start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=1339958 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240829 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Illumina-based transcriptomic analysis of the fast-growing leguminous tree Acacia crassicarpa: functional gene annotation and identification of novel SSR-markers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Acacia crassicarpa is a fast-growing leguminous tree that is widely cultivated in tropical areas such as Indonesia, Malaysia, Australia, and southern China. This tree has versatile utility in timber, furniture, and pulp production. Illumina sequencing of A. crassicarpa was conducted, and the raw data of 124,410,892 reads were filtered and assembled de novo into 93,317 unigenes, with a total of 84,411,793 bases. Blast2GO annotation, Benchmark Universal Single-Copy Ortholog evaluation, and GO-term classification produced a catalogue of unigenes for studying primary metabolism, phytohormone signaling, and transcription factors. Massive transcriptomic analysis has identified microsatellites composed of simple sequence repeat (SSR) loci representing di-, tri-, and tetranucleotide repeat units in the predicted open reading frames. Polymorphism was induced by PCR amplification of microsatellite loci located in several genes encoding auxin response factors and other transcription factors, which successfully distinguished 16 local trees of A. crassicarpa tested, representing potentially exploitable molecular markers for efficient tree breeding for plantation and biomass exploitation. en-copyright= kn-copyright= en-aut-name=IshioShougo en-aut-sei=Ishio en-aut-mei=Shougo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KusunokiKazutaka en-aut-sei=Kusunoki en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NemotoMichiko en-aut-sei=Nemoto en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanaoTadayoshi en-aut-sei=Kanao en-aut-mei=Tadayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TamuraTakashi en-aut-sei=Tamura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Tsukuba Research Institute, Sumitomo Forestry Co. Ltd. kn-affil= affil-num=2 en-affil=Tsukuba Research Institute, Sumitomo Forestry Co. Ltd. kn-affil= affil-num=3 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Institute of Global Human Resource Development, Okayama University kn-affil= en-keyword=Acacia crassicarpa kn-keyword=Acacia crassicarpa en-keyword= illumina sequencing kn-keyword= illumina sequencing en-keyword= polymorphism kn-keyword= polymorphism en-keyword= auxin response factor kn-keyword= auxin response factor en-keyword= lignin kn-keyword= lignin END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=17 article-no= start-page=4368 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Antibacterial Dental Adhesive Containing Cetylpyridinium Chloride Montmorillonite en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oral bacteria cause tooth caries and periodontal disease. Much research is being conducted to prevent both major oral diseases by rendering dental materials' antimicrobial potential. However, such antimicrobial materials are regarded as 'combination' products and face high hurdles for regulatory approval. We loaded inorganic montmorillonite with the antimicrobial agent cetylpyridinium chloride, referred to below as 'CPC-Mont'. CPC-Mont particles in a 1, 3 and 5 wt% concentration were added to the considered gold-standard self-etch adhesive Clearfil SE Bond 2 ('CSE2'; Kuraray Noritake) to render its antibacterial potential (CSE2 without CPC-Mont served as control). Besides measuring (immediate) bonding effectiveness and (aged) bond durability to dentin, the antibacterial activity against S. mutans and the polymerization-conversion rate was assessed. Immediate and aged bond strength was not affected by 1 and 3 wt% CPC-Mont addition, while 5 wt% CPC-Mont significantly lowered bond strength and bond durability. The higher the concentration of the antimicrobial material added, the stronger the antimicrobial activity. Polymerization conversion was not affected by the CPC-Mont addition in any of the three concentrations. Hence, adding 3 wt% CPC-Mont to the two-step self-etch adhesive rendered additional antimicrobial potential on top of its primary bonding function. en-copyright= kn-copyright= en-aut-name=OkazakiYohei en-aut-sei=Okazaki en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamoriKiichi en-aut-sei=Nakamori en-aut-mei=Kiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaoChenmin en-aut-sei=Yao en-aut-mei=Chenmin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AhmedMohammed H. en-aut-sei=Ahmed en-aut-mei=Mohammed H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MercelisBenjamin en-aut-sei=Mercelis en-aut-mei=Benjamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AbeYasuhiko en-aut-sei=Abe en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=Van MeerbeekMeerbeek, Bart en-aut-sei=Van Meerbeek en-aut-mei=Meerbeek, Bart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Oral Health Sciences, BIOMAT, KU Leuven kn-affil= affil-num=2 en-affil=Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=3 en-affil=Department of Oral Health Sciences, BIOMAT, KU Leuven kn-affil= affil-num=4 en-affil=Department of Oral Health Sciences, BIOMAT, KU Leuven kn-affil= affil-num=5 en-affil=Department of Oral Health Sciences, BIOMAT, KU Leuven kn-affil= affil-num=6 en-affil=Advanced Research Center for Oral and Craniofacial Science, Okayama University Dental School kn-affil= affil-num=7 en-affil=Department of Prosthodontics, Okayama University kn-affil= affil-num=8 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=9 en-affil=Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=10 en-affil=Department of Oral Health Sciences, BIOMAT, KU Leuven kn-affil= affil-num=11 en-affil=Department of Pathology & Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=dental adhesive kn-keyword=dental adhesive en-keyword=antibacterial agent kn-keyword=antibacterial agent en-keyword=dentin kn-keyword=dentin en-keyword=degree of conversion kn-keyword=degree of conversion en-keyword=micro tensile bond strength kn-keyword=micro tensile bond strength en-keyword=scanning microscopy kn-keyword=scanning microscopy END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=5 article-no= start-page=464 end-page=473 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240827 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Terrein Exhibits Anti-tumor Activity by Suppressing Angiogenin Expression in Malignant Melanoma Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aim: Malignant melanoma is a tumor with a poor prognosis that can metastasize distally at an early stage. Terrein, a metabolite produced by Aspergillus terreus, suppresses the expression of angiogenin, an angiogenic factor. However, the pharmacological effects of natural terrein have not been elucidated, because only a small amount of terrein can be extracted from large fungal cultures. In this study, we investigated the antineoplastic effects of terrein on human malignant melanoma cells and its underlying mechanisms. Materials and methods: Human malignant melanoma cell lines were cultured in the presence of terrein and analyzed. Angiogenin production was evaluated using ELISA. Ribosome biosynthesis was evaluated using silver staining of the nucleolar organizer region. Intracellular signaling pathways were analyzed using western blotting. Malignant melanoma cells were transplanted subcutaneously into the backs of nude mice. The tumors were removed at 5 weeks and analyzed histopathologically. Results: Terrein inhibited angiogenin expression, proliferation, migration, invasion, and ribosome biosynthesis in malignant melanoma cells. Terrein was shown to inhibit tumor growth and angiogenesis in animal models. Conclusion: This study demonstrated that terrein has anti-tumor effects against malignant melanoma. Furthermore, chemically synthesized non-natural terrein can be mass-produced and serve as a novel potential anti-tumor drug candidate. en-copyright= kn-copyright= en-aut-name=HIROSETAIRA en-aut-sei=HIROSE en-aut-mei=TAIRA kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KUNISADAYUKI en-aut-sei=KUNISADA en-aut-mei=YUKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KADOYAKOICHI en-aut-sei=KADOYA en-aut-mei=KOICHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MANDAIHIROKI en-aut-sei=MANDAI en-aut-mei=HIROKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SAKAMOTOYUMI en-aut-sei=SAKAMOTO en-aut-mei=YUMI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OBATAKYOICHI en-aut-sei=OBATA en-aut-mei=KYOICHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ONOKISHO en-aut-sei=ONO en-aut-mei=KISHO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TAKAKURAHIROAKI en-aut-sei=TAKAKURA en-aut-mei=HIROAKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OMORIKAZUHIRO en-aut-sei=OMORI en-aut-mei=KAZUHIRO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TAKASHIBASHOGO en-aut-sei=TAKASHIBA en-aut-mei=SHOGO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SUGASEIJI en-aut-sei=SUGA en-aut-mei=SEIJI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IBARAGISOICHIRO en-aut-sei=IBARAGI en-aut-mei=SOICHIRO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Head and neck cancer kn-keyword=Head and neck cancer en-keyword=oral cancer kn-keyword=oral cancer en-keyword=malignant melanoma kn-keyword=malignant melanoma en-keyword=angiogenin kn-keyword=angiogenin en-keyword=terrein kn-keyword=terrein END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Job strain and adverse pregnancy outcomes: A scoping review and meta‐analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Previous studies have shown that job strain is associated with low birthweight (LBW), preterm birth (PTB), and small for gestational age (SGA). We conducted a scoping review and meta-analysis to assess the association between job strain and adverse pregnancy outcomes.
Methods: A literature search was performed on PubMed. We included English-language studies that examined the association between job strain (based on the Karasek demand-control model) and pregnancy outcomes. We excluded letters, posters, reviews, and qualitative studies. Random effects meta-analysis was performed. Heterogeneity was assessed using τ2 and I2 statistics. Potential bias was assessed using standard funnel plots. Asymmetry was evaluated by Egger's test. Leave-one-out analysis was performed for sensitivity analyses.
Results: Three eligible studies were found for LBW, seven for PTB, and four for SGA. The number of subjects ranged from 135 to 4889, and the prevalence of high job strain ranged from 6.64% to 33.9%. The pooled odds ratio and 95% confidence interval (CI) for LBW, PTB, and SGA were 1.23 (95% CI: 0.97, 1.56), 1.10 (95% CI: 1.00, 1.22), and 1.16 (95% CI: 0.97, 1.39) respectively, indicating modest associations. Heterogeneity for LBW and PTB may not be important but may be moderate for SGA. No publication bias was detected for LBW and PTB, but possible publication bias exists for SGA.
Conclusion: We found a modest association between job strain and PTB. Since job strain is only one of the many aspects of an unhealthy work environment, interventions that improve working conditions more broadly are needed. en-copyright= kn-copyright= en-aut-name=NakayamaKota en-aut-sei=Nakayama en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SlopenNatalie en-aut-sei=Slopen en-aut-mei=Natalie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawachiIchiro en-aut-sei=Kawachi en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University Medical School kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health kn-affil= affil-num=4 en-affil=Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health kn-affil= en-keyword=birthweight kn-keyword=birthweight en-keyword=gestational age kn-keyword=gestational age en-keyword=meta‐analysis kn-keyword=meta‐analysis en-keyword=occupational stress kn-keyword=occupational stress en-keyword=preterm birth kn-keyword=preterm birth END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240909 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrochemically assisted sol-gel deposition of bioactive gels for biomedical applications en-subtitle= kn-subtitle= en-abstract= kn-abstract=So far, the sol-gel process has been available to prepare precursor gels of bioactive glasses with various compositions. In this report, we described a novel coating method of bioactive gels on a titanium substrate where the sol-gel transition is controlled by applying external electric fields. The application of a constant current of 10 mA/cm2 in an acidic sol containing pre-hydrolyzed tetraethoxysilane, calcium nitrate, and ammonium dihydrogen phosphate led to the deposition of gels on the titanium cathodes due to the generation of OH– by water electrolysis as a catalyst of the sol-gel transition. The obtained gels, which were characterized to be amorphous and consisted of Si, Ca, and P, covered the titanium substrates as a coating. The bioactivity of the gels deposited was confirmed by soaking in a simulated body fluid (SBF) up to 7 days, suggesting that the electrochemically assisted sol-gel process is promising for providing bioactive coatings on metallic implants. en-copyright= kn-copyright= en-aut-name=YoshiokaTomohiko en-aut-sei=Yoshioka en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyamotoNaoki en-aut-sei=Miyamoto en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HayakawaSatoshi en-aut-sei=Hayakawa en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Biomaterials Laboratory, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Biomaterials Laboratory, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Sol-gel-derived gels kn-keyword=Sol-gel-derived gels en-keyword=Coating kn-keyword=Coating en-keyword=Water electrolysis kn-keyword=Water electrolysis en-keyword=Bioactivity kn-keyword=Bioactivity en-keyword=SBF kn-keyword=SBF END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=20521 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240903 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Suppression of PTBP1 in hippocampal astrocytes promotes neurogenesis and ameliorates recognition memory in mice with cerebral ischemia en-subtitle= kn-subtitle= en-abstract= kn-abstract=The therapeutic potential of suppressing polypyrimidine tract-binding protein 1 (Ptbp1) messenger RNA by viral transduction in a post-stroke dementia mouse model has not yet been examined. In this study, 3 days after cerebral ischemia, we injected a viral vector cocktail containing adeno-associated virus (AAV)-pGFAP-mCherry and AAV-pGFAP-CasRx (control vector) or a cocktail of AAV-pGFAP-mCherry and AAV-pGFAP-CasRx-SgRNA-(Ptbp1) (1:5, 1.0 x 1011 viral genomes) into post-stroke mice via the tail vein. We observed new mCherry/NeuN double-positive neuron-like cells in the hippocampus 56 days after cerebral ischemia. A portion of mCherry/GFAP double-positive astrocyte-like glia could have been converted into new mCherry/NeuN double-positive neuron-like cells with morphological changes. The new neuronal cells integrated into the dentate gyrus and recognition memory was significantly ameliorated. These results demonstrated that the in vivo conversion of hippocampal astrocyte-like glia into functional new neurons by the suppression of Ptbp1 might be a therapeutic strategy for post-stroke dementia. en-copyright= kn-copyright= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HuXinran en-aut-sei=Hu en-aut-mei=Xinran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakanoYumiko en-aut-sei=Nakano en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YunokiTaijun en-aut-sei=Yunoki en-aut-mei=Taijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakemotoMami en-aut-sei=Takemoto en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=CasRx kn-keyword=CasRx en-keyword=Hippocampal neurogenesis kn-keyword=Hippocampal neurogenesis en-keyword=In vivo direct reprogramming kn-keyword=In vivo direct reprogramming en-keyword=Ischemic stroke kn-keyword=Ischemic stroke en-keyword=PHP.eB kn-keyword=PHP.eB en-keyword=Ptbp1 kn-keyword=Ptbp1 en-keyword=Recognition memory kn-keyword=Recognition memory END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=214 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240911 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Central pancreatectomy of the remnant pancreas without reconstruction after pancreatoduodenectomy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background There are several reports on the safety and feasibility of pancreatoduodenectomy (PD) without reconstruction of the small remnant pancreas. However, a few studies have explored central pancreatectomy (CP) for non-reconstructed small remnant pancreases after PD. This study presents a case of CP without pancreatic reconstruction after PD.
Case presentation A 58-year-old man with cerebral palsy underwent PD for distal cholangiocarcinoma. Three years postoperatively, a 12-mm tumor was detected in the remnant pancreatic body and diagnosed as a pancreatic neuroendocrine neoplasm. Surgical resection was performed, because the tumor was enlarged and chemotherapy resistant. The afferent loop with pancreatojejunostomy anastomosis was dissected, and CP, including pancreatojejunostomy anastomosis, was performed. Given the remnant pancreas was hard and atrophic, the pancreatic tail was transected using a stapler without reconstructing the small remnant pancreas. The patient experienced no postoperative complications including postoperative pancreatic fistula, and the endocrine function of the pancreas was preserved.
