudan, and also found in wild or feral types.
Conclusions Melon of Ic lineage, including Tibish, originated from wild melon in the ‘western Sudan region’, and independently of melon with Ia or Ib cytoplasm, which originated in Asia. This clearly indicates the polyphyletic origin of melon.
en-copyright=
kn-copyright=
en-aut-name=ImohOdirichi Nnennaya
en-aut-sei=Imoh
en-aut-mei=Odirichi Nnennaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigitaGentaro
en-aut-sei=Shigita
en-aut-mei=Gentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugiyamaMitsuhiro
en-aut-sei=Sugiyama
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DungTran Phuong
en-aut-sei=Dung
en-aut-mei=Tran Phuong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaKatsunori
en-aut-sei=Tanaka
en-aut-mei=Katsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiMami
en-aut-sei=Takahashi
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishimuraKazusa
en-aut-sei=Nishimura
en-aut-mei=Kazusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MondenYuki
en-aut-sei=Monden
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NishidaHidetaka
en-aut-sei=Nishida
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GodaMashaer
en-aut-sei=Goda
en-aut-mei=Mashaer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=PitratMichel
en-aut-sei=Pitrat
en-aut-mei=Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KatoKenji
en-aut-sei=Kato
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO)
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Agriculture and Life Science, Hirosaki University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Plant Genetic Resources Conservation and Research Center, Agricultural Research Corporation
kn-affil=
affil-num=11
en-affil=INRAE, UR1052, Génétique et amélioration des fruits et légumes
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Cucumis melo
kn-keyword=Cucumis melo
en-keyword=Africa
kn-keyword=Africa
en-keyword=chloroplast genome
kn-keyword=chloroplast genome
en-keyword=domestication
kn-keyword=domestication
en-keyword=genetic diversity
kn-keyword=genetic diversity
en-keyword=genetic resources
kn-keyword=genetic resources
en-keyword=maternal lineage
kn-keyword=maternal lineage
en-keyword=melon
kn-keyword=melon
en-keyword=phylogeny
kn-keyword=phylogeny
en-keyword=polyphyletic origin
kn-keyword=polyphyletic origin
en-keyword=seed size
kn-keyword=seed size
en-keyword=Tibish
kn-keyword=Tibish
END
start-ver=1.4
cd-journal=joma
no-vol=71
cd-vols=
no-issue=3
article-no=
start-page=1067
end-page=1083
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Analysis of genetic diversity and population structure in Cambodian melon landraces using molecular markers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Genetic diversity of Cambodian melons was evaluated by the analysis of 12 random amplified polymorphic DNA (RAPD) and 7 simple sequence repeat (SSR) markers using 62 accessions of melon landraces and compared with 231 accessions from other areas for genetic characterization of Cambodian melons. Among 62 accessions, 56 accessions were morphologically classified as small-seed type with seed lengths shorter than 9 mm, as in the horticultural groups Conomon and Makuwa. Gene diversity of Cambodian melons was 0.228, which was equivalent to those of the groups Conomon and Makuwa and smaller than those of Vietnamese and Central Asian landraces. A phylogenetic tree constructed from a genetic distance matrix classified 293 accessions into three major clusters. Small-seed type accessions from East and Southeast Asia formed clusters I and II, which were distantly related with cluster III consisting of large-seed type melon from other areas. All Cambodian melons belonged to cluster I (except three accessions) along with those from Thailand, Myanmar, Yunnan (China), and Vietnam (“Dua thom” in the northwest), thus indicating genetic similarity in these areas. In addition, the Cambodian melons were not differentiated among geographical populations. Conomon and Makuwa were classified into cluster II, together with melon groups from the plains of Vietnam. The presence of two groups of melons in Southeast Asia was also indicated by population structure and principal coordinate analysis. These results indicated a close genetic relationship between Cambodia and the neighboring countries, thus suggesting that Cambodian melons are not directly related to the establishment of Conomon and Makuwa.
