start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=18 article-no= start-page=5359 end-page=5365 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deoxygenative dual CO2 conversions: methylenation and switchable N-formylation/N-methylation of tryptamines en-subtitle= kn-subtitle= en-abstract= kn-abstract=The unprecedented one-pot synthesis of N-formyl/N-methyltryptolines from tryptamines was achieved via phenylsilane-assisted deoxygenative dual CO2 conversions. Two CO2 molecules acted as different synthons and were converted into methylene and N-formyl/N-methyl groups. The CO2 reduction step was catalyzed by a pentanuclear zinc complex at atmospheric pressure under solvent-free conditions. The N-formyl/N-methyl products could be switched by changing the amount of phenylsilane, and the amounts of in situ generated bis(silyl)acetals and silyl formates were key to the chemoselectivity. Methylenation, N-formylation, and N-methylation proceeded via the Pictet–Spengler reaction, amine–acid condensation, and the Eschweiler–Clarke reaction, respectively. The CO2 reduction with phenylsilane could also be applied to the one-pot three-step synthesis of spiro[oxindole-pyrrolidine]s. en-copyright= kn-copyright= en-aut-name=TakaishiKazuto en-aut-sei=Takaishi en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MorishitaHajime en-aut-sei=Morishita en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwakiKosuke en-aut-sei=Iwaki en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue=3 article-no= start-page=1571 end-page=1577 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250203 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Synthesis and Postfunctionalization of Acrylate-Appended Poly(cyclohexene carbonate)s: Modulation of Properties of CO2-Based Polymers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Functional CO2-based polycarbonates are expected to be sustainable materials. Herein, a bifunctional aluminum porphyrin catalyzed the terpolymerization of cyclohexene oxide (CHO), acrylate-appended CHO, and CO2 to provide poly(cyclohexene carbonate)s (PCHCs) with acrylate groups. Postfunctionalization of PCHCs via Michael addition or Heck reaction enabled the incorporation of thiol, amine, and aromatics into PCHCs with high selectivity and efficiency. PCHCs with the flexible long alkyl chains showed a glass-transition temperature (Tg) of down to 52 °C, which was much lower than that of PCHC (127 °C). In sharp contrast, PCHCs with rigid pyrenyl groups showed Tg values of up to 152 °C and fluorescence emission. Thus, a wide range of polymers were obtained by robust and sustainable synthetic methods, and the functional groups modulated the properties of the CO2-based polycarbonates. en-copyright= kn-copyright= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InoueHina en-aut-sei=Inoue en-aut-mei=Hina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=25 article-no= start-page=4757 end-page=4773 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recent development of azahelicenes showing circularly polarized luminescence en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, a variety of circularly polarized luminescence (CPL) dyes have been developed as next-generation chiroptical materials. Helicenes, ortho-fused aromatics, have been recognized as some of the most promising CPL dyes. Although typical carbohelicenes show CPL, weak fluorescence is often emitted in the blue region. In contrast, heteroatom-embedded helicenes (heterohelicenes) can show intense fluorescence and CPL in the visible region because heteroatoms alter the electronic states of helicene frameworks. Among various heterohelicenes, nitrogen-embedded helicenes (azahelicenes) have unique features such as facile functionalization and sensitive responses to acid/base or metal ions. Furthermore, polycyclic aromatic hydrocarbons (PAHs) containing azaborine units have been recognized as excellent luminescent materials, and the helical derivatives, B,N-embedded helicenes, have been rapidly growing recently. In this feature article, we review and summarize the synthesis and chiroptical properties of azahelicenes, which are classified into imine-type and amine-type azahelicenes and B,N-embedded helicenes. CPL switching systems of azahelicenes are also reviewed. en-copyright= kn-copyright= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=8 article-no= start-page=e202418546 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=B,N‐Embedded Helical Nanographenes Showing an Ion‐Triggered Chiroptical Switching Function en-subtitle= kn-subtitle= en-abstract= kn-abstract=Intramolecular oxidative aromatic coupling of 3,6-bis(m-terphenyl-2’-yl)carbazole provided a bis(m-terphenyl)-fused carbazole, while that of 3,6-bis(m-terphenyl-2’-yl)-1,8-diphenylcarbazole afforded a bis(quaterphenyl)-fused carbazole. Borylation of the latter furnished a B,N-embedded helical nanographene binding a