Conclusions We present a case of remnant pancreatic CP that did not require reconstruction after PD. Preservation of the small remnant pancreas without reconstruction during CP may be feasible to maintain endocrine function in select patients after PD. en-copyright= kn-copyright= en-aut-name=HironoKinji en-aut-sei=Hirono en-aut-mei=Kinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakagiKosei en-aut-sei=Takagi en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaMotohiko en-aut-sei=Yamada en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KimuraJiro en-aut-sei=Kimura en-aut-mei=Jiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiTomokazu en-aut-sei=Fuji en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YasuiKazuya en-aut-sei=Yasui en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiyamaTakeyoshi en-aut-sei=Nishiyama en-aut-mei=Takeyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagaiYasuo en-aut-sei=Nagai en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KanehiraNoriyuki en-aut-sei=Kanehira en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Central pancreatectomy kn-keyword=Central pancreatectomy en-keyword=Pancreatoduodenectomy kn-keyword=Pancreatoduodenectomy en-keyword=No reconstruction kn-keyword=No reconstruction en-keyword=Glucose tolerance kn-keyword=Glucose tolerance END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=8 article-no= start-page=1835 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surface Pre-Reacted Glass-Ionomer Eluate Suppresses Osteoclastogenesis through Downregulation of the MAPK Signaling Pathway en-subtitle= kn-subtitle= en-abstract= kn-abstract=Surface pre-reacted glass-ionomer (S-PRG) is a new bioactive filler utilized for the restoration of decayed teeth by its ability to release six bioactive ions that prevent the adhesion of dental plaque to the tooth surface. Since ionic liquids are reported to facilitate transepithelial penetration, we reasoned that S-PRG applied to root caries could impact the osteoclasts (OCs) in the proximal alveolar bone. Therefore, this study aimed to investigate the effect of S-PRG eluate solution on RANKL-induced OC-genesis and mineral dissolution in vitro. Using RAW264.7 cells as OC precursor cells (OPCs), TRAP staining and pit formation assays were conducted to monitor OC-genesis and mineral dissolution, respectively, while OC-genesis-associated gene expression was measured using quantitative real-time PCR (qPCR). Expression of NFATc1, a master regulator of OC differentiation, and the phosphorylation of MAPK signaling molecules were measured using Western blotting. S-PRG eluate dilutions at 1/200 and 1/400 showed no cytotoxicity to RAW264.7 cells but did significantly suppress both OC-genesis and mineral dissolution. The same concentrations of S-PRG eluate downregulated the RANKL-mediated induction of OCSTAMP and CATK mRNAs, as well as the expression of NFATc1 protein and the phosphorylation of ERK, JNK, and p38. These results demonstrate that S-PRG eluate can downregulate RANKL-induced OC-genesis and mineral dissolution, suggesting that its application to root caries might prevent alveolar bone resorption. en-copyright= kn-copyright= en-aut-name=ChandraJanaki en-aut-sei=Chandra en-aut-mei=Janaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraShin en-aut-sei=Nakamura en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShindoSatoru en-aut-sei=Shindo en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LeonElizabeth en-aut-sei=Leon en-aut-mei=Elizabeth kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=CastellonMaria en-aut-sei=Castellon en-aut-mei=Maria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PastoreMaria Rita en-aut-sei=Pastore en-aut-mei=Maria Rita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HeidariAlireza en-aut-sei=Heidari en-aut-mei=Alireza kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WitekLukasz en-aut-sei=Witek en-aut-mei=Lukasz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=CoelhoPaulo G. en-aut-sei=Coelho en-aut-mei=Paulo G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakatsukaToshiyuki en-aut-sei=Nakatsuka en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KawaiToshihisa en-aut-sei=Kawai en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=2 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=4 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=5 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=6 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=7 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=8 en-affil=Biomaterials Division, NYU Dentistry kn-affil= affil-num=9 en-affil=Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami kn-affil= affil-num=10 en-affil=R&D Department, Shofu Inc. kn-affil= affil-num=11 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= en-keyword=S-PRG kn-keyword=S-PRG en-keyword=osteoclast kn-keyword=osteoclast en-keyword=hydroxyapatite kn-keyword=hydroxyapatite en-keyword=TRAP staining kn-keyword=TRAP staining en-keyword=bioactive filler kn-keyword=bioactive filler END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=1 article-no= start-page=2398895 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surrogate-Assisted Multi-Objective Optimization for Simultaneous Three-Dimensional Packing and Motion Planning Problems Using the Sequence-Triple Representation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Packing problems are classical optimization problems with wide-ranging applications. With the advancement of robotic manipulation, there are growing demands for the automation of packing tasks. However, the simultaneous optimization of packing and the robot's motion planning is challenging because these two decisions are interconnected, and no previous study has addressed this optimization problem. This paper presents a framework to simultaneously determine the robot's motion planning and packing decision to minimize the robot's processing time and the container's volume. This framework comprises three key components: solution encoding, surrogate modeling, and evolutionary computation. The sequence-triple representation encodes complex packing solutions by a sequence of integers. A surrogate model is trained to predict the processing time for a given packing solution to reduce the computational burden. Training data is generated by solving the motion planning problem for a set of packing solutions using the rapidly exploring random tree algorithm. The Non-Dominated Sorting Genetic Algorithm II searches for the Pareto solutions. Experimental evaluations are conducted using a 6-DOF robot manipulator. The experimental results suggest that implementing the surrogate model can reduce the computational time by 91.1%. The proposed surrogate-assisted optimization method can obtain significantly better solutions than the joint angular velocity-based estimation method. en-copyright= kn-copyright= en-aut-name=LiuZiang en-aut-sei=Liu en-aut-mei=Ziang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawabeTomoya en-aut-sei=Kawabe en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsushi en-aut-sei=Nishi en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItoShun en-aut-sei=Ito en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraTomofumi en-aut-sei=Fujiwara en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Packing problem kn-keyword=Packing problem en-keyword=sequence-triple kn-keyword=sequence-triple en-keyword=motion planning kn-keyword=motion planning en-keyword=surrogate model kn-keyword=surrogate model en-keyword=multi-objective optimization kn-keyword=multi-objective optimization END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=16 article-no= start-page=2266 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-Term Bonding Performance of One-Bottle vs. Two-Bottle Bonding Agents to Lithium Disilicate Ceramics en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this study was to compare the long-term bonding performance to lithium disilicate (LDS) ceramic between one-bottle and two-bottle bonding agents. Bonding performance was investigated under these LDS pretreatment conditions: with hydrofluoric acid (HF) only, without HF, with a two-bottle bonding agent (Tokuyama Universal Bond II) only. Shear bond strengths between LDS and nine resin cements (both self-adhesive and conventional adhesive types) were measured at three time periods: after one-day water storage (Base), and after 5000 and 20,000 thermocycles (TC 5k and TC 20k respectively). Difference in degradation between one- and two-bottle bonding agents containing the silane coupling agent was compared by high-performance liquid chromatography. With HF pretreatment, bond strengths were not significantly different among the three time periods for each resin cement. Without HF, ESTECEM II and Super-Bond Universal showed significantly higher values than others at TC 5k and TC 20k when treated with the recommended bonding agents, especially at TC 20k. Difference in degradation between one- and two-bottle bonding agents containing the silane coupling agent was compared by high-performance liquid chromatography (HPLC). For both cements, these values at TC 20k were also not significantly different from pretreatment with only Tokuyama Universal Bond II. For LDS, long-term bond durability could be maintained by pretreatment with Tokuyama Universal Bond II instead of the hazardous HF. en-copyright= kn-copyright= en-aut-name=IrieMasao en-aut-sei=Irie en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaMasahiro en-aut-sei=Okada en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishigawaGoro en-aut-sei=Nishigawa en-aut-mei=Goro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsumotoTakuya en-aut-sei=Matsumoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dental Biomaterials, Tohoku University Graduate School of Dentistry kn-affil= affil-num=3 en-affil=Department of Prosthodontics, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Prosthodontics, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=shear bond strength kn-keyword=shear bond strength en-keyword=bonding agent kn-keyword=bonding agent en-keyword=one- vs. two bottles kn-keyword=one- vs. two bottles en-keyword=resin luting materials kn-keyword=resin luting materials en-keyword=lithium disilicate ceramics kn-keyword=lithium disilicate ceramics en-keyword=durability kn-keyword=durability END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue= article-no= start-page=102104 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Protracted coronavirus disease 2019 after chimeric antigen receptor-T cell therapy successfully treated with sequential multidrug therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 56-year-old woman who received CD19 chimeric antigen receptor-T cell therapy for refractory diffuse large B-cell lymphoma developed severe coronavirus disease 2019 (COVID-19) and was treated with nirmatrelvir/ritonavir in April 2022. However, she experienced persistent fatigue and cough and fever in June. Computed tomography revealed bilateral ground-glass opacities (GGO), and the patient was treated with corticosteroids for organizing pneumonia after COVID19. Partial improvement was observed, but new GGO appeared despite corticosteroid therapy. Genome analysis of severe acute respiratory syndrome coronavirus 2 detected Omicron variant BA.1.1.2, which was prevalent at the time of initial infection. The patient was diagnosed with protracted COVID-19 and was treated with remdesivir, molnupiravir, nirmatrelvir/ritonavir, and tixagevimab/cilgavimab. These treatments appeared to contribute to the improvement of protracted COVID-19. en-copyright= kn-copyright= en-aut-name=YamashitaMasahiro en-aut-sei=Yamashita en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HigoHisao en-aut-sei=Higo en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsumotoChiaki en-aut-sei=Matsumoto en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiiMasanori en-aut-sei=Fujii en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RaiKammei en-aut-sei=Rai en-aut-mei=Kammei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TabataMasahiro en-aut-sei=Tabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MiyaharaNobuaki en-aut-sei=Miyahara en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=Chimeric antigen receptor-T cell therapy kn-keyword=Chimeric antigen receptor-T cell therapy en-keyword=Coronavirus disease 2019 kn-keyword=Coronavirus disease 2019 en-keyword=Multidrug therapy kn-keyword=Multidrug therapy en-keyword=Organizing pneumonia kn-keyword=Organizing pneumonia END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=8 article-no= start-page=1005 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240807 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Enhanced Active Access-Point Configuration Algorithm Using the Throughput Request Satisfaction Method for an Energy-Efficient Wireless Local-Area Network en-subtitle= kn-subtitle= en-abstract= kn-abstract=Wireless Local-Area Networks (WLANs), as a popular internet access solution, are widely used in numerous places, including enterprises, campuses, and public venues. As the number of devices increases, large-scale deployments will cause the problem of dense wireless networks, including a lot of energy consumption. Thus, the optimization of energy-efficient wireless AP devices has become a focal point of attention. To reduce energy consumption, we have proposed the active access-point (AP) configuration algorithm for WLANs using APs with a dual interface. This uses the greedy algorithm combined with the local search optimization method to find the minimum number of activated APs while satisfying the minimum throughput constraint. However, the previous algorithm basically satisfies only the average throughput among the multiple hosts associated with one AP, wherein some hosts may not reach the required one. In this paper, to overcome this limitation, we propose an enhanced active AP configuration algorithm by incorporating the throughput request satisfaction method that controls the actual throughput at the target value (target throughput) for every host by applying traffic shaping. The target throughput is calculated from the single and concurrent communicating throughput of each host based on channel occupancy time. The minimum throughput constraint will be iteratively adjusted to obtain the required target throughput and achieve the fair throughput allocation. For evaluations, we conducted simulations using the WIMNET simulator and experiments using the testbed system with a Raspberry Pi 4B for APs in four topology cases with five APs and ten hosts. The results show that the proposed method always achieved the required minimum throughput in simulations as well as in experiments, while minimizing the number of active APs. Thus, the validity and effectiveness of our proposal were confirmed. en-copyright= kn-copyright= en-aut-name=WuBin en-aut-sei=Wu en-aut-mei=Bin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KongDezheng en-aut-sei=Kong en-aut-mei=Dezheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangXuan en-aut-sei=Wang en-aut-mei=Xuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SetoTaishiro en-aut-sei=Seto en-aut-mei=Taishiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FanYu-Cheng en-aut-sei=Fan en-aut-mei=Yu-Cheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Electronic Engineering, National Taipei University of Technology kn-affil= en-keyword=energy-efficient WLAN kn-keyword=energy-efficient WLAN en-keyword=IoT kn-keyword=IoT en-keyword=active AP configuration algorithm kn-keyword=active AP configuration algorithm en-keyword=throughput request satisfaction method kn-keyword=throughput request satisfaction method en-keyword=throughput control kn-keyword=throughput control en-keyword=traffic shaping kn-keyword=traffic shaping END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=16 article-no= start-page=8593 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240806 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of Antimicrobial Surfaces Using Diamond-like Carbon or Diamond-like Carbon-Based Coatings en-subtitle= kn-subtitle= en-abstract= kn-abstract=The medical device market is a high-growth sector expected to sustain an annual growth rate of over 5%, even in developed countries. Daily, numerous patients have medical devices implanted or inserted within their bodies. While medical devices have significantly improved patient outcomes, as foreign objects, their wider use can lead to an increase in device-related infections, thereby imposing a burden on healthcare systems. Multiple materials with significant societal impact have evolved over time: the 19th century was the age of iron, the 20th century was dominated by silicon, and the 21st century is often referred to as the era of carbon. In particular, the development of nanocarbon materials and their potential applications in medicine are being explored, although the scope of these applications remains limited. Technological innovations in carbon materials are remarkable, and their application in medicine is expected to advance greatly. For example, diamond-like carbon (DLC) has garnered considerable attention for the development of antimicrobial surfaces. Both DLC itself and its derivatives have been reported to exhibit anti-microbial properties. This review discusses the current state of DLC-based antimicrobial surface development. en-copyright= kn-copyright= en-aut-name=FujiiYasuhiro en-aut-sei=Fujii en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakataniTatsuyuki en-aut-sei=Nakatani en-aut-mei=Tatsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OusakaDaiki en-aut-sei=Ousaka en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OozawaSusumu en-aut-sei=Oozawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SasaiYasushi en-aut-sei=Sasai en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama University kn-affil= affil-num=2 en-affil=Institute of Frontier Science and Technology, Okayama University of Science kn-affil= affil-num=3 en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Division of Medical Safety Management, Safety Management Facility, Okayama University Hospital, Okayama University kn-affil= affil-num=5 en-affil=Department of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=6 en-affil=Department of Cardiovascular Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=diamond-like carbon kn-keyword=diamond-like carbon en-keyword=antibacterial surface kn-keyword=antibacterial surface en-keyword=hydrophilicity kn-keyword=hydrophilicity en-keyword=ζ-potential kn-keyword=ζ-potential en-keyword=surface smoothness kn-keyword=surface smoothness en-keyword=biofilm kn-keyword=biofilm en-keyword=bacterial adhesion kn-keyword=bacterial adhesion END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=8 article-no= start-page=464 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Image-Based User Interface Testing Method for Flutter Programming Learning Assistant System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Flutter has become popular for providing a uniform development environment for user interfaces (UIs) on smart phones, web browsers, and desktop applications. We have developed the Flutter programming learning assistant system (FPLAS) to assist its novice students' self-study. We implemented the Docker-based Flutter environment with Visual Studio Code and three introductory exercise projects. However, the correctness of students' answers is manually checked, although automatic checking is necessary to reduce teachers' workload and provide quick responses to students. This paper presents an image-based user interface (UI) testing method to automate UI testing by the answer code using the Flask framework. This method produces the UI image by running the answer code and compares it with the image made by the model code for the assignment using ORB and SIFT algorithms in the OpenCV library. One notable aspect is the necessity to capture multiple UI screenshots through page transitions by user input actions for the accurate detection of changes in UI elements. For evaluations, we assigned five Flutter exercise projects to fourth-year bachelor and first-year master engineering students at Okayama University, Japan, and applied the proposed method to their answers. The results confirm the effectiveness of the proposal. en-copyright= kn-copyright= en-aut-name=AungSoe Thandar en-aut-sei=Aung en-aut-mei=Soe Thandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AungLynn Htet en-aut-sei=Aung en-aut-mei=Lynn Htet kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinariSafira Adine en-aut-sei=Kinari en-aut-mei=Safira Adine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WaiKhaing Hsu en-aut-sei=Wai en-aut-mei=Khaing Hsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MentariMustika en-aut-sei=Mentari en-aut-mei=Mustika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=Flutter kn-keyword=Flutter en-keyword=FPLAS kn-keyword=FPLAS en-keyword=testing kn-keyword=testing en-keyword=image kn-keyword=image en-keyword=Flask kn-keyword=Flask en-keyword=OpenCV kn-keyword=OpenCV en-keyword=user interface kn-keyword=user interface END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=4 article-no= start-page=556 end-page=580 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Azidoindolines—From Synthesis to Application: A Review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Azide-containing