en-copyright=
kn-copyright=
en-aut-name=NazninPervin Mst
en-aut-sei=Naznin
en-aut-mei=Pervin Mst
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ImohOdirichi Nnennaya
en-aut-sei=Imoh
en-aut-mei=Odirichi Nnennaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaKatsunori
en-aut-sei=Tanaka
en-aut-mei=Katsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SreynechOuch
en-aut-sei=Sreynech
en-aut-mei=Ouch
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShigitaGentaro
en-aut-sei=Shigita
en-aut-mei=Gentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SopheaYon
en-aut-sei=Sophea
en-aut-mei=Yon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SophanySakhan
en-aut-sei=Sophany
en-aut-mei=Sakhan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MakaraOuk
en-aut-sei=Makara
en-aut-mei=Ouk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomookaNorihiko
en-aut-sei=Tomooka
en-aut-mei=Norihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MondenYuki
en-aut-sei=Monden
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NishidaHidetaka
en-aut-sei=Nishida
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KatoKenji
en-aut-sei=Kato
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Agriculture and Life Science, Hirosaki University
kn-affil=
affil-num=4
en-affil=Cambodian Agricultural Research and Development Institute
kn-affil=
affil-num=5
en-affil=Department of Life Science Systems, Technical University of Munich
kn-affil=
affil-num=6
en-affil=Cambodian Agricultural Research and Development Institute
kn-affil=
affil-num=7
en-affil=Cambodian Agricultural Research and Development Institute
kn-affil=
affil-num=8
en-affil=Plant Breeder, Retired Director of the Cambodian Agricultural Research and Development Institute
kn-affil=
affil-num=9
en-affil=Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO)
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Cambodia
kn-keyword=Cambodia
en-keyword=Conomon
kn-keyword=Conomon
en-keyword=Cucumis melo
kn-keyword=Cucumis melo
en-keyword=Genetic diversity
kn-keyword=Genetic diversity
en-keyword=Landraces
kn-keyword=Landraces
en-keyword=RAPD
kn-keyword=RAPD
en-keyword=SSR
kn-keyword=SSR
END
start-ver=1.4
cd-journal=joma
no-vol=73
cd-vols=
no-issue=3
article-no=
start-page=269
end-page=277
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=2023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of genetic variation and population structure of melon genetic resources in the NARO Genebank, and construction of the World Melon Core Collection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Numerous genetic resources of major crops have been introduced from around the world and deposited in Japanese National Agriculture and Food Research Organization (NARO) Genebank. Understanding their genetic variation and selecting a representative subset (“core collection”) are essential for optimal management and efficient use of genetic resources. In this study, we conducted genotyping-by-sequencing (GBS) to characterize the genetic relationships and population structure in 755 accessions of melon genetic resources. The GBS identified 39,324 single-nucleotide polymorphisms (SNPs) that are distributed throughout the melon genome with high density (one SNP/10.6 kb). The phylogenetic relationships and population structure inferred using this SNP dataset are highly associated with the cytoplasm type and geographical origin. Our results strongly support the recent hypothesis that cultivated melon was established in Africa and India through multiple independent domestication events. Finally, we constructed a World Melon Core Collection that covers at least 82% of the genetic diversity and has a wide range of geographical origins and fruit morphology. The genome-wide SNP dataset, phylogenetic relationships, population structure, and the core collection provided in this study should largely contribute to genetic research, breeding, and genetic resource preservation in melon.
en-copyright=
kn-copyright=
en-aut-name=ShigitaGentaro
en-aut-sei=Shigita
en-aut-mei=Gentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DungTran Phuong
en-aut-sei=Dung
en-aut-mei=Tran Phuong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PervinMst. Naznin
en-aut-sei=Pervin
en-aut-mei=Mst. Naznin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DuongThanh-Thuy
en-aut-sei=Duong
en-aut-mei=Thanh-Thuy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ImohOdirich Nnennaya
en-aut-sei=Imoh
en-aut-mei=Odirich Nnennaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MondenYuki
en-aut-sei=Monden
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishidaHidetaka
en-aut-sei=Nishida
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaKatsunori
en-aut-sei=Tanaka
en-aut-mei=Katsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugiyamaMitsuhiro
en-aut-sei=Sugiyama
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawazuYoichi
en-aut-sei=Kawazu
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TomookaNorihiko
en-aut-sei=Tomooka
en-aut-mei=Norihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KatoKenji
en-aut-sei=Kato
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Faculty of Agriculture and Life Science, Hirosaki University
kn-affil=
affil-num=9
en-affil=Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO)
kn-affil=
affil-num=10
en-affil=Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO)
kn-affil=
affil-num=11
en-affil=Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO)
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Cucumis melo
kn-keyword=Cucumis melo
en-keyword=Cucurbitaceae
kn-keyword=Cucurbitaceae
en-keyword=genotyping-by-sequencing
kn-keyword=genotyping-by-sequencing