fluoride anion via a structural change from the three-coordinate boron to the four-coordinate boron. The anionic charge derived from the fluoride anion is stabilized over the expanded π-framework, which leads to the high binding constant (Ka) of 1×105 M−1. The four-coordinate boron species was converted back to the parent three-coordinate boron species with Ag+, and the chiroptical switch between the three-coordinate boron and four-coordinate boron species has been achieved via the ion recognition with the change in the color and glum values. en-copyright= kn-copyright= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MichishitaSayaka en-aut-sei=Michishita en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasutomoIssa en-aut-sei=Yasutomo en-aut-mei=Issa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Boron kn-keyword=Boron en-keyword=Chirality kn-keyword=Chirality en-keyword=Circularly polarized luminescence kn-keyword=Circularly polarized luminescence en-keyword=Helical nanographenes kn-keyword=Helical nanographenes en-keyword=Ion sensing kn-keyword=Ion sensing END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=1 article-no= start-page=46 end-page=60 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Terpolymerization reactions of epoxides, CO2, and the third monomers toward sustainable CO2-based polymers with controllable chemical and physical properties en-subtitle= kn-subtitle= en-abstract= kn-abstract=Carbon dioxide (CO2) serves as a cheap, abundant, and renewable C1 building block for the synthesis of organic compounds and polymers. Selective and efficient CO2 fixation processes are still challenging because of the kinetic and thermodynamic stability of CO2. Among various CO2 fixation processes, the ring-opening copolymerization (ROCOP) of epoxides and CO2 gives aliphatic polycarbonates with high atom economy, although the chemical and physical properties of the resulting polycarbonates are not necessarily satisfactory. Introducing the third monomers into this ROCOP system provides new terpolymers, and the thermal, optical, mechanical or degradation properties can be added or tuned by incorporating new polymer backbones derived from the third monomers at the expense of the CO2 content. Here we review the terpolymerization reactions of epoxides, CO2, and the third monomers such as cyclic anhydrides, lactones, lactides, heteroallenes, and olefins. The development of catalysts and the control of the polymer structures are described together with the chemical and physical properties of the resulting polymers. en-copyright= kn-copyright= en-aut-name=NakaokaKoichi en-aut-sei=Nakaoka en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=146 cd-vols= no-issue=22 article-no= start-page=14935 end-page=14941 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Skeletal Formation of Carbocycles with CO2: Selective Synthesis of Indolo[3,2-b]carbazoles or Cyclophanes from Indoles, CO2, and Phenylsilane en-subtitle= kn-subtitle= en-abstract= kn-abstract=The catalytic reactions of indoles with CO2 and phenylsilane afforded indolo[3,2-b]carbazoles, where the fused benzene ring was constructed by forming two C–H bonds and four C–C bonds with two CO2 molecules via deoxygenative conversions. Nine-membered cyclophanes made up of three indoles and three CO2 molecules were also obtained, where the cyclophane framework was constructed by forming six C–H bonds and six C–C bonds. These multicomponent cascade reactions giving completely different carbocycles were switched simply by choosing the solvent, acetonitrile or ethyl acetate. en-copyright= kn-copyright= en-aut-name=LiSha en-aut-sei=Li en-aut-mei=Sha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakaharaShoko en-aut-sei=Nakahara en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AdachiTaishin en-aut-sei=Adachi en-aut-mei=Taishin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurataTakumi en-aut-sei=Murata en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaishiKazuto en-aut-sei=Takaishi en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=37 article-no= start-page=4338 end-page=4343 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Catalytic synthesis and physical properties of CO2-based cross-linked poly(cyclohexene carbonate)s en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bifunctional aluminum porphyrins (0.001 mol%) catalyzed the terpolymerization of cyclohexene oxide (CHO), bis(CHO), and CO2 to give cross-linked polycarbonates (CLPs) under solvent-free conditions. A small amount of bis(CHO) acted as a cross-linking agent, and the use of only 0.1 mol% bis(CHO) to CHO produced polymers of quite large sizes. The thermal and mechanical properties of CLPs could be altered by changing the structure and amount of bis(CHO), and the CLPs showed improved thermal stability and tensile strength as compared to linear poly(cyclohexene carbonate)s (PCHCs). The degradation of the