compounds, organic azides, showcases a variety of reactivities, making them highly convenient and chameleonic intermediates. An indoline derivative has been proven to be of great significance in drug discovery due to its sp3-rich property. In this context, it is interesting to perform such vigorous azidation on medicinal-relevant indoles/indolines, resulting in the production of sp3-rich azidoindolines. The potential biological activity, in combination with the sp3-rich indoline bearing the azido moiety, makes azidoindolines an attractive synthetic target for medicinal and synthetic chemists. This review describes recent advances in the synthesis and application of azidoindolines: (1) iodine-mediated azidations, (2) metal-catalyzed azidations, (3) electrochemical azidations, (4) photochemical azidations, (5) azidation using a combination of an oxidant and an azide source, and (6) nucleophilic azidation. en-copyright= kn-copyright= en-aut-name=AbeTakumi en-aut-sei=Abe en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=azidoindolines kn-keyword=azidoindolines en-keyword=indole kn-keyword=indole en-keyword=azido kn-keyword=azido en-keyword=synthesis kn-keyword=synthesis en-keyword=application kn-keyword=application END start-ver=1.4 cd-journal=joma no-vol=357 cd-vols= no-issue= article-no= start-page=114601 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Revisiting the hormonal control of sexual dimorphism in chicken feathers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sexual dimorphism in plumage is widespread among avian species. In chickens, adult females exhibit countershading, characterized by dull-colored round feathers lacking fringe on the saddle, while adult males display vibrant plumage with deeply fringed bright feathers. This dimorphism is estrogen-dependent, and administering estrogen to males transforms their showy plumage into cryptic female-like plumage. Extensive studies have shown that estrogen’s role in female plumage formation requires thyroid hormone; however, the precise mechanisms of their interaction remain unclear. In this study, we investigated the roles of estrogen and thyroid hormone in creating sexual dimorphism in the structure and coloration of saddle feathers by administering each hormone to adult males and observing the resulting changes in regenerated feathers induced by plucking. RT-PCR analysis revealed that the expression of type 3 deiodinase (DIO3), responsible for thyroid hormone inactivation, correlates with fringing. Estrogen suppressed DIO3 and agouti signaling protein (ASIP) expression while stimulating BlSK1, a marker of barbule cells, resulting in female-like feathers with mottled patterns and lacking fringes. Administration of thyroxine (T4) stimulated BlSK1 and proopiomelanocortin (POMC) expression, with no effect on ASIP, leading to the formation of solid black feathers lacking fringes. Triiodothyronine (T3) significantly increased POMC expression in pulp cells in culture. Taken together, these findings suggest that estrogen promotes the formation of solid vanes by suppressing DIO3 expression, while also inducing the formation of mottled patterns through inhibition of ASIP expression and indirect stimulation of melanocortin expression via changes in local T3 concentration. This is the first report describing molecular mechanism underlying hormonal crosstalk in creating sexual dimorphism in feathers. en-copyright= kn-copyright= en-aut-name=YouLi en-aut-sei=You en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishioKaori en-aut-sei=Nishio en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KowataKinue en-aut-sei=Kowata en-aut-mei=Kinue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HorikawaMinaru en-aut-sei=Horikawa en-aut-mei=Minaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukuchiHibiki en-aut-sei=Fukuchi en-aut-mei=Hibiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OgoshiMaho en-aut-sei=Ogoshi en-aut-mei=Maho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AizawaSayaka en-aut-sei=Aizawa en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Biology, Faculty of Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Melanocortin kn-keyword=Melanocortin en-keyword=Thyroid hormone kn-keyword=Thyroid hormone en-keyword=ASIP kn-keyword=ASIP en-keyword=Estrogen kn-keyword=Estrogen en-keyword=Deiodinase kn-keyword=Deiodinase END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240827 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Morphogenesis and adaptive strategies for infection in plant pathogenic fungi en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=FukadaFumi en-aut-sei=Fukada en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=16 article-no= start-page=1621 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240814 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Postgraduate Year Two Medical Residents' Awareness of Personal Development as a Physician during the Management of Inpatients: A Qualitative Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Clinical experiences, helping relationships, and reflection are key factors for personal development for physicians. However, few studies have shown which experiences are important for personal growth and how medical residents specifically use their experiences for personal growth. The aim of this study was to identify from the medical residents' perspective which clinical experiences contribute to their personal development. We employed a qualitative design, conducting semi-structured interviews with ten postgraduate year two medical residents at a Japanese teaching hospital. The interviews were transcribed in interview memos, anonymized, and subjected to reflective thematic analysis to generate themes relevant to personal and professional development. Successful clinical experiences with autonomy and responsibility in clinical management were shown to be essential points for personal development as a physician. Autonomy in this study was the attitude of making one's own choices when managing patients. Responsibility was the obligation of the resident to take charge of a patient. Instructing junior trainees, appreciation received from patients, and approval granted by attending physicians reinforced their feelings of personal growth. The realization of what experiences and concepts influence medical residents' personal growth and development will make their professional development more effective. en-copyright= kn-copyright= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObaraHaruo en-aut-sei=Obara en-aut-mei=Haruo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirosawaTakanobu en-aut-sei=Hirosawa en-aut-mei=Takanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OgawaHiroko en-aut-sei=Ogawa en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Internal Medicine, Okinawa Chubu Hospital kn-affil= affil-num=3 en-affil=Department of Diagnostic and Generalist Medicine, Dokkyo Medical University kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=autonomy kn-keyword=autonomy en-keyword=personal development kn-keyword=personal development en-keyword=personal growth kn-keyword=personal growth en-keyword=qualitative study kn-keyword=qualitative study en-keyword=responsibility kn-keyword=responsibility END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=16 article-no= start-page=1373 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240817 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Direct Binding of Synaptopodin 2-Like Protein to Alpha-Actinin Contributes to Actin Bundle Formation in Cardiomyocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Synaptopodin 2-like protein (SYNPO2L) is localized in the sarcomere of cardiomyocytes and is involved in heart morphogenesis. However, the molecular function of SYNPO2L in the heart is not fully understood. We investigated the interaction of SYNPO2L with sarcomeric alpha-actinin and actin filaments in cultured mouse cardiomyocytes. Immunofluorescence studies showed that SYNPO2L colocalized with alpha-actinin and actin filaments at the Z-discs of the sarcomere. Recombinant SYNPO2La or SYNPO2Lb caused a bundling of the actin filaments in the absence of alpha-actinin and enhanced the alpha-actinin-dependent formation of actin bundles. In addition, high-speed atomic force microscopy revealed that SYNPO2La directly bound to alpha-actinin via its globular ends. The interaction between alpha-actinin and SYNPO2La fixed the movements of the two proteins on the actin filaments. These results strongly suggest that SYNPO2L cooperates with alpha-actinin during actin bundle formation to facilitate sarcomere formation and maintenance. en-copyright= kn-copyright= en-aut-name=YamadaHiroshi en-aut-sei=Yamada en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OsakaHirona en-aut-sei=Osaka en-aut-mei=Hirona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TatsumiNanami en-aut-sei=Tatsumi en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArakiMiu en-aut-sei=Araki en-aut-mei=Miu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AbeTadashi en-aut-sei=Abe en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KaiharaKeiko en-aut-sei=Kaihara en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakashimaEizo en-aut-sei=Takashima en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UchihashiTakayuki en-aut-sei=Uchihashi en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeiKohji en-aut-sei=Takei en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Science, Nagoya University kn-affil= affil-num=3 en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University kn-affil= affil-num=9 en-affil=Graduate School of Science, Nagoya University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=SYNPO2L kn-keyword=SYNPO2L en-keyword=actinin kn-keyword=actinin en-keyword=actin kn-keyword=actin en-keyword=sarcomere kn-keyword=sarcomere en-keyword=cardiomyocyte kn-keyword=cardiomyocyte END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=16 article-no= start-page=9038 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240820 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quercetin Attenuates Acetaldehyde-Induced Cytotoxicity via the Heme Oxygenase-1-Dependent Antioxidant Mechanism in Hepatocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection. en-copyright= kn-copyright= en-aut-name=LiKexin en-aut-sei=Li en-aut-mei=Kexin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KidawaraMinori en-aut-sei=Kidawara en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChenQiguang en-aut-sei=Chen en-aut-mei=Qiguang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraToshiyuki en-aut-sei=Nakamura en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=quercetin kn-keyword=quercetin en-keyword=acetaldehyde kn-keyword=acetaldehyde en-keyword=glutathione kn-keyword=glutathione en-keyword=aldehyde dehydrogenase kn-keyword=aldehyde dehydrogenase en-keyword=heme oxygenase-1 kn-keyword=heme oxygenase-1 END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=16 article-no= start-page=4108 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240819 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Scaffold Geometrical Structure on Macrophage Polarization during Bone Regeneration Using Honeycomb Tricalcium Phosphate en-subtitle= kn-subtitle= en-abstract= kn-abstract=The polarization balance of M1/M2 macrophages with different functions is important in osteogenesis and bone repair processes. In a previous study, we succeeded in developing honeycomb tricalcium phosphate (TCP), which is a cylindrical scaffold with a honeycomb arrangement of straight pores, and we demonstrated that TCP with 300 and 500 mu m pore diameters (300TCP and 500TCP) induced bone formation within the pores. However, the details of the influence of macrophage polarization on bone formation using engineered biomaterials, especially with respect to the geometric structure of the artificial biomaterials, are unknown. In this study, we examined whether differences in bone tissue formation due to differences in TCP geometry were due to the polarity of the assembling macrophages. Immunohistochemistry for IBA-1, iNOS, and CD163 single staining was performed. The 300TCP showed a marked infiltration of iNOS-positive cells, which are thought to be M1 macrophages, during the osteogenesis process, while no involvement of CD163-positive cells, which are thought to be M2 macrophages, was observed in the TCP pores. In addition, 500TCP showed a clustering of iNOS-positive cells and CD163-positive cells at 2 weeks, suggesting the involvement of M2 macrophages in the formation of bone tissue in the TCP pores. In conclusion, we demonstrated for the first time that the geometrical structure of the artificial biomaterial, i.e., the pore size of honeycomb TCP, affects the polarization of M1/2 macrophages and bone tissue formation in TCP pores. en-copyright= kn-copyright= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsujigiwaHidetsugu en-aut-sei=Tsujigiwa en-aut-mei=Hidetsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChangAnqi en-aut-sei=Chang en-aut-mei=Anqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PiaoTianyan en-aut-sei=Piao en-aut-mei=Tianyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InadaYasunori en-aut-sei=Inada en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ArashimaTakuma en-aut-sei=Arashima en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MorimatsuAyumi en-aut-sei=Morimatsu en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaAyumi en-aut-sei=Tanaka en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Life Science, Faculty of Science, Okayama University of Science kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=honeycomb TCP kn-keyword=honeycomb TCP en-keyword=bone formation kn-keyword=bone formation en-keyword=macrophages kn-keyword=macrophages en-keyword=polarization kn-keyword=polarization END start-ver=1.4 cd-journal=joma no-vol=137 cd-vols= no-issue=9 article-no= start-page=212 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240831 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mutations in starch BRANCHING ENZYME 2a suppress the traits caused by the loss of ISOAMYLASE1 in barley en-subtitle= kn-subtitle= en-abstract= kn-abstract=The genetic interactions among starch biosynthesis genes can be exploited to alter starch properties, but they remain poorly understood due to the various combinations of mutations to be tested. Here, we isolated two novel barley mutants defective in starch BRANCHING ENZYME 2a (hvbe2a-1 and hvbe2a-2) based on the starch granule (SG) morphology. Both hvbe2a mutants showed elongated SGs in the endosperm and increased resistant starch content. hvbe2a-1 had a base change in HvBE2a gene, substituting the amino acid essential for its enzyme activity, while hvbe2a-2 is completely missing HvBE2a due to a chromosomal deletion. Further genetic crosses with barley isoamylase1 mutants (hvisa1) revealed that both hvbe2a mutations could suppress defects in endosperm caused by hvisa1, such as reduction in starch, increase in phytoglycogen, and changes in the glucan chain length distribution. Remarkably, hvbe2a mutations also transformed the endosperm SG morphology from the compound SG caused by hvisa1 to bimodal simple SGs, resembling that of wild-type barley. The suppressive impact was in competition with floury endosperm 6 mutation (hvflo6), which could enhance the phenotype of hvisa1 in the endosperm. In contrast, the compound SG formation induced by the hvflo6 hvisa1 mutation in pollen was not suppressed by hvbe2a mutations. Our findings provide new insights into genetic interactions in the starch biosynthetic pathway, demonstrating how specific genetic alterations can influence starch properties and SG morphology, with potential applications in cereal breeding for desired starch properties. en-copyright= kn-copyright= en-aut-name=MatsushimaRyo en-aut-sei=Matsushima en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoHiroshi en-aut-sei=Hisano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimJune-Sik en-aut-sei=Kim en-aut-mei=June-Sik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=McNellyRose en-aut-sei=McNelly en-aut-mei=Rose kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OitomeNaoko F. en-aut-sei=Oitome en-aut-mei=Naoko F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SeungDavid en-aut-sei=Seung en-aut-mei=David kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujitaNaoko en-aut-sei=Fujita en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SatoKazuhiro en-aut-sei=Sato en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=John Innes Centre, Norwich Research Park kn-affil= affil-num=5 en-affil=Department of Biological Production, Akita Prefectural University kn-affil= affil-num=6 en-affil=John Innes Centre, Norwich Research Park kn-affil= affil-num=7 en-affil=Department of Biological Production, Akita Prefectural University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240829 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The role of GABA in modulation of taste signaling within the taste bud en-subtitle= kn-subtitle= en-abstract= kn-abstract=Taste buds contain 2 types of GABA-producing cells: sour-responsive Type III cells and glial-like Type I cells. The physiological role of GABA, released by Type III cells is not fully understood. Here, we investigated the role of GABA released from Type III cells using transgenic mice lacking the expression of GAD67 in taste bud cells (Gad67-cKO mice). Immunohistochemical experiments confirmed the absence of GAD67 in Type III cells of Gad67-cKO mice. Furthermore, no difference was observed in the expression and localization of cell type markers, ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2), gustducin, and carbonic anhydrase 4 (CA4) in taste buds between wild-type (WT) and Gad67-cKO mice. Short-term lick tests demonstrated that both WT and Gad67-cKO mice exhibited normal licking behaviors to each of the five basic tastants. Gustatory nerve recordings from the chorda tympani nerve demonstrated that both WT and Gad67-cKO mice similarly responded to five basic tastants when they were applied individually. However, gustatory nerve responses to sweet–sour mixtures were significantly smaller than the sum of responses to each tastant in WT mice but not in Gad67-cKO mice. In summary, elimination of GABA signalling by sour-responsive Type III taste cells eliminates the inhibitory cell–cell interactions seen with application of sour–sweet mixtures. en-copyright= kn-copyright= en-aut-name=MikamiAyaka en-aut-sei=Mikami en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HuangHai en-aut-sei=Huang en-aut-mei=Hai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HyodoAiko en-aut-sei=Hyodo en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HorieKengo en-aut-sei=Horie en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YasumatsuKeiko en-aut-sei=Yasumatsu en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NinomiyaYuzo en-aut-sei=Ninomiya en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MitohYoshihiro en-aut-sei=Mitoh en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshidaRyusuke en-aut-sei=Yoshida en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Tokyo Dental Junior College kn-affil= affil-num=6 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Gamma-aminobutyric acid kn-keyword=Gamma-aminobutyric acid en-keyword=Taste buds kn-keyword=Taste buds en-keyword=Glutamate decarboxylase kn-keyword=Glutamate decarboxylase en-keyword=Taste mixture kn-keyword=Taste mixture en-keyword=Sour kn-keyword=Sour en-keyword=Sweet kn-keyword=Sweet END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=1 article-no= start-page=1 end-page=9 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240730 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Potential dopaminergic deficit in patients with geriatric psychiatric disorders as revealed by DAT-SPECT: a cross-sectional study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background It has been reported that patients with geriatric psychiatric disorders include many cases of the prodromal stages of neurodegenerative diseases. Abnormal I-123-2 beta-carbomethoxy-3 beta-(4-iodophenyl)-N-(3-fluoropropyl) nortropane dopamine transporter single-photon emission computed tomography (DAT-SPECT) reveals a nigrostriatal dopaminergic deficit and is considered useful to detect dementia with Lewy bodies and Parkinson's disease as well as progressive supranuclear palsy and corticobasal degeneration. We aimed to determine the proportion of cases that are abnormal on DAT-SPECT in patients with geriatric psychiatric disorders and to identify their clinical profile.
Methods The design is a cross-sectional study. Clinical findings of 61 inpatients aged 60 years or older who underwent DAT-SPECT and had been diagnosed with psychiatric disorders, but not neurodegenerative disease or dementia were analysed.
Results 36 of 61 (59%) had abnormal results on DAT-SPECT. 54 of 61 patients who had DAT-SPECT (89%) had undergone I-123-metaiodobenzylguanidine myocardial scintigraphy (I-123-MIBG scintigraphy); 12 of the 54 patients (22.2%) had abnormal findings on I-123-MIBG scintigraphy. There were no cases that were normal on DAT-SPECT and abnormal on I-123-MIBG scintigraphy. DAT-SPECT abnormalities were more frequent in patients with late-onset (55 years and older) psychiatric disorders (69.0%) and depressive disorder (75.7%), especially late-onset depressive disorder (79.3%).