en-keyword=genetic resource
kn-keyword=genetic resource
en-keyword=genetic diversity
kn-keyword=genetic diversity
en-keyword=crop origin
kn-keyword=crop origin
en-keyword=core collection
kn-keyword=core collection
END
start-ver=1.4
cd-journal=joma
no-vol=105
cd-vols=
no-issue=
article-no=
start-page=7
end-page=15
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=分子遺伝学的手法を用いたわが国メロン品種の多様性と分類
kn-title=Molecular-based analysis of genetic diversity and classification of Japanese melon breeding lines
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For the breeding of Japanese netted melon, various types of foreign cultivars have been utilized for improving adaptability, disease and pest resistance, fruit quality and so on. However, little is known about their genetic diversity and relationships, since most cultivars derived from crosses between various horticultural groups. To figure out the genetic structure of Japanese melon, in this study, 57 melon accessions from three horticultural groups were examined using 55 RAPD markers produced by 24 RAPD primers. Genetic diversity of the Japanese netted melon was as high as those of cultivar groups of Groups Cantalupensis and Inodorus, while it was low in Group Conomon irrespective of large variations in fruit traits. Cluster analysis and PCO analysis based on genetic distance showed that Group Conomon was distantly related to other melon accessions. Among the latter, European cantaloupe (nonnetted) and American open-field type (netted) proved to be genetically close, while England glasshouse melon (netted) including ‘Earl’s Favourite’ is distantly related to these two groups and closely related with Group Inodorus. It was therefore suggested that England glasshouse type was established from hybrids between European cantaloupe and Group Inodorus. Japanese netted melon was most closely related with England glasshouse type, irrespective of the fact that various kinds of melon accessions have been crossed to improve adaptability, disease resistance and so on. In contrast, pure line cultivars of the Japanese netted melon bred by pure line selection from ‘Earl's Favourite’ or by crossing ‘Earl’s Favourite’ with ‘British Queen’ were confirmed to be mostly homogenous, and it was difficult to establish RAPD markers to discriminate each cultivar. Group Conomon var. makuwa and var. conomon, which have been cultivated and utilized as different crops, proved to be genetically indistinguishable and were considered to share the same gene pool.
en-copyright=
kn-copyright=
en-aut-name=DungTran Phuong
en-aut-sei=Dung
en-aut-mei=Tran Phuong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaKatsunori
en-aut-sei=Tanaka
en-aut-mei=Katsunori
kn-aut-name=田中克典
kn-aut-sei=田中
kn-aut-mei=克典
aut-affil-num=2
ORCID=
en-aut-name=AkashiYukari
en-aut-sei=Akashi
en-aut-mei=Yukari
kn-aut-name=明石由香利
kn-aut-sei=明石
kn-aut-mei=由香利
aut-affil-num=3
ORCID=
en-aut-name=ThuyDuong Thanh
en-aut-sei=Thuy
en-aut-mei=Duong Thanh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishidaHidetaka
en-aut-sei=Nishida
en-aut-mei=Hidetaka
kn-aut-name=西田英隆
kn-aut-sei=西田
kn-aut-mei=英隆
aut-affil-num=5
ORCID=
en-aut-name=KatoKenji
en-aut-sei=Kato
en-aut-mei=Kenji
kn-aut-name=加藤鎌司
kn-aut-sei=加藤
kn-aut-mei=鎌司
aut-affil-num=6
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学環境生命科学研究科
affil-num=2
en-affil=
kn-affil=弘前大学人文学部
affil-num=3
en-affil=
kn-affil=岡山大学環境生命科学研究科
affil-num=4
en-affil=
kn-affil=岡山大学環境生命科学研究科
affil-num=5
en-affil=
kn-affil=岡山大学環境生命科学研究科
affil-num=6
en-affil=
kn-affil=岡山大学環境生命科学研究科
en-keyword=breeding
kn-keyword=breeding
en-keyword=classification
kn-keyword=classification
en-keyword=genetic diversity
kn-keyword=genetic diversity
en-keyword=melon
kn-keyword=melon
en-keyword=RAPD
kn-keyword=RAPD
END
start-ver=1.4
cd-journal=joma
no-vol=112
cd-vols=
no-issue=39
article-no=
start-page=E5401
end-page=E5410
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=20150929
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Wheat varieties with a winter growth habit require long exposures to low temperatures (vernalization) to accelerate flowering. Natural variation in four vernalization genes regulating this requirement has favored wheat adaptation to different environments. The first three genes (VRN1–VRN3) have been cloned and characterized before. Here we show that the fourth gene, VRN-D4, originated by the insertion of a ∼290-kb region from chromosome arm 5AL into the proximal region of chromosome arm 5DS. The inserted 5AL region includes a copy of VRN-A1 that carries distinctive mutations in its coding and regulatory regions. Three lines of evidence confirmed that this gene is VRN-D4: it cosegregated with VRN-D4 in a high-density mapping population; it was expressed earlier than other VRN1 genes in the absence of vernalization; and induced mutations in this gene resulted in delayed flowering. VRN-D4 was found in most accessions of the ancient subspecies Triticum aestivum ssp. sphaerococcum from South Asia. This subspecies showed a significant reduction of genetic diversity and increased genetic differentiation in the centromeric region of chromosome 5D, suggesting that VRN-D4 likely contributed to local adaptation and was favored by positive selection. Three adjacent SNPs in a regulatory region of the VRN-D4 first intron disrupt the binding of GLYCINE-RICH RNA-BINDING PROTEIN 2 (TaGRP2), a known repressor of VRN1 expression. The same SNPs were identified in VRN-A1 alleles previously associated with reduced vernalization requirement. These alleles can be used to modulate vernalization requirements and to develop wheat varieties better adapted to different or changing environments.