CLPs was also investigated, and the selective cleavage of the cross-links was achieved by UV light irradiation to give linear PCHCs. The present study disclosed the potentials of cross-linking terpolymerization for the preparation of various CLPs with a constant CO2 content (31 wt%). en-copyright= kn-copyright= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawabataKenta en-aut-sei=Kawabata en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NikiKaito en-aut-sei=Niki en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakoYuma en-aut-sei=Sako en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=8 article-no= start-page=707 end-page=713 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Terpolymerizations of cyclohexene oxide, CO2, and isocyanates or isothiocyanates for the synthesis of poly(carbonate–urethane)s or poly(carbonate–thioimidocarbonate)s en-subtitle= kn-subtitle= en-abstract= kn-abstract=Terpolymerization of cyclohexene oxide (CHO), CO2, and aryl isothiocyanates produced poly(carbonate–thioimidocarbonate)s with gradient character, while that of CHO, CO2, and aryl isocyanates furnished poly(carbonate–urethane)s with random sequences. The former underwent partial degradation upon acid treatment or UV irradiation, while the latter was stable under the same conditions. en-copyright= kn-copyright= en-aut-name=NakaokaKoichi en-aut-sei=Nakaoka en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MuranakaSatoshi en-aut-sei=Muranaka en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoIo en-aut-sei=Yamamoto en-aut-mei=Io kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211018 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chiral exciplex dyes showing circularly polarized luminescence: extension of the excimer chirality rule en-subtitle= kn-subtitle= en-abstract= kn-abstract=A series of axially chiral binaphthyls and quaternaphthyls possessing two kinds of aromatic fluorophores, such as pyrenyl, perylenyl, and 4-(dimethylamino)phenyl groups, arranged alternately were synthesized by a divergent method. In the excited state, the fluorophores selectively formed a unidirectionally twisted exciplex (excited heterodimer) by a cumulative steric effect and exhibited circularly polarized luminescence (CPL). They are the first examples of a monomolecular exciplex CPL dye. This versatile method for producing exciplex CPL dyes also improved fluorescence intensity, and the CPL properties were not very sensitive to the solvent or to the temperature owing to the conformationally rigid exciplex. This systematic study allowed us to confirm that the excimer chirality rule can be applied to the exciplex dyes: left- and right-handed exciplexes with a twist angle of less than 90 degrees exhibit (-)- and (+)-CPL, respectively. en-copyright= kn-copyright= en-aut-name=TakaishiKazuto en-aut-sei=Takaishi en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurakamiSho en-aut-sei=Murakami en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwachidoKazuhiro en-aut-sei=Iwachido en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=11883 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210604 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhancement of protein thermostability by three consecutive mutations using loop-walking method and machine learning en-subtitle= kn-subtitle= en-abstract= kn-abstract=We developed a method to improve protein thermostability, "loop-walking method". Three consecutive positions in 12 loops of Burkholderia cepacia lipase were subjected to random mutagenesis to make 12 libraries. Screening allowed us to identify L7 as a hot-spot loop having an impact on thermostability, and the P233G/L234E/V235M mutant was found from 214 variants in the L7 library. Although a more excellent mutant might be discovered by screening all the 8000 P233X/L234X/V235X mutants, it was difficult to assay all of them. We therefore employed machine learning. Using thermostability data of the 214 mutants, a computational discrimination model was constructed to predict thermostability potentials. Among 7786 combinations ranked in silico, 20 promising candidates were selected and assayed. The P233D/L234P/V235S mutant retained 66% activity after heat treatment at 60 degrees C for 30 min, which was higher than those of the wild-type enzyme (5%) and the P233G/L234E/V235M mutant (35%). en-copyright= kn-copyright= en-aut-name=YoshidaKazunori en-aut-sei=Yoshida en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiShun en-aut-sei=Kawai en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujitaniMasaya en-aut-sei=Fujitani en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoikedaSatoshi en-aut-sei=Koikeda en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoRyuji en-aut-sei=Kato en-aut-mei=Ryuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University kn-affil= affil-num=3 en-affil=Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University