Conclusion Patients with geriatric psychiatric disorders include many cases showing abnormalities on DAT-SPECT. It is suggested that these cases are at high risk of developing neurodegenerative diseases characterised by a dopaminergic deficit. It is possible that patients with geriatric psychiatric disorders with abnormal findings on DAT-SPECT tend to show abnormalities on DAT-SPECT first rather than on I-123-MIBG scintigraphy. en-copyright= kn-copyright= en-aut-name=TakenoshitaShintaro en-aut-sei=Takenoshita en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TeradaSeishi en-aut-sei=Terada en-aut-mei=Seishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KojimaKatsuhide en-aut-sei=Kojima en-aut-mei=Katsuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishikawaNaoto en-aut-sei=Nishikawa en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MikiTomoko en-aut-sei=Miki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YokotaOsamu en-aut-sei=Yokota en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiwaraMasaki en-aut-sei=Fujiwara en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakakiManabu en-aut-sei=Takaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=1403922 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240820 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lentil adaptation to drought stress: response, tolerance, and breeding approaches en-subtitle= kn-subtitle= en-abstract= kn-abstract=Lentil (Lens culinaris Medik.) is a cool season legume crop that plays vital roles in food and nutritional security, mostly in the least developed countries. Lentil is often cultivated in dry and semi-dry regions, where the primary abiotic factor is drought, which negatively impacts lentil growth and development, resulting in a reduction of yield. To withstand drought-induced multiple negative effects, lentil plants evolved a variety of adaptation strategies that can be classified within three broad categories of drought tolerance mechanisms (i.e., escape, avoidance, and tolerance). Lentil adapts to drought by the modulation of various traits in the root system, leaf architecture, canopy structure, branching, anatomical features, and flowering process. Furthermore, the activation of certain defensive biochemical pathways as well as the regulation of gene functions contributes to lentil drought tolerance. Plant breeders typically employ conventional and mutational breeding approaches to develop lentil varieties that can withstand drought effects; however, little progress has been made in developing drought-tolerant lentil varieties using genomics-assisted technologies. This review highlights the current understanding of morpho-physiological, biochemical, and molecular mechanisms of lentil adaptation to drought stress. We also discuss the potential application of omics-assisted breeding approaches to develop lentil varieties with superior drought tolerance traits. en-copyright= kn-copyright= en-aut-name=NoorMd. Mahmud Al en-aut-sei=Noor en-aut-mei=Md. Mahmud Al kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Tahjib-Ul-ArifMd. en-aut-sei=Tahjib-Ul-Arif en-aut-mei=Md. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AlimS. M. Abdul en-aut-sei=Alim en-aut-mei=S. M. Abdul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IslamMd. Mohimenul en-aut-sei=Islam en-aut-mei=Md. Mohimenul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasanMd. Toufiq en-aut-sei=Hasan en-aut-mei=Md. Toufiq kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BabarMd. Ali en-aut-sei=Babar en-aut-mei=Md. Ali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HossainMohammad Anwar en-aut-sei=Hossain en-aut-mei=Mohammad Anwar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=JewelZilhas Ahmed en-aut-sei=Jewel en-aut-mei=Zilhas Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MostofaMohammad Golam en-aut-sei=Mostofa en-aut-mei=Mohammad Golam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture kn-affil= affil-num=4 en-affil=Horticulture Division, Bangladesh Institute of Nuclear Agriculture kn-affil= affil-num=5 en-affil=Department of Biotechnology, Bangladesh Agricultural University kn-affil= affil-num=6 en-affil=Agronomy Departments, University of Florida kn-affil= affil-num=7 en-affil=Department of Genetics and Plant Breeding, Bangladesh Agricultural University kn-affil= affil-num=8 en-affil=Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Department of Biochemistry and Molecular Biology, Michigan State University kn-affil= en-keyword=abiotic stress kn-keyword=abiotic stress en-keyword=morphology kn-keyword=morphology en-keyword=pulse crop kn-keyword=pulse crop en-keyword=plant growth kn-keyword=plant growth en-keyword=omics kn-keyword=omics en-keyword=water-deficit kn-keyword=water-deficit END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=14543 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240624 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cervical spinal cord stimulation exerts anti-epileptic effects in a rat model of epileptic seizure through the suppression of CCL2-mediated cascades en-subtitle= kn-subtitle= en-abstract= kn-abstract=Epidural spinal cord stimulation (SCS) is indicated for the treatment of intractable pain and is widely used in clinical practice. In previous basic research, the therapeutic effects of SCS have been demonstrated for epileptic seizure. However, the mechanism has not yet been elucidated. In this study, we investigated the therapeutic effect of SCS and the influence of epileptic seizure. First, SCS in the cervical spine was performed. The rats were divided into four groups: control group and treatment groups with SCS conducted at 2, 50, and 300 Hz frequency. Two days later, convulsions were induced by the intraperitoneal administration of kainic acid, followed by video monitoring to assess seizures. We also evaluated glial cells in the hippocampus by fluorescent immunostaining, electroencephalogram measurements, and inflammatory cytokines such as C-C motif chemokine ligand 2 (CCL2) by quantitative real-time polymerase chain reaction. Seizure frequency and the number of glial cells were significantly lower in the 300 Hz group than in the control group. SCS at 300 Hz decreased gene expression level of CCL2, which induces monocyte migration. SCS has anti-seizure effects by inhibiting CCL2-mediated cascades. The suppression of CCL2 and glial cells may be associated with the suppression of epileptic seizure. en-copyright= kn-copyright= en-aut-name=OkazakiYosuke en-aut-sei=Okazaki en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HosomotoKakeru en-aut-sei=Hosomoto en-aut-mei=Kakeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanimotoShun en-aut-sei=Tanimoto en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawaiKoji en-aut-sei=Kawai en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagaseTakayuki en-aut-sei=Nagase en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugaharaChiaki en-aut-sei=Sugahara en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YabunoSatoru en-aut-sei=Yabuno en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KinKyohei en-aut-sei=Kin en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Kure Kyosai Hospital kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neurosurgery, Okayama Rosai Hospital kn-affil= en-keyword=Epileptic seizure kn-keyword=Epileptic seizure en-keyword=Glial cells kn-keyword=Glial cells en-keyword=Spinal cord stimulation kn-keyword=Spinal cord stimulation en-keyword=C-C motif chemokine ligand 2 kn-keyword=C-C motif chemokine ligand 2 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-quality expert annotations enhance artificial intelligence model accuracy for osteosarcoma X-ray diagnosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Primary malignant bone tumors, such as osteosarcoma, significantly affect the pediatric and young adult populations, necessitating early diagnosis for effective treatment. This study developed a high-performance artificial intelligence (AI) model to detect osteosarcoma from X-ray images using highly accurate annotated data to improve diagnostic accuracy at initial consultations. Traditional models trained on unannotated data have shown limited success, with sensitivities of approximately 60%–70%. In contrast, our model used a data-centric approach with annotations from an experienced oncologist, achieving a sensitivity of 95.52%, specificity of 96.21%, and an area under the curve of 0.989. The model was trained using 468 X-ray images from 31 osteosarcoma cases and 378 normal knee images with a strategy to maximize diversity in the training and validation sets. It was evaluated using an independent dataset of 268 osteosarcoma and 554 normal knee images to ensure generalizability. By applying the U-net architecture and advanced image processing techniques such as renormalization and affine transformations, our AI model outperforms existing models, reducing missed diagnoses and enhancing patient outcomes by facilitating earlier treatment. This study highlights the importance of high-quality training data and advocates a shift towards data-centric AI development in medical imaging. These insights can be extended to other rare cancers and diseases, underscoring the potential of AI in transforming diagnostic processes in oncology. The integration of this AI model into clinical workflows could support physicians in early osteosarcoma detection, thereby improving diagnostic accuracy and patient care. en-copyright= kn-copyright= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaYujiro en-aut-sei=Otsuka en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraYusuke en-aut-sei=Nakamura en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HironariTamiya en-aut-sei=Hironari en-aut-mei=Tamiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KaharaNaoaki en-aut-sei=Kahara en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiwaShinji en-aut-sei=Miwa en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhshikaShusa en-aut-sei=Ohshika en-aut-mei=Shusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishimuraShunji en-aut-sei=Nishimura en-aut-mei=Shunji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IkutaKunihiro en-aut-sei=Ikuta en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OsakiShuhei en-aut-sei=Osaki en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Medical Information and Assistive Technology Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Radiology, Juntendo University School of Medicine kn-affil= affil-num=4 en-affil=Department of Radiology, Juntendo University School of Medicine kn-affil= affil-num=5 en-affil=Department of Musculoskeletal Oncology Service, Osaka International Cancer Institute kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Mizushima Central Hospital kn-affil= affil-num=7 en-affil= Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Orthopedic Surgery, Kindai University Hospital kn-affil= affil-num=10 en-affil=Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Musculoskeletal Oncology, National Cancer Center Hospital kn-affil= affil-num=12 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=clinical decision support kn-keyword=clinical decision support en-keyword=diagnostic imaging kn-keyword=diagnostic imaging en-keyword=image annotation kn-keyword=image annotation en-keyword=osteosarcoma detection kn-keyword=osteosarcoma detection END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Important Notes for Preventing Entrapment of Distal Filter-based Embolic Protection Device in Carotid Artery Stenting en-subtitle= kn-subtitle= en-abstract= kn-abstract=Failure to retrieve a distal filter-based embolic protection device (EPD) is a potential complication of carotid artery stenting. This may be caused by trapping of the proximal marker of the EPD within the stent tip marker. Maintaining an adequate distance between the two can prevent this. We examined the behavior of several stent-filter-based EPD combinations, focusing on their propensity to become trapped or disengage in vitro. Four physicians subjectively rated the force required to result in trapping using a 5-point scale. Moreover, the force required to disengage trapped devices was evaluated. The Casper stent & horbar;Spider FX EPD combination was difficult to disengage when entrapment occurred, which suggested that this phenomenon tended to occur with this combination. The stent tip marker of the closed-cell stents advanced as they shortened, which may be a unique feature of closed-cell stents. Although trapping is uncommon, it can cause serious complications. To prevent these complications, device characteristics should be well understood before they are used in patients. en-copyright= kn-copyright= en-aut-name=FUJITAJuntaro en-aut-sei=FUJITA en-aut-mei=Juntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HIROTSUNENobuyuki en-aut-sei=HIROTSUNE en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MATSUDAYuki en-aut-sei=MATSUDA en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HAMASAKIOsamu en-aut-sei=HAMASAKI en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FUKUDAShoichi en-aut-sei=FUKUDA en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OKADAYoshihiro en-aut-sei=OKADA en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KOBASHIAiko en-aut-sei=KOBASHI en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NISHIGAKIShohei en-aut-sei=NISHIGAKI en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MAKINOKeigo en-aut-sei=MAKINO en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TOMITAYusuke en-aut-sei=TOMITA en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KIDANINaoya en-aut-sei=KIDANI en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MURAOKAKenichiro en-aut-sei=MURAOKA en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NISHINOShigeki en-aut-sei=NISHINO en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Miyoshi Central Hospital kn-affil= affil-num=4 en-affil= Department of Neurosurgery, Miyoshi Central Hospital kn-affil= affil-num=5 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=6 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=8 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=9 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=10 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=11 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=12 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=13 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= en-keyword=carotid artery stenting kn-keyword=carotid artery stenting en-keyword=distal filter-based embolic protection device kn-keyword=distal filter-based embolic protection device en-keyword=complication kn-keyword=complication END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=4 article-no= start-page=583 end-page=595 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Estimation of the Effects of Achilles Tendon Geometry on the Magnitude and Distribution of Local Strain: A Finite Element Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the influence of Achilles tendon (AT) geometry on local-strain magnitude and distribution during loading, using finite element analysis. We calculated the following eight AT parameters for 18 healthy men: thickness and width of the most distal part, minimum cross-sectional area (mCSA), and most proximal part; length; and position of the mCSA. To investigate the effect of AT geometry on the magnitude and distribution of local strain, we created three-dimensional numerical models by changing the AT parameter values for every one standard deviation (SD) in the range of ±2 SD. A 4000 N lengthening force was applied to the proximal surface of all the models. The mean first principal strain (FPS) was determined every 3% of the length. The highest FPS in each model was mainly observed in the proximal regions; the 86–89% site (the most proximal site was set at 100%) had the highest number of models with the highest FPS (nine models). The highest FPS was observed in the model with a distal thickness of −2 SD, which was 27.1% higher than that of the standard model observed in the 2–5% site. Therefore, the AT geometry influences local-strain magnitude and distribution during loading. en-copyright= kn-copyright= en-aut-name=EnomotoShota en-aut-sei=Enomoto en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OdaToshiaki en-aut-sei=Oda en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Institute for Promotion of Education and Campus Life, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Education, Hyogo University of Teacher Education kn-affil= en-keyword=computational model kn-keyword=computational model en-keyword=Mooney-Rivlin model kn-keyword=Mooney-Rivlin model en-keyword=soft tissue kn-keyword=soft tissue END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=5 article-no= start-page=897 end-page=900 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202409 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A randomized, open-label phase II study on the preventive effect of goshajinkigan against peripheral neuropathy induced by paclitaxel-containing chemotherapy: The OLCSG2101 study protocol en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Paclitaxel (PTX) is an essential cytotoxic anticancer agent and a standard treatment regimen component for various malignant tumors, including advanced unresectable non-small cell lung cancer, thymic cancer, and primary unknown cancers. However, chemotherapy-induced peripheral neuropathy (CIPN) caused by PTX is a significant adverse event that may lead to chemotherapy discontinuation and deterioration of the quality of life (QOL). Although treatment modalities such as goshajinkigan (GJG), pregabalin, and duloxetine are empirically utilized for CIPN, there is no established evidence for an agent as a preventive measure. We designed a randomized phase II trial (OLCSG2101) to investigate whether prophylactic GJG administration can prevent the onset of CIPN induced by PTX.
Methods: This study was designed as a two-arm, prospective, randomized, multicenter phase II trial. The patients will be randomly assigned to either the GJG prophylaxis arm (Arm A) or the GJG non-prophylaxis arm (Arm B), using cancer type (lung cancer or not) and age (<70 years or not) as adjustment factors. A total of 66 patients (33 in each arm) will be enrolled.
Discussion: The results of this study may contribute to better management of CIPN, which can enable the continuation of chemotherapy and maintenance of the patient's QOL.
Ethics and dissemination: Ethical approval was obtained from the certified review board of Okayama University (approval no. CRB21-005) on September 28, 2021. Results will be published in peer-reviewed journals and presented at national and international conferences.
Trial registration: Japan Registry of Clinical Trials (registration number jRCTs061210047). en-copyright= kn-copyright= en-aut-name=NakamuraNaoki en-aut-sei=Nakamura en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTakaaki en-aut-sei=Tanaka en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatoYuka en-aut-sei=Kato en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OzeIsao en-aut-sei=Oze en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KozukiToshiyuki en-aut-sei=Kozuki en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YokoyamaToshihide en-aut-sei=Yokoyama en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchikawaHirohisa en-aut-sei=Ichikawa en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KuyamaShoichi en-aut-sei=Kuyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HaraNaofumi en-aut-sei=Hara en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Center of Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, Shikoku Cancer Center kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, KKR Takamatsu Hospital kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, Iwakuni Clinical Center kn-affil= affil-num=10 en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Center of Innovative Clinical Medicine, Okayama University Hospital kn-affil= en-keyword=Kampo kn-keyword=Kampo en-keyword=CIPN kn-keyword=CIPN en-keyword=prophylaxis kn-keyword=prophylaxis en-keyword=neuropathy kn-keyword=neuropathy en-keyword=taxane kn-keyword=taxane END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=2 article-no= start-page=394 end-page=408 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200221 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The neurotoxicity of psychoactive phenethylamines “2C series” in cultured monoaminergic neuronal cell lines en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose The aim of this study was to evaluate the neurotoxicity of psychoactive abused 2,5-dimethoxy-substituted phenethylamines “2C series” in monoaminergic neurons.
Methods After the exposure to “2C series”, 2,5-dimethoxy-4-propylthiophenethylamine (2C-T-7), 2,5-dimethoxy-4-isopropylthiophenethylamine (2C-T-4), 2,5-dimethoxy-4-ethylthiophenthylamine (2C-T-2), 2,5-dimethoxy-4-iodophenethylamine (2C-I) or 2,5-dimethoxy-4-chlorophenethylamine (2C-C), we examined their neurotoxicity, morphological changes, and effects of concomitant exposure to 3,4-methylenedioxymethamphetamine (MDMA) or methamphetamine (METH), using cultured neuronal dopaminergic CATH.a cells and serotonin-containing B65 cells.
Results Single dose exposure to “2C series” for 24 h showed significant cytotoxicity as increase in lactate dehydrogenase (LDH) release from both monoaminergic neurons: 2C-T-7, 2C-C (EC50; 100 µM) > 2C-T-2 (150 µM), 2C-T-4 (200 µM) > 2C-I (250 µM) in CATH.a cells and 2C-T-7, 2C-I (150 µM) > 2C-T-2 (250 µM) > 2C-C, 2C-T-4 (300 µM) in B65 cells. The “2C series”-induced neurotoxicity in both cells was higher than that of MDMA or METH (EC50: ≥ 1–2 mM). In addition, apoptotic morphological changes were observed at relatively lower concentrations of “2C series”. The concomitant exposure to non-toxic dose of MDMA or METH synergistically enhanced 2C series drugs-induced LDH release and apoptotic changes in B65 cells, but to a lesser extent in CATH.a cells. In addition, the lower dose of 2C-T-7, 2C-T-2 or 2C-I promoted reactive oxygen species production in the mitochondria of B65 cells, even at the early stages (3 h) without apparent morphological changes.