en-copyright=
kn-copyright=
en-aut-name=KippesNestor
en-aut-sei=Kippes
en-aut-mei=Nestor
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DebernardiJuan M.
en-aut-sei=Debernardi
en-aut-mei=Juan M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Vasquez-GrossHans A.
en-aut-sei=Vasquez-Gross
en-aut-mei=Hans A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkpinarBala A.
en-aut-sei=Akpinar
en-aut-mei=Bala A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BudakHikment
en-aut-sei=Budak
en-aut-mei=Hikment
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatoKenji
en-aut-sei=Kato
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ChaoShiaoman
en-aut-sei=Chao
en-aut-mei=Shiaoman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkhunovEduard
en-aut-sei=Akhunov
en-aut-mei=Eduard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DubcovskyJorge
en-aut-sei=Dubcovsky
en-aut-mei=Jorge
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Plant Sciences, University of California
affil-num=2
en-affil=
kn-affil=Department of Plant Sciences, University of California
affil-num=3
en-affil=
kn-affil=Department of Plant Sciences, University of California
affil-num=4
en-affil=
kn-affil=Faculty of Engineering and Natural Sciences, Sabanci University
affil-num=5
en-affil=
kn-affil=Faculty of Engineering and Natural Sciences, Sabanci University
affil-num=6
en-affil=
kn-affil=Graduate School of Environmental and Life Science, Okayama University
affil-num=7
en-affil=
kn-affil=Biosciences Research Lab, US Department of Agriculture–Agricultural Research Service
affil-num=8
en-affil=
kn-affil=Department of Plant Pathology, Kansas State University
affil-num=9
en-affil=
kn-affil=Department of Plant Sciences, University of California
en-keyword=wheat
kn-keyword=wheat
en-keyword=flowering
kn-keyword=flowering
en-keyword=vernalization
kn-keyword=vernalization
en-keyword=VRN1
kn-keyword=VRN1
en-keyword=Triticum aestivum ssp. sphaerococcum
kn-keyword=Triticum aestivum ssp. sphaerococcum
END
start-ver=1.4
cd-journal=joma
no-vol=2012
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=20131227
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Bulletin of Archaelogical Research Center Okayama University 2012
kn-title=岡山大学埋蔵文化財調査研究センター紀要2012
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=野崎貴博
kn-aut-sei=野崎
kn-aut-mei=貴博
aut-affil-num=1
ORCID=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=岩崎志保
kn-aut-sei=岩崎
kn-aut-mei=志保
aut-affil-num=2
ORCID=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=鈴木茂之
kn-aut-sei=鈴木
kn-aut-mei=茂之
aut-affil-num=3
ORCID=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=山本悦世
kn-aut-sei=山本
kn-aut-mei=悦世
aut-affil-num=4
ORCID=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=南健太郎
kn-aut-sei=南
kn-aut-mei=健太郎
aut-affil-num=5
ORCID=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=田中克典
kn-aut-sei=田中
kn-aut-mei=克典
aut-affil-num=6
ORCID=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=加藤鎌司
kn-aut-sei=加藤
kn-aut-mei=鎌司
aut-affil-num=7
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
affil-num=2
en-affil=
kn-affil=岡山大学
affil-num=3
en-affil=
kn-affil=岡山大学
affil-num=4
en-affil=
kn-affil=岡山大学
affil-num=5
en-affil=
kn-affil=岡山大学
affil-num=6
en-affil=
kn-affil=
affil-num=7
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=1
article-no=
start-page=41
end-page=46
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2007
dt-pub=20070306
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=トマトの突然変異雄性不稔の部分稔性回復に及ぼす夜温の影響
kn-title=Partial Fertility Restoration as Affected by Night Temperature in a Season-dependent Male-sterile Mutant Tomato, Lycopersicon esculentum Mill
en-subtitle=
kn-subtitle=
en-abstract=トマトの雄性不稔 T-4 の部分稔性回復に及ぼす夜温の影響について調査した.2001年10月~翌年 6 月の期間,最低気温10℃以上に維持し28℃換気のビニールハウス内において,順次開花してくる花について開花当日に自家人工授粉を行って着果率,有種子果率ならびに種子数を調査した.10月~2 月は,ほぼ100%着果し,10月に着果した果実は有種子果であり,11月~2 月に着果した果実は,その80%近くが無種子の単為結果であった.3 月以降,着果率が徐々に低下し 5 月では着果率が10%以下で単為結果はなかった.有種子果 1 果当たりの種子数は,10月には50粒に達することもあったが,11月以降の低温期には数粒となり,気温が上昇する 4 月~6 月には 1~20数粒であった.秋季ビニールハウスの最低夜温12℃と18℃下で人工授粉を行ったところ,着果率に差はなく,有種子果率は12℃で高く種子数も多かった.さらに,ビニールハウス内で育成した T-4 株を夜温12℃と24℃の人工気象器内に搬入して人工受粉し,10日後にハウス内に戻した.その結果,春季は両温度区ともほとんど着果しなかった.秋季は夜温12℃で約70%(24℃では46%)着果し,その50%(24℃では10%)は有種子果であった.1 果当たりの種子数は 7~9 粒で両温度区間に差はなかった.また,野生型花粉の人工受粉により1果実当たり50~180粒の種子が得られたことから,雄性不稔 T-4 には雌ずい側に問題はないことが示されトマト 2 系ライン F1 種子生産の種子親として利用できる可能性が示唆された.