kn-affil= affil-num=4 en-affil=Innovation Center, Amano Enzyme Inc. kn-affil= affil-num=5 en-affil=Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University kn-affil= affil-num=6 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=22 article-no= start-page=5669 end-page=5675 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200518 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Aluminum porphyrins with quaternary ammonium halides as catalysts for copolymerization of cyclohexene oxide and CO2: metal–ligand cooperative catalysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bifunctional AlIII porphyrins with quaternary ammonium halides, 2-Cl and 2-Br, worked as excellent catalysts for the copolymerization of cyclohexene oxide (CHO) and CO2 at 120 °C. Turnover frequency (TOF) and turnover number (TON) reached 10 000 h−1 and 55 000, respectively, and poly(cyclohexene carbonate) (PCHC) with molecular weight of up to 281 000 was obtained with a catalyst loading of 0.001 mol%. In contrast, bifunctional MgII and ZnII counterparts, 3-Cl and 4-Cl, as well as a binary catalyst system, 1-Cl with bis(triphenylphosphine)iminium chloride (PPNCl), showed poor catalytic performances. Kinetic studies revealed that the reaction rate was first-order in [CHO] and [2-Br] and zero-order in [CO2], and the activation parameters were determined: ΔH‡ = 12.4 kcal mol−1, ΔS‡ = −26.1 cal mol−1 K−1, and ΔG‡ = 21.6 kcal mol−1 at 80 °C. Comparative DFT calculations on two model catalysts, AlIII complex 2′ and MgII complex 3′, allowed us to extract key factors in the catalytic behavior of the bifunctional AlIII catalyst. The high polymerization activity and carbonate-linkage selectivity originate from the cooperative actions of the metal center and the quaternary ammonium cation, both of which facilitate the epoxide-ring opening by the carbonate anion to form the carbonate linkage in the key transition state such as TS3b (ΔH‡ = 13.3 kcal mol−1, ΔS‡ = −3.1 cal mol−1 K−1, and ΔG‡ = 14.4 kcal mol−1 at 80 °C). en-copyright= kn-copyright= en-aut-name=DengJingyuan en-aut-sei=Deng en-aut-mei=Jingyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RatanasakManussada en-aut-sei=Ratanasak en-aut-mei=Manussada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakoYuma en-aut-sei=Sako en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokudaHideki en-aut-sei=Tokuda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HasegawaJun-ya en-aut-sei=Hasegawa en-aut-mei=Jun-ya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NozakiKyoko en-aut-sei=Nozaki en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo kn-affil= affil-num=2 en-affil=Institute for Catalysis, Hokkaido University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Institute for Catalysis, Hokkaido University kn-affil= affil-num=7 en-affil=Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=17 article-no= start-page=10207 end-page=10216 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200420 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Minimization of Amounts of Catalyst and Solvent in NHC-Catalyzed Benzoin Reactions of Solid Aldehydes: Mechanistic Consideration of Solid-to-Solid Conversion and Total Synthesis of Isodarparvinol B en-subtitle= kn-subtitle= en-abstract= kn-abstract=Attempts were made to minimize the amounts of catalyst and solvent in the NHC-catalyzed benzoin reactions of solid aldehydes. In some case, solid-to-solid conversions proceeded in the solvent-free NHC-catalyzed benzoin reactions. Even if a mixture of the substrate, N-heterocyclic carbene (NHC) precursor, and inorganic base was initially a powdery solid, the reaction did proceed at reaction temperature lower than the melting points of each compound. The solid mixture partially melted or became a slurry or suspension in the meantime. We call this solid/liquid mixture a semisolid state. The reaction giving an optically active product was faster than that giving a racemic mixture of the same product. Melting-point depression was observed for a series of mixtures of the substrate and product in different substrate/product ratios. Solvent-free solid-to-solid conversions were accelerated by the formation of a semisolid state resulting from the melting-point depression of the solid substrate accompanied by the product formation. In the case of solid substrates with high melting points, melting-point depression was useless, and the addition of a small amount of solvent was needed. The first total synthesis of isodarparvinol B was achieved via the NHC-catalyzed intramolecular benzoin reaction using a small amount of solvent as an additive. en-copyright= kn-copyright= en-aut-name=IwaiKenta en-aut-sei=Iwai en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnoMasakazu en-aut-sei=Ono en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NanjoYoshiko en-aut-sei=Nanjo en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END