Conclusion The 2,5-dimethoxy-substitution of “2C series” induced severe neurotoxicity in both dopaminergic and serotonin-containing neurons. The non-toxic dose of MDMA or METH synergistically enhanced its neurotoxicity in serotonergic neurons. en-copyright= kn-copyright= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FunadaMasahiko en-aut-sei=Funada en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Division of Drug Dependence, National Institute of Mental Health, National Center of Neurology and Psychiatry kn-affil= en-keyword=Psychoactive drugs kn-keyword=Psychoactive drugs en-keyword=2,5-Dimethoxy-substituted phenethylamines kn-keyword=2,5-Dimethoxy-substituted phenethylamines en-keyword=Neurotoxicity kn-keyword=Neurotoxicity en-keyword=Serotonin-containing neurons kn-keyword=Serotonin-containing neurons en-keyword=Dopamine neurons kn-keyword=Dopamine neurons en-keyword=Reactive oxygen species kn-keyword=Reactive oxygen species END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240822 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Does a coexisting congener of a mixed mating species affect the genetic structure and selfing rate via reproductive interference? en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reproductive interference is defined as an interspecific interaction that reduces fitness via mating processes. Although its ecological and evolutionary consequences have attracted much attention, how reproductive interference affects the population genetic structures of interacting species is still unclear. In flowering plants, recent studies found that self-pollination can mitigate the negative effects of reproductive interference. Selfing-biased seed production is expected to increase population-level inbreeding and the selfing rate, and limits gene flow via pollinator outcrossing among populations. We examined the population genetics of the mixed-mating annual herb Commelina communis f. ciliata, focusing on reproductive interference by the sympatric competing congener C. communis using microsatellite markers. First, we found that almost all C. c. f. ciliata populations had relatively high inbreeding coefficients. Then, comparing sympatric and allopatric populations, we found evidence that reproductive interference from a competing congener increased the inbreeding coefficient and selfing rate. Allopatric populations exhibit varied selfing rates while almost all sympatric populations exhibit extremely high selfing rates, suggesting that population selfing rates were also influenced by unexamined factors, such as pollinator limitation. Besides, our findings revealed that reproductive interference from a competing congener did not limit gene flow among populations. We present the first report on how reproductive interference affects the genetic aspects of populations. Our results suggested that the high selfing rate of C. c. f. ciliata promotes its sympatric distribution with C. communis, even in the presence of reproductive interference, although it is not clear whether reproductive interference directly causes the high selfing rate. en-copyright= kn-copyright= en-aut-name=KatsuharaKoki R. en-aut-sei=Katsuhara en-aut-mei=Koki R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UshimaruAtushi en-aut-sei=Ushimaru en-aut-mei=Atushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyazakiYuko en-aut-sei=Miyazaki en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Human Development and Environment, Kobe University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Commelina kn-keyword=Commelina en-keyword=Genetic diversity kn-keyword=Genetic diversity en-keyword=Inbreeding coefficient kn-keyword=Inbreeding coefficient en-keyword=Mixed mating kn-keyword=Mixed mating en-keyword=Population genetics kn-keyword=Population genetics END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=111371 end-page=111385 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Adaptive Resonance Theory-Based Global Topological Map Building for an Autonomous Mobile Robot en-subtitle= kn-subtitle= en-abstract= kn-abstract=3D space perception is one of the key technologies for autonomous mobile robots that perform tasks in unknown environments. Among these, building global topological maps for autonomous mobile robots is a challenging task. In this study, we propose a method for learning topological structures from unknown data distributions based on competitive learning, a type of unsupervised learning. For this purpose, adaptive resonance theory-based Topological Clustering (ATC), which can avoid catastrophic forgetting of previously measured point clouds, is applied as a learning method. Furthermore, by extending ATC with Different Topologies (ATC-DT) with multiple topological structures for extracting the traversable information of terrain environments, a path planning method is realized that can reach target points set in an unknown environment. Path planning experiments in unknown environments show that, compared to other methods, ATC-DT can build a global topology map with high accuracy and stability using only measured 3D point cloud and robot position information. en-copyright= kn-copyright= en-aut-name=TodaYuichiro en-aut-sei=Toda en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MasuyamaNaoki en-aut-sei=Masuyama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Informatics, Osaka Metropolitan University kn-affil= en-keyword=Adaptive resonance theory kn-keyword=Adaptive resonance theory en-keyword=autonomous mobile robot kn-keyword=autonomous mobile robot en-keyword=topological map kn-keyword=topological map END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=18063 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240808 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Human heart-on-a-chip microphysiological system comprising endothelial cells, fibroblasts, and iPSC-derived cardiomyocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=In recent years, research on organ-on-a-chip technology has been flourishing, particularly for drug screening and disease model development. Fibroblasts and vascular endothelial cells engage in crosstalk through paracrine signaling and direct cell-cell contact, which is essential for the normal development and function of the heart. Therefore, to faithfully recapitulate cardiac function, it is imperative to incorporate fibroblasts and vascular endothelial cells into a heart-on-a-chip model. Here, we report the development of a human heart-on-a-chip composed of induced pluripotent stem cell (iPSC)-derived cardiomyocytes, fibroblasts, and vascular endothelial cells. Vascular endothelial cells cultured on microfluidic channels responded to the flow of culture medium mimicking blood flow by orienting themselves parallel to the flow direction, akin to in vivo vascular alignment in response to blood flow. Furthermore, the flow of culture medium promoted integrity among vascular endothelial cells, as evidenced by CD31 staining and lower apparent permeability. The tri-culture condition of iPSC-derived cardiomyocytes, fibroblasts, and vascular endothelial cells resulted in higher expression of the ventricular cardiomyocyte marker IRX4 and increased contractility compared to the bi-culture condition with iPSC-derived cardiomyocytes and fibroblasts alone. Such tri-culture-derived cardiac tissues exhibited cardiac responses similar to in vivo hearts, including an increase in heart rate upon noradrenaline administration. In summary, we have achieved the development of a heart-on-a-chip composed of cardiomyocytes, fibroblasts, and vascular endothelial cells that mimics in vivo cardiac behavior. en-copyright= kn-copyright= en-aut-name=LiuYun en-aut-sei=Liu en-aut-mei=Yun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KamranRumaisa en-aut-sei=Kamran en-aut-mei=Rumaisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HanXiaoxia en-aut-sei=Han en-aut-mei=Xiaoxia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangMengxue en-aut-sei=Wang en-aut-mei=Mengxue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiQiang en-aut-sei=Li en-aut-mei=Qiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LaiDaoyue en-aut-sei=Lai en-aut-mei=Daoyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Induced pluripotent stem cells kn-keyword=Induced pluripotent stem cells en-keyword=Fibroblasts kn-keyword=Fibroblasts en-keyword=Endothelial cells kn-keyword=Endothelial cells en-keyword=Heart kn-keyword=Heart en-keyword=Heart-on-a-chip kn-keyword=Heart-on-a-chip en-keyword=Organ-on-a-chip kn-keyword=Organ-on-a-chip END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=100347 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reduction with zinc - Impact on the determination of nitrite and nitrate ions using microfluidic paper-based analytical devices en-subtitle= kn-subtitle= en-abstract= kn-abstract=We used a microfluidic paper-based analytical device (mu PAD) to investigate the influence that zinc reduction exerts on the determination of nitrite and nitrate ions in natural water samples. The mu PAD consists of layered channels for the reduction of nitrate to nitrite with zinc powder and the subsequent detection of nitrite with Griess reagent. The amount of zinc, number of layers, and reaction time for the reduction were optimized to obtain an intense signal for nitrate. Initially, the sensitivity to nitrate corresponded to 55% that of nitrite, which implied an incomplete reduction. We found, however, that zinc decreased the sensitivity to nitrite in both the mu PAD and spectrophotometry. The sensitivity to nitrite was decreased by 48% in spectrophotometry and 68% in the mu PAD following the reaction with zinc. One of the reasons for the decreased sensitivity is attributed to the production of ammonia, as we elucidated that both nitrite and nitrate produced ammonia via the reaction with zinc. The results suggest that the total concentration of nitrite and nitrate must be corrected by constructing a calibration curve for nitrite with zinc, in addition to developing curves for nitrate with zinc and for nitrite without zinc. Using these calibration curves, the absorbance at different concentration ratios of nitrite and nitrate ions could be reproduced via calculation using the calibration curves with zinc for nitrite and nitrate. Eventually, the developed mu PAD was applied to the determination of nitrite and nitrate ions in natural water samples, and the results were compared with those using a conventional spectrophotometric method. The results of the mu PAD are in good agreement with those of conventional spectrophotometry, which suggests that the mu PAD is reliable for the measurement of nitrite and nitrate ions in natural water samples. en-copyright= kn-copyright= en-aut-name=UmedaMika I. en-aut-sei=Umeda en-aut-mei=Mika I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiTakatoshi en-aut-sei=Fujii en-aut-mei=Takatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HinoEiichi en-aut-sei=Hino en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DateYusuke en-aut-sei=Date en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AokiKaoru en-aut-sei=Aoki en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=National Institute of Technology, Yonago College kn-affil= affil-num=4 en-affil=National Institute of Technology, Yonago College kn-affil= affil-num=5 en-affil=National Institute of Technology, Yonago College kn-affil= affil-num=6 en-affil=National Institute of Technology, Yonago College kn-affil= affil-num=7 en-affil=Okayama University kn-affil= en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Nitrite ion kn-keyword=Nitrite ion en-keyword=Nitrate ion kn-keyword=Nitrate ion en-keyword=On-site analysis kn-keyword=On-site analysis en-keyword=Environmental analysis kn-keyword=Environmental analysis END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=85 end-page=90 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 123nd General Assembly of the Okayama Medical Association kn-title=第123回 岡山医学会総会 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=83 end-page=84 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=mRNA-vaccine kn-title=mRNA ワクチン en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TanakaYuta en-aut-sei=Tanaka en-aut-mei=Yuta kn-aut-name=田中雄太 kn-aut-sei=田中 kn-aut-mei=雄太 aut-affil-num=1 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name=座間味義人 kn-aut-sei=座間味 kn-aut-mei=義人 aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil=岡山大学病院 薬剤部 affil-num=2 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil=岡山大学病院 薬剤部 END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=80 end-page=82 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Drug interaction (60. Chronic pain treatment drugs) kn-title=薬物相互作用(60―慢性疼痛治療薬の薬物相互作用) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TakahashiTetta en-aut-sei=Takahashi en-aut-mei=Tetta kn-aut-name=髙橋徹多 kn-aut-sei=髙橋 kn-aut-mei=徹多 aut-affil-num=1 ORCID= en-aut-name=HigashionnaTsukasa en-aut-sei=Higashionna en-aut-mei=Tsukasa kn-aut-name=東恩納司 kn-aut-sei=東恩納 kn-aut-mei=司 aut-affil-num=2 ORCID= en-aut-name=HamanoHirohumi en-aut-sei=Hamano en-aut-mei=Hirohumi kn-aut-name=濱野裕章 kn-aut-sei=濱野 kn-aut-mei=裕章 aut-affil-num=3 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name=座間味義人 kn-aut-sei=座間味 kn-aut-mei=義人 aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil=岡山大学病院 薬剤部 affil-num=2 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil=岡山大学病院 薬剤部 affil-num=3 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil=岡山大学病院 薬剤部 affil-num=4 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil=岡山大学病院 薬剤部 END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=77 end-page=79 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Sjögren's syndrome kn-title=シェーグレン症候群 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name=松本佳則 kn-aut-sei=松本 kn-aut-mei=佳則 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Kidney, Diabetes and Endocrine Diseases, Okayama University Hospital kn-affil=岡山大学病院 腎臓・糖尿病・内分泌内科 en-keyword=シェーグレン症候群 kn-keyword=シェーグレン症候群 en-keyword=疫学 kn-keyword=疫学 en-keyword=治療 kn-keyword=治療 en-keyword=特定疾患 kn-keyword=特定疾患 END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=74 end-page=76 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Acquired idiopathic generalized anhidrosis (AIGA) kn-title=特発性後天性全身性無汗症 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KawakamiYoshio en-aut-sei=Kawakami en-aut-mei=Yoshio kn-aut-name=川上佳夫 kn-aut-sei=川上 kn-aut-mei=佳夫 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Dermatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 皮膚科学 en-keyword=コリン性蕁麻疹 kn-keyword=コリン性蕁麻疹 en-keyword=ステロイドパルス kn-keyword=ステロイドパルス en-keyword=機能性高体温症 kn-keyword=機能性高体温症 END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=69 end-page=73 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=A case of immune checkpoint inhibitor-associated colitis treated with infliximab kn-title=インフリキシマブが著効した免疫関連有害事象大腸炎の1例 en-subtitle= kn-subtitle= en-abstract= kn-abstract= A 52-year-old Japanese man diagnosed with non-small cell lung cancer initiated chemotherapy with tremelimumab, durvalumab, nanoparticle albumin-bound paclitaxel, and carboplatin. On the fourth day of the first treatment course, he developed a fever, followed by watery diarrhea exceeding 10 episodes per day and bloody stools the next day. Immunotherapy-related adverse event colitis was diagnosed through CT scans and colonoscopy examinations. Despite the ineffectiveness of systemic steroid administration, prompt alleviation of symptoms was achieved through the administration of infliximab. In our case, the patient developed Grade 3 diarrhea, prompting the initiation of intravenous prednisolone at 80mg/day in accordance with guidelines. However, symptom improvement was not attained. In situations where symptoms persist beyond three days despite systemic steroid administration, the consideration of adjunctive infliximab use at a dosage of 5mg/kg becomes necessary. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name=岩室雅也 kn-aut-sei=岩室 kn-aut-mei=雅也 aut-affil-num=1 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name=平岡佐規子 kn-aut-sei=平岡 kn-aut-mei=佐規子 aut-affil-num=2 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name=大塚基之 kn-aut-sei=大塚 kn-aut-mei=基之 aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil=岡山大学病院 消化器内科 affil-num=2 en-affil=Inflammatory Bowel Disease Center, Okayama University Hospital kn-affil=岡山大学病院 炎症性腸疾患センター affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 消化器・肝臓内科学 en-keyword=インフリキシマブ(infliximab) kn-keyword=インフリキシマブ(infliximab) en-keyword=免疫関連有害事象(immune-related adverse events) kn-keyword=免疫関連有害事象(immune-related adverse events) en-keyword=大腸炎(colitis) kn-keyword=大腸炎(colitis) END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=63 end-page=68 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Metformin-induced mitochondrial reactive oxygen species and host defense mechanisms kn-title=メトホルミンによるミトコンドリア活性酸素誘導と生体防御機構 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=UdonoHeiichiro en-aut-sei=Udono en-aut-mei=Heiichiro kn-aut-name=鵜殿平一郎 kn-aut-sei=鵜殿 kn-aut-mei=平一郎 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Immunology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 免疫学 en-keyword=CD8T 細胞 kn-keyword=CD8T 細胞 en-keyword=活性酸素 kn-keyword=活性酸素 en-keyword=Nrf2 kn-keyword=Nrf2 en-keyword=解糖系 kn-keyword=解糖系 en-keyword=ミトコンドリア kn-keyword=ミトコンドリア END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=57 end-page=62 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Five-year findings from the home blood pressure management study using IoT technology and future perspectives based on a time-series big data and AI analysis : the Masuda Study kn-title=IoT 技術を用いた家庭血圧管理研究の5年間の成果と時系列ビックデータ・AI を活用した今後の展望:益田研究 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name=久松隆史 kn-aut-sei=久松 kn-aut-mei=隆史 aut-affil-num=1 ORCID= en-aut-name=KinutaMinako en-aut-sei=Kinuta en-aut-mei=Minako kn-aut-name=絹田皆子 kn-aut-sei=絹田 kn-aut-mei=皆子 aut-affil-num=2 ORCID= en-aut-name=FukudaMari en-aut-sei=Fukuda en-aut-mei=Mari kn-aut-name=福田茉莉 kn-aut-sei=福田 kn-aut-mei=茉莉 aut-affil-num=3 ORCID= en-aut-name=TaniguchiKaori en-aut-sei=Taniguchi en-aut-mei=Kaori kn-aut-name=谷口かおり kn-aut-sei=谷口 kn-aut-mei=かおり aut-affil-num=4 ORCID= en-aut-name=NakahataNoriko en-aut-sei=Nakahata en-aut-mei=Noriko kn-aut-name=中畑典子 kn-aut-sei=中畑 kn-aut-mei=典子 aut-affil-num=5 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name=神田秀幸 kn-aut-sei=神田 kn-aut-mei=秀幸 aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Public Health, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 公衆衛生学 affil-num=2 en-affil=Department of Public Health, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 公衆衛生学 affil-num=3 en-affil=Department of Public Health, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 公衆衛生学 affil-num=4 en-affil=Department of Environmental Medicine and Public Health, Faculty of Medicine, Shimane University kn-affil=島根大学医学部 環境保健医学 affil-num=5 en-affil=Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane kn-affil=島根県立大学看護栄養学部 健康栄養学科 affil-num=6 en-affil=Department of Public Health, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 公衆衛生学 en-keyword=家庭血圧(home blood pressure) kn-keyword=家庭血圧(home blood pressure) en-keyword=IoT kn-keyword=IoT en-keyword=AI kn-keyword=AI en-keyword=ビックデータ(big data) kn-keyword=ビックデータ(big data) END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=54 end-page=56 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2023 Incentive Award of the Okayama Medical Association in Cardiovascular and Pulmonary Research (2023 Sunada Prize) kn-title=令和5年度岡山医学会賞 胸部・循環研究奨励賞(砂田賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MatsubaraKei en-aut-sei=Matsubara en-aut-mei=Kei kn-aut-name=松原慧 kn-aut-sei=松原 kn-aut-mei=慧 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 呼吸器・乳腺・内分泌外科学 END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=51 end-page=53 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2023 Incentive Award of the Okayama Medical Association in Neuroscience (2023 Niimi Prize) kn-title=令和5年度岡山医学会賞 脳神経研究奨励賞(新見賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YabunoSatoru en-aut-sei=Yabuno en-aut-mei=Satoru kn-aut-name=藪野諭 kn-aut-sei=藪野 kn-aut-mei=諭 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 脳神経外科学 END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=48 end-page=50 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2023 Incentive Award of the Okayama Medical Association in General Medical Science (2023 Yuuki Prize) kn-title=令和5年度岡山医学会賞 総合研究奨励賞(結城賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name=内藤宏道 kn-aut-sei=内藤 kn-aut-mei=宏道 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 救命救急・災害医学 END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=45 end-page=47 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2023 Incentive Award of the Okayama Medical Association in Cancer Research (2023 Hayashibara Prize and Yamada Prize) kn-title=令和5年度岡山医学会賞 がん研究奨励賞(林原賞・山田賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name=石野貴雅 kn-aut-sei=石野 kn-aut-mei=貴雅 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 腫瘍微小環境学 END start-ver=1.4 cd-journal=joma no-vol=149 cd-vols= no-issue= article-no= start-page=13 end-page=16 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=201809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Functional analysis of N-terminal propeptide in the precursor of Vibrio vulnificus metalloprotease by using cell-free translational system en-subtitle= kn-subtitle= en-abstract= kn-abstract=Vibrio vulnificus is a human pathogen causing fatal septicemia with edematous and hemorrhagic skin damage. Among multiple virulence factors, an extracellular metalloprotease termed as V. vulnificus protease (VVP) is known to play a crucial role in eliciting the skin damage. The mature VVP (413 aa) is composed of two domains, the N-terminal core domain with proteolytic activity and the C-terminal domain mediates efficient attachment to protein substrates. However, VVP is produced as an inactive precursor (609 aa) with a signal peptide (24 aa) and propeptide (172 aa). In order to clarify the function of propeptide, a series of DNA fragments encoding the VVP precursor and its various domains were designed and the proteins were expressed in vitro by using cell-free translational system. The results indicated that the propeptide might function as an intramolecular chaperon to promote the proper folding of both N-terminal and C-terminal domains. The obtained results also suggest that the propeptide, itself was unstable and thus digested easily by the enzymes present in cell lysate used for cell-free system. Additionally, the C-terminal domain in VVP found to inhibit the folding of the N-terminal domain in absence of propeptide. en-copyright= kn-copyright= en-aut-name=KawaseTomoka en-aut-sei=Kawase en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiuraFumi en-aut-sei=Miura en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DebnathAnusuya en-aut-sei=Debnath en-aut-mei=Anusuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImakuraKinuyo en-aut-sei=Imakura en-aut-mei=Kinuyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyoshiShin-ichi en-aut-sei=Miyoshi en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Vibrio vulnificus kn-keyword=Vibrio vulnificus en-keyword=Protease kn-keyword=Protease en-keyword=Propeptide kn-keyword=Propeptide en-keyword=Domain kn-keyword=Domain en-keyword=Cell-free translational system kn-keyword=Cell-free translational system END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=1329162 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vaccine and antiviral drug promise for preventing post-acute sequelae of COVID-19, and their combination for its treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency.
Methods: A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed.