kn-abstract=This study was conducted to investigate the influence of night temperature on the restoration of fertility in a season-dependent male-sterile tomato mutant (T-4). Plants were grown in greenhouses, in which minimum and maximum temperatures were set at 10℃ and 28℃ by heating and ventilation, respectively. Flowers were hand-pollinated and the fruit-set, seed-set, and number of seeds were examined. The rate of fruit-set was high and did not differ much from October to February; almost all fruits formed in October had self-fertile seeds, but 80% of the fruits from November to February were parthenocarpic. The rate of fruit-set dropped from 70% in March to below 10% in May. During this period, most of the fruits were seeded, though fruit-set was low. The number of seeds per seeded fruit varied with the season, being as high as 50 seeds in October, 1-2 seeds per fruit between November and March, and 1-20 seeds per fruit between April and June. A low night temperature of 12℃ did not affect fruit-set but resulted in a better seed-set than a high night temperature of 18℃ in the greenhouse. Further, pollination of the plants in phytochambers also resulted in a better fruit- and seed-set at 12℃ than 24℃. In all cases, the influence of low temperature was more pronounced in autumn than in spring. Fruit-set was 70% at 12℃ and 46% at 24℃. Of these fruits, 50% at 12℃ and 10% at 24℃ were seeded. It was inferred that partial fertility restoration in T-4 can be achieved by manipulation of night temperatures. The female organ was shown to be normal, functional, and compatible with wild-type pollen. From these results, the potential of the male-sterile T-4 mutant for use in a two line hybrid-seed production system was apparent.
en-copyright=
kn-copyright=
en-aut-name=MasudaMasaharu
en-aut-sei=Masuda
en-aut-mei=Masaharu
kn-aut-name=桝田正治
kn-aut-sei=桝田
kn-aut-mei=正治
aut-affil-num=1
ORCID=
en-aut-name=KatoKenji
en-aut-sei=Kato
en-aut-mei=Kenji
kn-aut-name=加藤鎌司
kn-aut-sei=加藤
kn-aut-mei=鎌司
aut-affil-num=2
ORCID=
en-aut-name=MurakamiKenji
en-aut-sei=Murakami
en-aut-mei=Kenji
kn-aut-name=村上賢治
kn-aut-sei=村上
kn-aut-mei=賢治
aut-affil-num=3
ORCID=
en-aut-name=NakamuraHiroshi
en-aut-sei=Nakamura
en-aut-mei=Hiroshi
kn-aut-name=中村弘
kn-aut-sei=中村
kn-aut-mei=弘
aut-affil-num=4
ORCID=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=OjiewoChristopher Ochieng
kn-aut-sei=Ojiewo
kn-aut-mei=Christopher Ochieng
aut-affil-num=5
ORCID=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=MasindePeter Wafula
kn-aut-sei=Masinde
kn-aut-mei=Peter Wafula
aut-affil-num=6
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学大学院自然科学研究科
affil-num=2
en-affil=
kn-affil=岡山大学大学院自然科学研究科
affil-num=3
en-affil=
kn-affil=岡山大学大学院自然科学研究科
affil-num=4
en-affil=
kn-affil=岡山大学農学部
affil-num=5
en-affil=
kn-affil=岡山大学大学院自然科学研究科
affil-num=6
en-affil=
kn-affil=ジョモケニヤッタ農工大学園芸学科
en-keyword=male-sterile mutant
kn-keyword=male-sterile mutant
en-keyword=night temperature
kn-keyword=night temperature
en-keyword=partial fertility
kn-keyword=partial fertility
en-keyword=omato hybrid-seed
kn-keyword=omato hybrid-seed
END
start-ver=1.4
cd-journal=joma
no-vol=97
cd-vols=
no-issue=1
article-no=
start-page=25
end-page=31
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2008
dt-pub=200802
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=異数体を含むレンゲ人為同質4倍体集団での全兄弟と半兄弟の共分散の計算
kn-title=Calculation of Full and Half Sib Covariances in an Artificial Autotetraploid Population Including Aneuploids, in Astragalus Sinica L.
en-subtitle=
kn-subtitle=
en-abstract=任意交配するレンゲ人為同質4倍体集団における全兄弟と半兄弟の共分散を計算した.特定の相同染色体が必ずしも異数体に関わるとは限らないので,特定の相同染色体が関わる場合と関わらない場合について共分散を計算し,平均しなければならない.共分散を平均するため,特定の相同染色体が異数性に関わる確率を3/8とした“8”と“3”はゲノム染色体数と正4倍体で形成される4価染色体数の平均値である.4価染色体は MI で確率κ= 0.8とλ= 0.2(κ+λ=1)で2-2と1-3に分配され,Ⅲ価染色体とⅤ価染色体は確率1で1-2と2-3に分配されるとし,2xと2x+1花粉と雌性配偶子は等しく受精するとして共分散を計算した.両親の近交系数はF=0であると仮定した.次いで家族の共分散を家族内の兄弟間の共分散の平均として計算し,集団の共分散を家族の共分散の平均として計算した.仮定に基づき求めた共分散の分散成分の係数は2x花粉のみが受精するとして計算した値と違っていた.相加遺伝分散成分の係数は全兄弟と半兄弟でそれぞれ3.3%と7.2%ずつ違っていた.他の分散成分も同様であった.実際のレンゲ人為同質4倍体集団では2x+1花粉は受精能力が2x花粉より低く稀にしか受精しないので,2x花粉のみが受精するとして全兄弟と半兄弟の共分散を計算しても問題はないであろう.
kn-abstract=Full and half sib covariances were investigated in an artificial autotetraploid population with
random mating in Astragalus sinicus L.. Since a set of homologous chromosomes is not necessarily
involved in aneuploidy, the covariances must be averaged for two cases, that is, with and
without involvement. To average the covariances, the probability that a set of homologous chromosomes
was involved in aneuploidy was assumed as 3/8, where “8” and “3” represent the
chromosome number of a genome and the mean number of quadrivalent chromosomes formed
in a euploid, respectively. The covariances were calculated under the assumption that quadrivalent
chromosomes were distributed to the poles by 2-2 and 1-3 with probabilities κ= 0.8 and λ
=0.2 (κ+λ=1) respectively, and that trisomic and pentasomic chromosomes were distributed
by 1-2 and 2-3 both with a probability of 1. It was also assumed that the inbreeding coefficient
of the parents was F= 0, and that 2x and 2x+ 1 pollens and all female gametes could fertilize
equally. The covariance of a family was taken as an average of the covariance of each sib combination
in a family. As a result, the covariance of a population could be obtained as an average of
the covariance of each family in a population. The coefficients of variance components calculated
under these assumptions were different from those calculated under the same condition except
that 2x+ 1 pollen could not fertilize. Differences in the coefficient of additive genetic variance
components were about 3.3% and 7.2% for full and half sib covariances, respectively.
Coefficients of the other variance components were also different between the two cases.
However, 2x+1 pollen could rarely fertilize, since their ability to fertilize in a practical population
were lower than 2x pollen. Therefore, it would be valid to calculate full and half sib covariances
in an artificial autotetraploid population of Astragalus sinicus L. under the condition
thatonly 2x pollen could fertilize.