Results and discussion: Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaradaKouji en-aut-sei=Harada en-aut-mei=Kouji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Computer Science and Engineering, Toyohashi University of Technology kn-affil= en-keyword=post-acute sequelae of SARS-CoV-2 infection kn-keyword=post-acute sequelae of SARS-CoV-2 infection en-keyword=PASC kn-keyword=PASC en-keyword=long Covid kn-keyword=long Covid en-keyword=persistent viruses kn-keyword=persistent viruses en-keyword=vaccine kn-keyword=vaccine en-keyword=antiviral drug kn-keyword=antiviral drug en-keyword=mathematical model kn-keyword=mathematical model en-keyword=immune response kn-keyword=immune response END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=3 article-no= start-page=e70003 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240822 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Forgetfulness in adult attention-deficit/hyperactivity disorder masks transient epileptic amnesia: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Inattention due to attention-deficit/hyperactivity disorder (ADHD) can lead to forgetfulness. Transient epileptic amnesia (TEA) can cause forgetfulness, similar to ADHD. We report a patient with ADHD who developed TEA.
Case Presentation: The patient was a 40-year-old woman with ADHD. She has been prone to forgetfulness since childhood. Two years before visiting our outpatient clinic, she had begun to occasionally forget events that had occurred several days earlier. However, she was largely unaware of the emergence of new amnestic symptoms. She had also begun to experience various other amnestic symptoms 2 months before she visited our clinic, which prompted her to visit our outpatient clinic. The combination of a detailed interview, electroencephalography (EEG) examination, and consideration of TEA enabled us to diagnose her with TEA and provide treatment accordingly. In our patient, daily forgetfulness due to ADHD delayed the recognition of new additional forgetfulness attributed to TEA.
Conclusion: Psychiatrists need to consider TEA when patients with ADHD present with changes in or exacerbation of forgetfulness. We report a patient with ADHD who developed TEA. In our patient, daily forgetfulness due to ADHD delayed the recognition of new additional forgetfulness attributed to TEA. Psychiatrists need to consider TEA when patients with ADHD present with changes or exacerbation of forgetfulness. en-copyright= kn-copyright= en-aut-name=FukaoTakashi en-aut-sei=Fukao en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraMasaki en-aut-sei=Fujiwara en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaYuto en-aut-sei=Yamada en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoShinji en-aut-sei=Sakamoto en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsumotoYosuke en-aut-sei=Matsumoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakakiManabu en-aut-sei=Takaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Neuropsychiatry, OkayamaUniversity Hospital kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, OkayamaUniversity Hospital kn-affil= affil-num=3 en-affil=Department of Neuropsychiatry, OkayamaUniversity Hospital kn-affil= affil-num=4 en-affil=Department of Neuropsychiatry, OkayamaUniversity Hospital kn-affil= affil-num=5 en-affil=Okayama University Hospital Gender Center kn-affil= affil-num=6 en-affil=Department of Neuropsychiatry, OkayamaUniversity Faculty of Medicine, Dentistry andPharmaceutical Sciences kn-affil= en-keyword=anti-seizure medications kn-keyword=anti-seizure medications en-keyword=attention-deficit/hyperactivity disorder kn-keyword=attention-deficit/hyperactivity disorder en-keyword=electroencephalography kn-keyword=electroencephalography en-keyword=transient epileptic amnesia kn-keyword=transient epileptic amnesia END start-ver=1.4 cd-journal=joma no-vol=103 cd-vols= no-issue=32 article-no= start-page=e39113 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Insomnia among patients with chronic pain A retrospective study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Insomnia can coexist with chronic pain and is a major cause of rapidly increasing medical expenses. However, insomnia has not been fully evaluated in patients with chronic pain. This retrospective study aimed to identify the risk factors for insomnia in patients with chronic non-cancer pain. A total of 301 patients with chronic non-cancer pain were enrolled. Patients with the Athens insomnia scale scores >= 6 and < 6 were classified into insomnia (+) and insomnia (-) groups, respectively. All patients completed self-report questionnaires as part of their chronic pain treatment approach. Univariate and multivariate analyses were performed to predict insomnia. We found that 219 of 301 (72.8%) patients met the AIS criteria for insomnia. Significant differences were depicted between patients with and without insomnia in terms of body mass index, numeric rating scale, pain catastrophizing scale, hospital anxiety, and depression scale (HADS), pain disability assessment scale, EuroQol 5 dimension (EQ5D), and pain self-efficacy questionnaire. Multiple regression analysis identified the numeric rating scale, HADS, and EQ5D scores as factors related to insomnia in patients with chronic non-cancer pain. Anxiety, depression, and disability were associated with a greater tendency toward insomnia. HADS and EQ5D scores are useful screening tools for preventing insomnia in patients with chronic non-cancer pain. en-copyright= kn-copyright= en-aut-name=UedaMasataka en-aut-sei=Ueda en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TetsunagaTomoko en-aut-sei=Tetsunaga en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TetsunagaTomonori en-aut-sei=Tetsunaga en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishidaKeiichiro en-aut-sei=Nishida en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakatoriRyo en-aut-sei=Takatori en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShitozawaHisakazu en-aut-sei=Shitozawa en-aut-mei=Hisakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UotaniKoji en-aut-sei=Uotani en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinoharaKennsuke en-aut-sei=Shinohara en-aut-mei=Kennsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OdaYoshiaki en-aut-sei=Oda en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University kn-affil= affil-num=3 en-affil=Department of Musculoskeletal Health Promotion, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Division of Chronic Pain Medicine and Division of Comprehensive Rheumatology, Locomotive Pain Center, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University kn-affil= affil-num=8 en-affil=Department of Sports Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=AIS kn-keyword=AIS en-keyword=cognitive-behavioral therapy kn-keyword=cognitive-behavioral therapy en-keyword=EQ5D kn-keyword=EQ5D en-keyword=HADS kn-keyword=HADS en-keyword=insomnia kn-keyword=insomnia en-keyword=pain-liaison outpatient clinic kn-keyword=pain-liaison outpatient clinic en-keyword=sleep disorders kn-keyword=sleep disorders END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Overcoming immunotherapy resistance and inducing abscopal effects with boron neutron immunotherapy (B-NIT) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors (ICIs) are effective against many advanced malignancies. However, many patients are nonresponders to immunotherapy, and overcoming this resistance to treatment is important. Boron neutron capture therapy (BNCT) is a local chemoradiation therapy with the combination of boron drugs that accumulate selectively in cancer and the neutron irradiation of the cancer site. Here, we report the first boron neutron immunotherapy (B-NIT), combining BNCT and ICI immunotherapy, which was performed on a radioresistant and immunotherapy-resistant advanced-stage B16F10 melanoma mouse model. The BNCT group showed localized tumor suppression, but the anti-PD-1 antibody immunotherapy group did not show tumor suppression. Only the B-NIT group showed strong tumor growth inhibition at both BNCT-treated and shielded distant sites. Intratumoral CD8+ T-cell infiltration and serum high mobility group box 1 (HMGB1) levels were higher in the B-NIT group. Analysis of CD8(+) T cells in tumor-infiltrating lymphocytes (TILs) showed that CD62L- CD44(+) effector memory T cells and CD69(+) early-activated T cells were predominantly increased in the B-NIT group. Administration of CD8-depleting mAb to the B-NIT group completely suppressed the augmented therapeutic effects. This indicated that B-NIT has a potent immune-induced abscopal effect, directly destroying tumors with BNCT, inducing antigen-spreading effects, and protecting normal tissue. B-NIT, immunotherapy combined with BNCT, is the first treatment to overcome immunotherapy resistance in malignant melanoma. In the future, as its therapeutic efficacy is demonstrated not only in melanoma but also in other immunotherapy-resistant malignancies, B-NIT can become a new treatment candidate for advanced-stage cancers. en-copyright= kn-copyright= en-aut-name=FujimotoTakuya en-aut-sei=Fujimoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamasakiOsamu en-aut-sei=Yamasaki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanehiraNoriyuki en-aut-sei=Kanehira en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsushitaHirokazu en-aut-sei=Matsushita en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakuraiYoshinori en-aut-sei=Sakurai en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KenmotsuNaoya en-aut-sei=Kenmotsu en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MizutaRyo en-aut-sei=Mizuta en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoNatsuko en-aut-sei=Kondo en-aut-mei=Natsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakataTakushi en-aut-sei=Takata en-aut-mei=Takushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KitamatsuMizuki en-aut-sei=Kitamatsu en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IgawaKazuyo en-aut-sei=Igawa en-aut-mei=Kazuyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujimuraAtsushi en-aut-sei=Fujimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShirakawaMakoto en-aut-sei=Shirakawa en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuzukiMinoru en-aut-sei=Suzuki en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute kn-affil= affil-num=5 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=6 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=9 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=10 en-affil=Faculty of Science and Engineering, Kindai University kn-affil= affil-num=11 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=12 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=19 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= en-keyword=abscopal effect kn-keyword=abscopal effect en-keyword=advanced melanoma kn-keyword=advanced melanoma en-keyword=boron neutron capture therapy kn-keyword=boron neutron capture therapy en-keyword=boron-neutron immunotherapy kn-keyword=boron-neutron immunotherapy en-keyword=immune combination therapy kn-keyword=immune combination therapy END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=4 article-no= start-page=349 end-page=355 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Middle-Ear Salivary Gland Choristoma with Congenital, Single-Sided Hearing Loss en-subtitle= kn-subtitle= en-abstract= kn-abstract=Middle-ear salivary gland choristoma (SGCh) is a rare, benign tumor that causes conductive hearing loss owing to middle-ear morphological abnormalities. Early diagnosis is challenging, and surgical resection is indispensable for a definitive diagnosis. We report the case of a 3-year-old boy diagnosed with middle-ear SGCh during the follow-up period for left-sided hearing loss discovered at newborn hearing screening (NHS). Long-term follow-up after the NHS result, subsequent computed tomography/magnetic resonance imaging, and surgical resection led to its relatively early diagnosis and treatment. en-copyright= kn-copyright= en-aut-name=TominagaYuichiro en-aut-sei=Tominaga en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugayaAkiko en-aut-sei=Sugaya en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KariyaShin en-aut-sei=Kariya en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimizuAiko en-aut-sei=Shimizu en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KataokaYuko en-aut-sei=Kataoka en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AndoMizuo en-aut-sei=Ando en-aut-mei=Mizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Otolaryngology, Head and Neck Surgery, Hiroshima City, Hiroshima Citizens Hospital kn-affil= affil-num=2 en-affil=Department of Otolaryngology, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Otolaryngology, Head and Neck Surgery, Kawasaki Medical School Hospital kn-affil= affil-num=4 en-affil=Department of Otolaryngology, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Otolaryngology, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Otolaryngology, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=middle-ear salivary gland choristoma kn-keyword=middle-ear salivary gland choristoma en-keyword=middle-ear morphological abnormalities kn-keyword=middle-ear morphological abnormalities en-keyword=newborn hearing screening kn-keyword=newborn hearing screening en-keyword=unilateral hearing loss kn-keyword=unilateral hearing loss en-keyword=surgical resection kn-keyword=surgical resection END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=4 article-no= start-page=345 end-page=347 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surgical Treatment of an Abdominal Aortic Aneurysm in a Patient with a Liver Abscess en-subtitle= kn-subtitle= en-abstract= kn-abstract=The presence of an intraperitoneal source of infection, e.g., a liver abscess, can be an obstacle to performing an abdominal aortic surgery with a midline laparotomy because graft infection is one of the most critical complications of aortic surgery. We report the successful Y-grafting of a pararenal abdominal aortic aneurysm through a retroperitoneal approach in a 67-year-old male undergoing liver abscess drainage. The retroperitoneal approach to the abdominal aorta may be useful for abdominal aortic surgery in patients with a localized intraperitoneal infection. en-copyright= kn-copyright= en-aut-name=KatoGentaro en-aut-sei=Kato en-aut-mei=Gentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NarumiyaYuto en-aut-sei=Narumiya en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkuyamaMichihiro en-aut-sei=Okuyama en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimizuShuji en-aut-sei=Shimizu en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SangawaKenji en-aut-sei=Sangawa en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoShu en-aut-sei=Yamamoto en-aut-mei=Shu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Cardiovascular Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Surgery, Kagawa Prefectural Central Hospital kn-affil= en-keyword=blunt liver trauma kn-keyword=blunt liver trauma en-keyword=liver abscess kn-keyword=liver abscess en-keyword=abdominal aortic aneurysm kn-keyword=abdominal aortic aneurysm en-keyword=Y-grafting kn-keyword=Y-grafting en-keyword=retroperitoneal approach kn-keyword=retroperitoneal approach END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=21 article-no= start-page=126156 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Kinetics of SARS-CoV-2 antibody titers after booster vaccinations during an Omicron surge in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Despite the emergence of SARS-CoV-2 variants and waning immunity after initial vaccination, data on antibody kinetics following booster doses, particularly those adapted to Omicron subvariants like XBB.1.5, remain limited. This study assesses the kinetics of anti-spike protein receptor-binding domain (S-RBD) IgG antibody titers post-booster vaccination in a Japanese population during the Omicron variant epidemic.
Methods: A prospective cohort study was conducted in Bizen City, Japan, from November 2023 to January 2024. Participants included residents and workers aged ≥18 years, with at least three COVID-19 vaccinations. Antibody levels were measured from venous blood samples. The study analyzed 424 participants and 821 antibody measurements, adjusting for variables such as age, sex, underlying conditions, and prior infection status. Mixed-effects models were employed to describe the kinetics of log-transformed S-RBD antibody titers.
Results: The study found that S-RBD antibody titers declined over time but increased with the number of booster vaccinations, particularly those adapted to Omicron and its subvariant XBB.1.5 (Pfizer-BioNTech Omicron-compatible: 0.156, 95%CI −0.032 to 0.344; Pfizer-BioNTech XBB-compatible: 0.226; 95%CI −0.051 to 0.504; Moderna Omicron-compatible: 0.279, 95%CI 0.012 to 0.546; and Moderna XBB-compatible: 0.338, 95%CI −0.052 to 0.728). Previously infected individuals maintained higher antibody titers, which declined more gradually compared to uninfected individuals (coefficient for interaction with time 0.006; 95%CI 0.001 to 0.011). Sensitivity analyses using Generalized Estimating Equations and interval-censored random intercept model confirmed the robustness of these findings.
Conclusions: The study provides specific data on antibody kinetics post-booster vaccination, including the XBB.1.5-adapted vaccine, in a highly vaccinated Japanese population. The results highlight the importance of considering individual demographics and prior infection history in optimizing vaccination strategies. en-copyright= kn-copyright= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiAyako en-aut-sei=Sasaki en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=SARS-CoV-2 kn-keyword=SARS-CoV-2 en-keyword=Vaccine kn-keyword=Vaccine en-keyword=Antibody kn-keyword=Antibody en-keyword=Mixed-effects model kn-keyword=Mixed-effects model en-keyword=Omicron kn-keyword=Omicron END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=542 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240815 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluating the impact of a trial of labor after cesarean section on labor duration: a retrospective cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Cesarean section (C-section) rates are increasing globally, and repeated C-sections are associated with increased maternal morbidity. Trial of labor after C-section (TOLAC) is an approach to reduce the recurrence of C-sections. However, limited research exists on the impact of cesarean scars on labor duration in TOLAC, considering the termination of labor through C-section and selection bias. This study aimed to investigate the impact of cesarean scars on labor duration in TOLAC participants, accounting for potential confounding factors and biases.
Methods This retrospective cohort study included 2,964 women who attempted vaginal birth at a single center in Japan from 2012 to 2021. The study categorized participants into TOLAC (n = 187) and non-TOLAC (n = 2,777) groups. Propensity scores were calculated based on 14 factors that could influence labor duration, and inverse probability of treatment weighting (IPTW) was applied. Cox proportional hazards regression analysis estimated hazard ratios (HRs) for labor duration, with and without IPTW adjustment. Sensitivity analyses used propensity score matching, bootstrapping, and interval censoring to address potential biases, including recall bias in the reported onset of labor.
Results The unadjusted HR for labor duration in the TOLAC group compared to the non-TOLAC group was 0.83 (95% CI: 0.70-0.98, P = 0.027), indicating a longer labor duration in the TOLAC group. After adjusting for confounding factors using IPTW, the HR was 0.98 (95% CI: 0.74-1.30, P = 0.91), suggesting no significant difference in labor duration between the groups. Sensitivity analyses using propensity score matching, bootstrapping, and interval censoring yielded consistent results. These findings suggested that the apparent association between TOLAC and longer labor duration was because of confounding factors rather than TOLAC itself.