en-copyright=
kn-copyright=
en-aut-name=MorisawaTetsuo
en-aut-sei=Morisawa
en-aut-mei=Tetsuo
kn-aut-name=森澤徹男
kn-aut-sei=森澤
kn-aut-mei=徹男
aut-affil-num=1
ORCID=
en-aut-name=KatoKenji
en-aut-sei=Kato
en-aut-mei=Kenji
kn-aut-name=加藤鎌司
kn-aut-sei=加藤
kn-aut-mei=鎌司
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=高知県立安芸高等学校
affil-num=2
en-affil=
kn-affil=岡山大学
en-keyword=full and half sib covariances
kn-keyword=full and half sib covariances
en-keyword=quadrivalent chromosomes
kn-keyword=quadrivalent chromosomes
en-keyword=additive genetic variance
kn-keyword=additive genetic variance
en-keyword=variance of a family
kn-keyword=variance of a family
en-keyword=covariance of a population
kn-keyword=covariance of a population
END
start-ver=1.4
cd-journal=joma
no-vol=97
cd-vols=
no-issue=1
article-no=
start-page=17
end-page=24
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2008
dt-pub=200802
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=人為同質4倍体集団における全兄弟及び半兄弟共分散の数学モデル
kn-title=Mathematical Model for the Calculation of Full and
Half Sib Covariance in an Artificial Autotetraploid
Population Including Aneuploids
en-subtitle=
kn-subtitle=
en-abstract=人為同質4倍体集団の遺伝分散を求めるため,両親が近交系数F=0の同質4倍体家族の全兄弟と半兄弟の共分散を検討した.Kempthorne のモデルにおいて定義された分散の係数を①A,D,T,Qと②φ,ψの2つに分割し
た.①は互いに独立な相加,2遺伝子,3遺伝子,4遺伝子効果の組み合わせの確率である.②は兄弟が片親から受け取る同一対立遺伝子の数と対立遺伝子ペアの数である.これは兄弟が片親から対立遺伝子と対立遺伝子の組を受け取る確率の関数であり,この確率は減数分裂での染色体行動と配偶子の染色体数によって決まる.この確率を推定するため,Ⅳ価染色体は確率κ,λ(κ+λ=1)で2-2と1-3で分配され,Ⅲ価染色体とⅤ価染色体は1-2と2-3に分配されると仮定した.本報告では,四染色体が完全にⅣ価染色体を形成するとして,全ての雌雄の配偶子がその染色体数に関係なく受精できる単純な場合について検討した.共分散の分散成分の構造は兄弟の組み合わせと家族によって異なる.したがって,家族の共分散は各兄弟の共分散
とその組み合わせ頻度を用い平均すれば求めることができ,集団の平均の共分散は家族の共分散と集団での家族の頻度を用い平均すれば求めることができる.
kn-abstract=For the estimation of genetic variance of an artificial autotetraploid population, a mathematical
model of full and half sib covariances between sibs with various chromosome numbers,
which were derived from euploid or aneuploid parents, was devised for a case where the
inbreeding coefficient of the parents was F=0. The coefficients defined in Kempthorne's model
were separated into two parts: (i) A, D, T and Q, and (ii) φ and ψ. The former four parameters
were defined as probabilities of factor combinations, which could be compared between various
sibs, for additive, digenic, trigenic, and quadrigenic effects, and were mutually independent. The
latter two parameters, which were the numbers of the identical allele and the identical allele pair
combinations that two sibs inherited from a parent, were defined as linear functions of the probabilities
that two sibs inherited allele or allele pair from a parent, respectively. These probabilities
depend on chromosome behavior during meiosis and the chromosome number of the gametes.
For the estimation, it was assumed that quadrivalent chromosomes were distributed by 2-2
and 1-3 with probabilities κ and λ (κ+λ= 1), respectively. The distribution of trisomic and
pentasomic chromosomes to the poles was assumed to be 1-2 and 2-3. Then, the probabilities
were estimated for the simple case where all male and female gametes could equally fertilize
irrespective of their chromosome number, provided that tetrasomic chromosomes completely
formed a quadrivalent chromosome.
The constitution of variance components were different according to the sib combinations and
family. Therefore, for the calculation of the covariance of a family, the covariances between
various sibs were averaged by the combination frequency in a family, and for the calculation of
the covariance of population, the family's covariances were averaged by the family's frequency in the population.
en-copyright=
kn-copyright=
en-aut-name=MorisawaTetsuo
en-aut-sei=Morisawa
en-aut-mei=Tetsuo
kn-aut-name=森澤徹男
kn-aut-sei=森澤
kn-aut-mei=徹男
aut-affil-num=1
ORCID=
en-aut-name=KatoKenji
en-aut-sei=Kato
en-aut-mei=Kenji
kn-aut-name=加藤鎌司
kn-aut-sei=加藤
kn-aut-mei=鎌司
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=高知県立安芸高等学校
affil-num=2
en-affil=
kn-affil=岡山大学
en-keyword=artificial autotetraploid
kn-keyword=artificial autotetraploid
en-keyword=covariance
kn-keyword=covariance
en-keyword=variance component
kn-keyword=variance component
en-keyword=euploid
kn-keyword=euploid
en-keyword=aneuploid
kn-keyword=aneuploid
END
start-ver=1.4
cd-journal=joma
no-vol=85
cd-vols=
no-issue=1
article-no=
start-page=39
end-page=44
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1996
dt-pub=19960201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Effect of Culture Conditions on in vitro lnduction of Adventitious Buds from Leaf Explant in Pepper (Capsicum annuum L.)
kn-title=トウガラシ本葉からの不定芽形成に及ぼす培養条件の影響
en-subtitle=
kn-subtitle=
en-abstract=組織培養法を利用した雄性不稔系統の大量増殖法を開発するために、トウガラシ本葉からの不定芽形成に最適の培養条件について検討した。実験にはトウガラシ品種'昌介'を供試し、初生葉の基部側1/4を葉柄の一部を付けて切り出した切片を外植体として以下の実験を行った。 1.発芽後30日苗の本葉切片を用いて不定芽誘導培地の組成について検討した。その結果、ゼアチン3mg/ℓ+カゼイン加水分解物100mg/ℓ,もしくはBAP 3~5mg/ℓ+IBA0.2mg/ℓを添加した培地が適用していることが明らかになたった。2.上の実験で明らかになった好適培地(BAP 5mg/ℓ+IBA 0.2mg/ℓ)を用いて、発芽後25~60日苗の初生葉を培養した。その結果、25日苗では外植体あたり12.7個の不定芽が形成されたが、苗齢とともに不定芽形成能が低下することが明らかとなった。3.以上の結果より、展開直後の若い本葉を上記2種類の培地に置床すれば、多数の不定芽が形成されることが明らかとなった。ただし、不定芽のうち植物体にまで生長したのは約2割と低頻度であったので、培養法の更なる改善が必要と考えられる。
kn-abstract=Effect of culture conditions on in vitro induction of adventitious buds from leaf explant was studied in pepper cv. 'Shosuke' (Capsicum annuum L.), to establish mass propagation method of genic male sterile line, 'ms-Shosuke', which is in practice used for hybrid seed production. Left explant was trimmed from aseptically grown seedling, and a proximal quarter part of the leaf along with a small portion of petiole was placed on MS agar medium with the proximal cut end embedded in the medium. The cultures were kept at 27℃, and illuminated for 16 hours per day (3000 lux). Leaf explants trimmed from 30 days old seedlings were inoculated on MS media supplemented with different concentrations of zeatin and casein hydrolysate (Table 1), and of BAP and IBA (Table 2). Adventitious buds were induced at high frequency on all of the culture media. Among them the following media were recommended: one to be supplemented with 3mg/I zeatin and 100mg/I casein hydrolysate, and the other with 3~5mg/I BAP and 0.2mg/I IBA. Physiological age of leaf explant, which was expressed as seedling age, proved to be a crucial factor to determine differentiation ability. Average number of adventitious buds induced from an explant was more than 12, when the explant was trimmed from 25 days old seedling (Table 3). IT was therefore concluded that just unfolded young leaf should be used as explant. To promote the development of shoots from adventitious buds, the cultures were transferred to MS medium supplemented with 1mg/I zeatin. Then well developed shoots were dipped in 1mg/I IAA solution for three days and aseptically grown on vermiculite, resulting in the establishment of plantlets with roots. Although rooting occurred in all shoots, the efficiency of shoot development from adventitious buds was only 21% in the best case (Table 4). Therefore the culture method must be further improved to increase efficiency.
en-copyright=
kn-copyright=
en-aut-name=KatoKenji
en-aut-sei=Kato
en-aut-mei=Kenji
kn-aut-name=加藤鎌司
kn-aut-sei=加藤
kn-aut-mei=鎌司
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoMitsuo
en-aut-sei=Matsumoto
en-aut-mei=Mitsuo
kn-aut-name=松本満夫
kn-aut-sei=松本
kn-aut-mei=満夫
aut-affil-num=2
ORCID=
en-aut-name=ShimodaYuko
en-aut-sei=Shimoda
en-aut-mei=Yuko
kn-aut-name=下田裕子
kn-aut-sei=下田
kn-aut-mei=裕子
aut-affil-num=3
ORCID=
en-aut-name=YamasakiShigehisa
en-aut-sei=Yamasaki
en-aut-mei=Shigehisa
kn-aut-name=山崎茂久
kn-aut-sei=山崎
kn-aut-mei=茂久
aut-affil-num=4
ORCID=
en-aut-name=ShimamuraFumio
en-aut-sei=Shimamura
en-aut-mei=Fumio
kn-aut-name=島村文男
kn-aut-sei=島村
kn-aut-mei=文男
aut-affil-num=5
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
affil-num=2
en-affil=
kn-affil=高知県農業技術センター
affil-num=3
en-affil=
kn-affil=高知大学農学部
affil-num=4
en-affil=
kn-affil=高知大学農学部
affil-num=5
en-affil=
kn-affil=高知大学農学部
en-keyword=tissue culture
kn-keyword=tissue culture
en-keyword=adventitious bud
kn-keyword=adventitious bud
en-keyword=pepper
kn-keyword=pepper
en-keyword=Capsicum annuum L.
kn-keyword=Capsicum annuum L.
END