Conclusions After adjusting for confounding factors and addressing potential biases, cesarean scars had a limited impact on labor duration in TOLAC participants. Maternal and fetal characteristics may have a more substantial influence on labor duration. en-copyright= kn-copyright= en-aut-name=OobaHikaru en-aut-sei=Ooba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Okayama University Hospital kn-affil= en-keyword=Labor duration kn-keyword=Labor duration en-keyword=Trial of labor after cesarean section kn-keyword=Trial of labor after cesarean section en-keyword=Vaginal birth kn-keyword=Vaginal birth en-keyword=Cesarean section kn-keyword=Cesarean section en-keyword=Propensity scores kn-keyword=Propensity scores en-keyword=IPTW kn-keyword=IPTW END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=4 article-no= start-page=337 end-page=343 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pneumocephalus with Inverted Papilloma in the Frontoethmoidal Sinus: Case Report and Literature Review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Here, we describe the unique case of a pneumocephalus originating from an inverted papilloma (IP) in the frontoethmoidal sinus. A 71-year-old man with diabetes presented with headaches and altered consciousness. Imaging revealed the pneumocephalus together with bone destruction in the left frontal sinus. He underwent simultaneous endoscopic endonasal and transcranial surgery using an ORBEYE exoscope. Pathological diagnosis of the tumor confirmed IP. Post-surgery, the pneumocephalus was significantly resolved and the squamous cell carcinoma antigen level, which had been elevated, decreased. This case underscores the importance of a multidisciplinary approach and innovative surgical methods in treating complex sinonasal pathologies. en-copyright= kn-copyright= en-aut-name=MakiharaSeiichiro en-aut-sei=Makihara en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UraguchiKensuke en-aut-sei=Uraguchi en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoSawako en-aut-sei=Ono en-aut-mei=Sawako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimizuAiko en-aut-sei=Shimizu en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkemachiRyosuke en-aut-sei=Ikemachi en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkazakiYosuke en-aut-sei=Okazaki en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OtaTomoyuki en-aut-sei=Ota en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsumotoHiroshi en-aut-sei=Matsumoto en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyamotoShotaro en-aut-sei=Miyamoto en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsumuraMunechika en-aut-sei=Tsumura en-aut-mei=Munechika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HayashiSeiya en-aut-sei=Hayashi en-aut-mei=Seiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=UmakoshiMichiari en-aut-sei=Umakoshi en-aut-mei=Michiari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HirashitaKoji en-aut-sei=Hirashita en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AndoMizuo en-aut-sei=Ando en-aut-mei=Mizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Otolaryngology-Head & Neck Surgery, Kagawa Rosai Hospital kn-affil= affil-num=11 en-affil=Department of Otolaryngology-Head & Neck Surgery, Kagawa Rosai Hospital kn-affil= affil-num=12 en-affil=Department of Neurosurgery, Kagawa Rosai Hospital kn-affil= affil-num=13 en-affil=Department of Neurosurgery, Kagawa Rosai Hospital kn-affil= affil-num=14 en-affil=Department of Neurosurgery, Kagawa Rosai Hospital kn-affil= affil-num=15 en-affil=Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=pneumocephalus kn-keyword=pneumocephalus en-keyword=inverted papilloma kn-keyword=inverted papilloma en-keyword=frontoethmoidal sinus kn-keyword=frontoethmoidal sinus en-keyword=endoscopic endonasal and transcranial surgery kn-keyword=endoscopic endonasal and transcranial surgery END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=4 article-no= start-page=331 end-page=335 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Rare Subglottic Pleomorphic Adenoma: Magnetic Resonance Findings en-subtitle= kn-subtitle= en-abstract= kn-abstract=No previous study has published magnetic resonance imaging (MRI) findings for a subglottic pleomorphic adenoma. Here, we describe the case of a 62-year-old man with a subglottic pleomorphic adenoma. Endoscopic findings revealed a smooth-surfaced tumor arising from the subglottic posterior wall. MRI revealed the lesion as an isointense region on T1-weighted images, which was homogeneously enhanced. This lesion showed a heterogeneously hyperintense region on T2-weighted images. Diffusion-weighted imaging (DWI) showed slightly high intensity in the same area, with a normal or only slightly high apparent diffusion coefficient (ADC). Laryngomicrosurgery was performed for transoral excision of the subglottic tumor, resulting in a postsurgical diagnosis of pleomorphic adenoma. en-copyright= kn-copyright= en-aut-name=FurukawaChieko en-aut-sei=Furukawa en-aut-mei=Chieko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TachibanaTomoyasu en-aut-sei=Tachibana en-aut-mei=Tomoyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NobuhisaTetsuji en-aut-sei=Nobuhisa en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanieYuichiro en-aut-sei=Kanie en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WaniYoji en-aut-sei=Wani en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsumotoJun-Ya en-aut-sei=Matsumoto en-aut-mei=Jun-Ya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KariyaAkifumi en-aut-sei=Kariya en-aut-mei=Akifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SatoAsuka en-aut-sei=Sato en-aut-mei=Asuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshikawaIichiro en-aut-sei=Ishikawa en-aut-mei=Iichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NaoiYuto en-aut-sei=Naoi en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AndoMizuo en-aut-sei=Ando en-aut-mei=Mizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Otolaryngology Head and Neck Surgery, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=2 en-affil=Department of Otolaryngology Head and Neck Surgery, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=3 en-affil=Department of Surgery, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=4 en-affil=Department of Radiology, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=5 en-affil=Department of Pathology, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=6 en-affil=Department of Otolaryngology Head and Neck Surgery, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=7 en-affil=Department of Otolaryngology Head and Neck Surgery, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=8 en-affil=Department of Otolaryngology Head and Neck Surgery, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=9 en-affil=Department of Surgery, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=10 en-affil=Department of Otolaryngology Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Otolaryngology Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=subglottis kn-keyword=subglottis en-keyword=pleomorphic adenoma kn-keyword=pleomorphic adenoma en-keyword=MRI kn-keyword=MRI en-keyword=transoral surgery kn-keyword=transoral surgery END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=4 article-no= start-page=323 end-page=330 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Recipient Age on Perioperative Complications after Pediatric Liver Transplantation: A Single-Center Retrospective Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=It has not been clear how recipient age affects the incidence of serious complications after pediatric living donor liver transplantation (LDLT). We investigated the records of 42 pediatric patients receiving LDLT, dividing our sample into two groups: the infant group (aged < 1 year) and the non-infant group (aged ≥ 1 year and ≤15 years). The primary outcome was postoperative complications assessed using the Clavien-Dindo classification. Multivariate analysis using the Cox regression model was applied to adjust for confounding factors in assessing the incidence of Clavien-Dindo grade ≥ III (C-D ≥ III) complications. The incidence of C-D ≥ III complications was higher in the non-infant group (46.2%) than in the infant group (12.5%) (odds ratio 6.00, 95% confidence interval [CI] 1.13-31.88, p=0.03). In multivariate analysis using the Cox regression model, the Graft-to-Recipient Weight Ratio (GRWR) was independently associated with the incidence of C-D ≥ III complications (hazard ratio [HR] 0.62, 95%CI 0.40-0.95, p=0.03), but being an infant was not (HR 0.84, 95%CI 0.35-1.98, p=0.68). In conclusion, the incidence of C-D ≥ III complications was higher in the non-infant group than in the infant group, but this was largely a function of GRWR: multivariate analysis revealed that GRWR was independently associated with complications. en-copyright= kn-copyright= en-aut-name=KatayamaAkira en-aut-sei=Katayama en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraSatoshi en-aut-sei=Kimura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsusakiTakashi en-aut-sei=Matsusaki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesia, Kyoto University Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology, Mie University Hospital kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=pediatric liver transplantation kn-keyword=pediatric liver transplantation en-keyword=postoperative severe complications kn-keyword=postoperative severe complications en-keyword=Graft-to-Recipient Weight Ratio kn-keyword=Graft-to-Recipient Weight Ratio END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=4 article-no= start-page=313 end-page=322 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multicenter Remote-Access Simulation of Vaginal Delivery for High-Flexibility Medical Education during the Coronavirus Pandemic en-subtitle= kn-subtitle= en-abstract= kn-abstract=During the coronavirus pandemic, face-to-face simulation education became impossible. Therefore, we aimed to develop remote-access simulation education with a sense of realism through Information and Communication Technology (ICT) using a perinatal whole-body management and delivery simulator. In September 2021, we administered a multi-center simultaneous remote simulation based on our developed model. Ten universities in the Chugoku–Shikoku region were connected via a web-conferencing system to a live broadcast of a virtual vaginal birth in which a fictional hospitalized pregnant woman experienced accelerated labor and gave birth through vacuum delivery for fetal distress. A Video on Demand (VOD) was made beforehand using a new simulator that allowed for a visual understanding of the process of the inter-vaginal examination. We provided a participatory program that enhanced the sense of realism by combining VOD and real-time lectures on each scenario, with two-way communication between participants and trainee doctors using a chat function. Most participants answered “satisfied” or “very satisfied” with the content, level of difficulty, and level of understanding. From November 2021, we have used the videos of all processes in face-to-face classes. Our construction of a high-flexibility education system using remote simulation in the field of obstetrics and gynecology, especially in the vaginal delivery module, is unique, creative, and sustainable. en-copyright= kn-copyright= en-aut-name=EtoEriko en-aut-sei=Eto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamashitaNoriyuki en-aut-sei=Yamashita en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HasegawaToru en-aut-sei=Hasegawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuemoriAyano en-aut-sei=Suemori en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakatoHikari en-aut-sei=Nakato en-aut-mei=Hikari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ObaHikaru en-aut-sei=Oba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MitomaTomohiro en-aut-sei=Mitoma en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MishimaSakurako en-aut-sei=Mishima en-aut-mei=Sakurako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KirinoSatoe en-aut-sei=Kirino en-aut-mei=Satoe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OhiraAkiko en-aut-sei=Ohira en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Center for Education in Medicine and Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=remote simulator education kn-keyword=remote simulator education en-keyword=perinatal simulator kn-keyword=perinatal simulator en-keyword=information and communication technology kn-keyword=information and communication technology en-keyword=high-flexibility education kn-keyword=high-flexibility education END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=4 article-no= start-page=307 end-page=312 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Can Pelvic Lymph Node Dissection in Prostate Cancer Patients with a 5% Briganti Nomogram Cut-off Value Provide an Oncological Benefit? A Large Multi-Institutional Cohort Study in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=The Briganti nomogram (cut-off value 5%) is commonly used to determine the indications for pelvic lymph node dissection (PLND) in patients with prostate cancer. We retrospectively analyzed the potential oncological benefit of PLND based on the 5% cut-off value on the Briganti nomogram. We obtained the data from the Medical Investigation Cancer Network (MICAN) Study, which included 3,463 patients who underwent a radical prostatectomy (RP) at nine institutions in Japan between 2010 and 2020. We included patients with Briganti scores ≥ 5% and a follow-up period ≥6 months and excluded patients categorized in the very high-risk group (based on NCCN categories); a final total of the cases of 1,068 patients were analyzed. The biochemical recurrence (BCR)-free survival was significantly worse in the patients who underwent PLND compared to those who did not (p=0.019). A multivariate analysis showed that high prostate-specific antigen (PSA) levels (p<0.001) and an advanced T-stage (p=0.018) were significant prognostic factors for BCR, whereas PLND had no effect on BCR (p=0.059). Thus, PLND in patients with prostate cancer whose Briganti score was 5% did not provide any oncological benefit. Further research is necessary to determine the indication criteria for conducting PLND. en-copyright= kn-copyright= en-aut-name=SugiharaNaoya en-aut-sei=Sugihara en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HashineKatsuyoshi en-aut-sei=Hashine en-aut-mei=Katsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamashitaNatsumi en-aut-sei=Yamashita en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoMiki en-aut-sei=Sakamoto en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TerashitaMasato en-aut-sei=Terashita en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FunakiKeisuke en-aut-sei=Funaki en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaikiKaori en-aut-sei=Saiki en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SawadaTakatora en-aut-sei=Sawada en-aut-mei=Takatora kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KakudaToshio en-aut-sei=Kakuda en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishimuraKenichi en-aut-sei=Nishimura en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FukumotoTetsuya en-aut-sei=Fukumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiuraNoriyosi en-aut-sei=Miura en-aut-mei=Noriyosi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MiyauchiYuki en-aut-sei=Miyauchi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KikugawaTadahiko en-aut-sei=Kikugawa en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SaikaTakashi en-aut-sei=Saika en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Urology, Ehime University kn-affil= affil-num=2 en-affil=Department of Urology, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=3 en-affil=Division of Epidemiology, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=4 en-affil=Department of Urology, Ehime University kn-affil= affil-num=5 en-affil=Department of Urology, Ehime University kn-affil= affil-num=6 en-affil=Department of Urology, Ehime University kn-affil= affil-num=7 en-affil=Department of Urology, Ehime University kn-affil= affil-num=8 en-affil=Department of Urology, Ehime University kn-affil= affil-num=9 en-affil=Department of Urology, Ehime University kn-affil= affil-num=10 en-affil=Department of Urology, Ehime University kn-affil= affil-num=11 en-affil=Department of Urology, Ehime University kn-affil= affil-num=12 en-affil=Department of Urology, Ehime University kn-affil= affil-num=13 en-affil=Department of Urology, Ehime University kn-affil= affil-num=14 en-affil=Department of Urology, Ehime University kn-affil= affil-num=15 en-affil=Department of Urology, Ehime University kn-affil= en-keyword=Briganti nomogram kn-keyword=Briganti nomogram en-keyword=pelvic lymph node dissection kn-keyword=pelvic lymph node dissection en-keyword=prostate cancer kn-keyword=prostate cancer en-keyword=radical prostatectomy kn-keyword=radical prostatectomy END start-ver=1.4 cd-journal=joma no-vol=378 cd-vols= no-issue= article-no= start-page=113269 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mesoporous carbon with extremely low micropore content synthesized from graphene oxide modified with alkali metal nitrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=High-temperature thermal exfoliation is a simple, rapid, and cost-efficient method for transforming graphene oxide (GO) materials into reduced graphene oxide (rGO) materials. In this study, GO materials were dispersed with alkali metal nitrates (MNO3), leading to the preparation of porous rGO materials characterized by high specific surface area (SSA) and pore volume via high-temperature thermal exfoliation. Experimental data indicate that the metal cations of MNO3 tend to react directly with the oxygen functional groups (OFG) of GO, modulating the OFG content. Simultaneously, nitrate anions have preferential interaction with alkali metal ions and adhere to the surface of the GO. The presence of MNO3 on the surface of GO facilitates the thermal exfoliation process and leads to the formation of structures with an extremely high proportion of mesoporous content. The isothermal gas adsorption results show that the exfoliation efficiency of the samples activated with different nitrate salts decreases in the order rGO-KNO3 > rGO-NaNO3 > rGO-LiNO3. Among these samples, rGO modified with KNO3 exhibited the greatest exfoliation efficiency, with a mesopore-to-micropore volume ratio of 22.4, more than 1.7 times that of rGO. Its SSA and pore volume were 359 m2 g−1 and 1.26 cm3 g−1, respectively. These values significantly surpass those of rGO. Our research findings demonstrate that activation with MNO3 significantly increases the SSA and pore volume of the GO material after high-temperature annealing. en-copyright= kn-copyright= en-aut-name=LiZhao en-aut-sei=Li en-aut-mei=Zhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ToyotaMoeto en-aut-sei=Toyota en-aut-mei=Moeto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhkuboTakahiro en-aut-sei=Ohkubo en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Mesoporous carbon kn-keyword=Mesoporous carbon en-keyword=Alkali metal nitrates kn-keyword=Alkali metal nitrates en-keyword=Oxygen functional groups kn-keyword=Oxygen functional groups en-keyword=Activation kn-keyword=Activation en-keyword=Thermal exfoliation kn-keyword=Thermal exfoliation END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=32 article-no= start-page=16994 end-page=17000 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240730 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Droplet-Removal Processes on Fog-Harvesting Performance on Wettability-Controlled Wire Array with Staggered Arrangement en-subtitle= kn-subtitle= en-abstract= kn-abstract=Development of freshwater resources is vital to overcoming severe worldwide water scarcity. Fog harvesting has attracted attention as a candidate technology that can be used to obtain fresh water from a stream of foggy air without energy input. Drainage of captured droplets from fog harvesters is necessary to maintain the permeability of harp-shaped harvesters. In the present study, we investigated the effect of the droplet-removal process on the amount of water harvested using a harvester constructed by wettability-controlled wires with an alternating and staggered arrangement. Droplet transfer from hydrophobic to hydrophilic wires, located upstream and downstream of the fog flow, respectively, was observed with a fog velocity greater than 1.5 m/s. The proportion of harvesting resulting from droplet transfer exceeded 30% of the total, and it reflected more than 20% increase of the harvesting performance compared with that of a harvester with wires of the same wettability: this value varied with the adhesive property of the wires and fog velocity. Scaled-up and multilayered harvesters were developed to enhance harvesting performance. We demonstrated certain enhancements under multilayered conditions and obtained 15.99 g/30 min as the maximum harvested amount, which corresponds to 13.3% of the liquid contained in the fog stream and is enhanced by 10% compared with that without droplet transfer. en-copyright= kn-copyright= en-aut-name=YamadaYutaka en-aut-sei=Yamada en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkaJunya en-aut-sei=Oka en-aut-mei=Junya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsobeKazuma en-aut-sei=Isobe en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoribeAkihiko en-aut-sei=Horibe en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=zbae092 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cytosolic acidification and oxidation are the toxic mechanisms of SO2 in Arabidopsis guard cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=SO2/H2SO3 can damage plants. However, its toxic mechanism has still been controversial. Two models have been proposed, cytosolic acidification model and cellular oxidation model. Here, we assessed the toxic mechanism of H2SO3 in three cell types of Arabidopsis thaliana, mesophyll cells, guard cells (GCs), and petal cells. The sensitivity of GCs of Chloride channel a (CLCa)-knockout mutants to H2SO3 was significantly lower than those of wildtype plants. Expression of other CLC genes in mesophyll cells and petal cells were different from GCs. Treatment with antioxidant, disodium 4,5-dihydroxy-1,3-benzenedisulfonate (tiron), increased the median lethal concentration (LC50) of H2SO3 in GCs indicating the involvement of cellular oxidation, while the effect was negligible in mesophyll cells and petal cells. These results indicate that there are two toxic mechanisms of SO2 to Arabidopsis cells: cytosolic acidification and cellular oxidation, and the toxic mechanism may vary among cell types. en-copyright= kn-copyright= en-aut-name=MozhganiMahdi en-aut-sei=Mozhgani en-aut-mei=Mahdi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OoiLia en-aut-sei=Ooi en-aut-mei=Lia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EspagneChristelle en-aut-sei=Espagne en-aut-mei=Christelle kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FilleurSophie en-aut-sei=Filleur en-aut-mei=Sophie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoriIzumi C en-aut-sei=Mori en-aut-mei=Izumi C kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) kn-affil= affil-num=4 en-affil=Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=cytosolic acidification kn-keyword=cytosolic acidification en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=cellular oxidation kn-keyword=cellular oxidation en-keyword=chloride channel a kn-keyword=chloride channel a en-keyword=sulfur dioxide kn-keyword=sulfur dioxide END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue=8 article-no= start-page=upae146 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240726 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrochemical synthesis of heterocyclic compounds via carbon–heteroatom bond formation: direct and indirect electrolysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Electrochemical organic synthesis has attracted attention as an environmentally friendly method for constructing heterocyclic compounds via carbon–heteroatom bond formation. Herein, we describe the representative examples of electrochemical reactions to produce heterocycles and discuss them according to whether they involve direct or indirect electrolysis. en-copyright= kn-copyright= en-aut-name=OkumuraYasuyuki en-aut-sei=Okumura en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoEisuke en-aut-sei=Sato en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=carbon–heteroatom bond formation kn-keyword=carbon–heteroatom bond formation en-keyword=electrochemical synthesis kn-keyword=electrochemical synthesis en-keyword=heterocyclic compounds kn-keyword=heterocyclic compounds END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Death Feigning in Larvae of Scorpionflies (Mecoptera: Panorpidae): Frequency and Postural Changes Based on Larval Instars en-subtitle= kn-subtitle= en-abstract= kn-abstract=Death feigning is thought to have evolved primarily as a predator avoidance behavior, and has been reported in 10 of the 31 orders of insects. However, there have been no reports of death-feigning behavior in Mecoptera species. We found that larvae of two scorpionfly species, Panorpa japonica and P. pryeri, showed death feigning in response to external stimuli by brush poking stimulation. First, we examined the frequencies of death-feigning postures. The two species showed two different postures of death feigning, “straight” and “ball.” Most of the 1st instar larvae of P. japonica and P. pryeri adopted the straight death-feigning posture. Next, we examined duration of death feigning. As the larval instar progressed, the death-feigning posture shifted from straight to ball in both Panorpa species. In P. japonica, the longest durations of death feigning were found in the 2nd to 3rd instars, while the longest duration of death feigning was found in the late 4th instar in P. pryeri larvae. en-copyright= kn-copyright= en-aut-name=IshiharaRyo en-aut-sei=Ishihara en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Anti-predator behavior kn-keyword=Anti-predator behavior en-keyword=freezing kn-keyword=freezing en-keyword=larvae kn-keyword=larvae en-keyword=thanatosis kn-keyword=thanatosis en-keyword=tonic immobility kn-keyword=tonic immobility END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=4 article-no= start-page=253 end-page=256 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230614 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A case of mucosal-associated lymphoid tissue lymphoma of the urachus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Urachus carcinoma is a rare malignancy with an aggressive potential and a poor prognosis, and evidence is limited for its diagnosis and treatment.
Case presentation: A 75-year-old man underwent fluorodeoxyglucose positron emission tomography/computed tomography for staging prostate cancer, and a mass (standardized uptake value max 9.5) was observed on the outside of the urinary bladder dome. T2-weighted magnetic resonance imaging showed the urachus and a low-intensity tumor, which suggested a malignant tumor. We suspected urachal carcinoma and performed total resection of the urachus and partial cystectomy. Pathological examination revealed mucosa-associated lymphoid tissue lymphoma with cells positive for CD20 and negative for CD3, CD5, and cyclin D1. After the surgery, no recurrence has been observed for more than 2 years.
Conclusion: We encountered an extremely rare case of mucosa-associated lymphoid tissue lymphoma of the urachus. Surgical resection of the tumor provided an accurate diagnosis and good disease control. en-copyright= kn-copyright= en-aut-name=TsuboiKazuma en-aut-sei=Tsuboi en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaisaKohei en-aut-sei=Haisa en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KajiharaYuta en-aut-sei=Kajihara en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsugawaTakuji en-aut-sei=Tsugawa en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InoueYosuke en-aut-sei=Inoue en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakoTomoko en-aut-sei=Sako en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MuraoWataru en-aut-sei=Murao en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=EbaraShin en-aut-sei=Ebara en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=4 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=5 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=6 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=8 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=9 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= en-keyword=bladder cancer kn-keyword=bladder cancer en-keyword=malignant lymphoma kn-keyword=malignant lymphoma en-keyword=MALT lymphoma kn-keyword=MALT lymphoma en-keyword=urachal cancer kn-keyword=urachal cancer en-keyword=urachal remnant kn-keyword=urachal remnant END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=15 article-no= start-page=4324 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evolution and Effects of Ad Hoc Multidisciplinary Team Meetings in the Emergency Intensive Care Unit: A Five-Year Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Multidisciplinary team meetings (MDTMs) are crucial in the ICU. However, daily rounds may not address all sensitive issues due to time constraints and the complexity of cases. This study aimed to describe detailed information and characteristics of ad hoc MDTMs in the ICU. Methods: This single-center, retrospective study analyzed adult emergency ICU admissions at Okayama University Hospital from 1 January 2019 to 31 December 2023. During this period, weekly regular multidisciplinary team ICU rounds were introduced in June 2020, and regular weekday morning MDTMs began in April 2022. A multiple logistic regression analysis was applied to determine the impact of these changes on the frequency of ad hoc MDTMs, adjusting for variables including annual changes. Results: The study analyzed 2487 adult EICU patients, with a median age of 66, and 63.3% of them male. MDTMs were held for 168 patients (6.8%), typically those with severe conditions, including higher COVID-19 prevalence and APACHE II scores, and longer ICU stays. Despite a constant total number of MDTMs, the likelihood of conducting ad hoc MDTMs increased annually (adjusted OR 1.19; 95% CI, 1.04-1.35). Of the 329 MDTMs conducted for these patients, 59.0% addressed end-of-life care, involving an average of 11 participants, mainly nurses and emergency and critical-care physicians. Conclusions: Changes in ICU round and meeting structures might be associated with a higher frequency of conducting ad hoc MDTMs, highlighting their evolving role and importance in patient care management. en-copyright= kn-copyright= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AgetaKohei en-aut-sei=Ageta en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=clinical conference kn-keyword=clinical conference en-keyword=end-of-life care kn-keyword=end-of-life care en-keyword=ICU rounds kn-keyword=ICU rounds en-keyword=multidisciplinary kn-keyword=multidisciplinary en-keyword=team meetings kn-keyword=team meetings END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pure argyrophilic grain disease revisited: independent effects on limbic, neocortical, and striato-pallido-nigral degeneration and the development of dementia in a series with a low to moderate Braak stage en-subtitle= kn-subtitle= en-abstract= kn-abstract=Agyrophilic grains (AGs) are age-related limbic-predominant lesions in which four-repeat tau is selectively accumulated. Because previous methodologically heterogeneous studies have demonstrated inconsistent findings on the relationship between AGs and dementia, whether AGs affect cognitive function remains unclear. To address this question, we first comprehensively evaluated the distribution and quantity of Gallyas-positive AGs and the severity of neuronal loss in the limbic, neocortical, and subcortical regions in 30 cases of pure argyrophilic grain disease (pAGD) in Braak stages I-IV and without other degenerative diseases, and 34 control cases that had only neurofibrillary tangles with Braak stages I-IV and no or minimal A beta deposits. Then, we examined whether AGs have independent effects on neuronal loss and dementia by employing multivariate ordered logistic regression and binomial logistic regression. Of 30 pAGD cases, three were classified in diffuse form pAGD, which had evident neuronal loss not only in the limbic region but also in the neocortex and subcortical nuclei. In all 30 pAGD cases, neuronal loss developed first in the amygdala, followed by temporo-frontal cortex, hippocampal CA1, substantia nigra, and finally, the striatum and globus pallidus with the progression of Saito AG stage. In multivariate analyses of 30 pAGD and 34 control cases, the Saito AG stage affected neuronal loss in the amygdala, hippocampal CA1, temporo-frontal cortex, striatum, globus pallidus, and substantia nigra independent of the age, Braak stage, and limbic-predominant age-related TDP-43 encephalopathy (LATE-NC) stage. In multivariate analyses of 23 pAGD and 28 control cases that lacked two or more lacunae and/or one or more large infarctions, 100 or more AGs per x 400 visual field in the amygdala (OR 10.02, 95% CI 1.12-89.43) and hippocampal CA1 (OR 12.22, 95% CI 1.70-87.81), and the presence of AGs in the inferior temporal cortex (OR 8.18, 95% CI 1.03-65.13) affected dementia independent of age, moderate Braak stages (III-IV), and LATE-NC. Given these findings, the high density of limbic AGs and the increase of AGs in the inferior temporal gyrus may contribute to the occurrence of dementia through neuronal loss, at least in cases in a low to moderate Braak stage. en-copyright= kn-copyright= en-aut-name=YokotaOsamu en-aut-sei=Yokota en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MikiTomoko en-aut-sei=Miki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Nakashima-YasudaHanae en-aut-sei=Nakashima-Yasuda en-aut-mei=Hanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshizuHideki en-aut-sei=Ishizu en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaraguchiTakashi en-aut-sei=Haraguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkedaChikako en-aut-sei=Ikeda en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HasegawaMasato en-aut-sei=Hasegawa en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyashitaAkinori en-aut-sei=Miyashita en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkeuchiTakeshi en-aut-sei=Ikeuchi en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishikawaNaoto en-aut-sei=Nishikawa en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakenoshitaShintaro en-aut-sei=Takenoshita en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SudoKoichiro en-aut-sei=Sudo en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TeradaSeishi en-aut-sei=Terada en-aut-mei=Seishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TakakiManabu en-aut-sei=Takaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Okayama University Medical School kn-affil= affil-num=4 en-affil=Okayama University Medical School kn-affil= affil-num=5 en-affil=Department of Neurology, National Hospital Organization Minami Okayama Medical Center kn-affil= affil-num=6 en-affil=Okayama University Medical School kn-affil= affil-num=7 en-affil=Dementia Research Project, Tokyo Metropolitan Institute of Medical Science kn-affil= affil-num=8 en-affil=Department of Molecular Genetics, Brain Research Institute, Niigata University kn-affil= affil-num=9 en-affil=Department of Molecular Genetics, Brain Research Institute, Niigata University kn-affil= affil-num=10 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Psychiatry, Tosa Hospital kn-affil= affil-num=13 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Argyrophilic grain kn-keyword=Argyrophilic grain en-keyword=Globus pallidus kn-keyword=Globus pallidus en-keyword=Hippocampal sclerosis kn-keyword=Hippocampal sclerosis en-keyword=Striatum kn-keyword=Striatum en-keyword=Substantia nigra kn-keyword=Substantia nigra en-keyword=Subthalamic nucleus kn-keyword=Subthalamic nucleus END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=15 article-no= start-page=8370 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Increased Oxidative Stress and Decreased Citrulline in Blood Associated with Severe Novel Coronavirus Pneumonia in Adult Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the correlation between oxidative stress and blood amino acids associated with nitric oxide metabolism in adult patients with coronavirus disease (COVID-19) pneumonia. Clinical data and serum samples were prospectively collected from 100 adult patients hospitalized for COVID-19 between July 2020 and August 2021. Patients with COVID-19 were categorized into three groups for analysis based on lung infiltrates, oxygen inhalation upon admission, and the initiation of oxygen therapy after admission. Blood data, oxidative stress-related biomarkers, and serum amino acid levels upon admission were compared in these groups. Patients with lung infiltrations requiring oxygen therapy upon admission or starting oxygen post-admission exhibited higher serum levels of hydroperoxides and lower levels of citrulline compared to the control group. No remarkable differences were observed in nitrite/nitrate, asymmetric dimethylarginine, and arginine levels. Serum citrulline levels correlated significantly with serum lactate dehydrogenase and C-reactive protein levels. A significant negative correlation was found between serum levels of citrulline and hydroperoxides. Levels of hydroperoxides decreased, and citrulline levels increased during the recovery period compared to admission. Patients with COVID-19 with extensive pneumonia or poor oxygenation showed increased oxidative stress and reduced citrulline levels in the blood compared to those with fewer pulmonary complications. These findings suggest that combined oxidative stress and abnormal citrulline metabolism may play a role in the pathogenesis of COVID-19 pneumonia. en-copyright= kn-copyright= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HasegawaKou en-aut-sei=Hasegawa en-aut-mei=Kou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KudoKenichiro en-aut-sei=Kudo en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanimotoYasushi en-aut-sei=Tanimoto en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NousoKazuhiro en-aut-sei=Nouso en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OdaNaohiro en-aut-sei=Oda en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MitsumuneSho en-aut-sei=Mitsumune en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KimuraGoro en-aut-sei=Kimura en-aut-mei=Goro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaHaruto en-aut-sei=Yamada en-aut-mei=Haruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakataIchiro en-aut-sei=Takata en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TaniguchiAkihiko en-aut-sei=Taniguchi en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=5 en-affil=Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=7 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=9 en-affil=Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=10 en-affil=Department of Infectious Disease, Okayama City Hospital kn-affil= affil-num=11 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=12 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=17 en-affil=Department of General Thoracic Surgery and Breast and Endocrine Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=18 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=19 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=novel coronavirus disease 2019 kn-keyword=novel coronavirus disease 2019 en-keyword=pneumonia kn-keyword=pneumonia en-keyword=hydroperoxide kn-keyword=hydroperoxide en-keyword=nitric oxide kn-keyword=nitric oxide en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=citrulline kn-keyword=citrulline en-keyword=arginine kn-keyword=arginine en-keyword=asymmetric dimethylarginine kn-keyword=asymmetric dimethylarginine END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prognostic value of right atrial function in patients with significant tricuspid regurgitation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims Although right ventricular (RV) dysfunction is associated with adverse outcomes in tricuspid regurgitation (TR), the potential role of right atrial (RA) function is unknown. We aimed to investigate the relationship between RA function and clinical outcomes in patients with significant TR.
Methods This retrospective study included 169 outpatients with moderate or severe TR due to left-sided heart diseases who underwent transthoracic echocardiography between June 2020 and April 2023 (average age, 75 ± 10 years; male, 40%). Patients with atrial fibrillation were excluded from this study due to the inaccuracy of the evaluation using 2D speckle-tracking echocardiography. RA function was compared between patients with and without events, which were defined as all-cause mortality or hospitalization due to heart failure. RA function was calculated as RA global longitudinal strain (RAGLS) with the 2D speckle-tracking echocardiography.
Results During a median follow-up of 13 months, 19 patients had events (all-cause mortality: 14 cases, hospitalization due to heart failure: 5 cases). RAGLS was lower in patients with events than in those without events (13% ± 10% vs. 18% ± 9%, P = 0.02). When the patients were categorized into two groups [low RAGLS ≤ 16.2% vs. high RAGLS > 16.2%, high RA volume index (RAVI) ≥ 50 mL/m2 vs. low RAVI < 50 mL/m2], Kaplan–Meier curves showed that patients with low RAGLS had higher event rates than those with high RAGLS (log-rank test, P = 0.003). Patients with high RAVI had higher event rates than those with low RAVI (log-rank test, P < 0.001). In the multivariate Cox regression analysis, low RAGLS (≤16.2%) was significantly associated with events in a model that included RV dysfunction (RV fractional area change ≤ 35%) or high RAVI (≥50 mL/m2) (hazard ratio: 4.55, 95% confidence interval: 1.51–13.71, P < 0.01; hazard ratio: 4.57, 95% confidence interval: 1.52–13.79, P < 0.01, respectively).
Conclusions RAGLS is associated with all-cause mortality and hospitalization due to heart failure in patients with significant TR. Our results suggest that RA function is a sensitive marker for identifying the risk stratification of significant TR. en-copyright= kn-copyright= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaYu en-aut-sei=Yoshida en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=echocardiography kn-keyword=echocardiography en-keyword=prognosis kn-keyword=prognosis en-keyword=right atrial function kn-keyword=right atrial function en-keyword=tricuspid regurgitation kn-keyword=tricuspid regurgitation END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=17591 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240730 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Training high-performance deep learning classifier for diagnosis in oral cytology using diverse annotations en-subtitle= kn-subtitle= en-abstract= kn-abstract=The uncertainty of true labels in medical images hinders diagnosis owing to the variability across professionals when applying deep learning models. We used deep learning to obtain an optimal convolutional neural network (CNN) by adequately annotating data for oral exfoliative cytology considering labels from multiple oral pathologists. Six whole-slide images were processed using QuPath for segmenting them into tiles. The images were labeled by three oral pathologists, resulting in 14,535 images with the corresponding pathologists' annotations. Data from three pathologists who provided the same diagnosis were labeled as ground truth (GT) and used for testing. We investigated six models trained using the annotations of (1) pathologist A, (2) pathologist B, (3) pathologist C, (4) GT, (5) majority voting, and (6) a probabilistic model. We divided the test by cross-validation per slide dataset and examined the classification performance of the CNN with a ResNet50 baseline. Statistical evaluation was performed repeatedly and independently using every slide 10 times as test data. For the area under the curve, three cases showed the highest values (0.861, 0.955, and 0.991) for the probabilistic model. Regarding accuracy, two cases showed the highest values (0.988 and 0.967). For the models using the pathologists and GT annotations, many slides showed very low accuracy and large variations across tests. Hence, the classifier trained with probabilistic labels provided the optimal CNN for oral exfoliative cytology considering diagnoses from multiple pathologists. These results may lead to trusted medical artificial intelligence solutions that reflect diverse diagnoses of various professionals. en-copyright= kn-copyright= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaFuta en-aut-sei=Tanaka en-aut-mei=Futa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaraTakeshi en-aut-sei=Hara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OchiaiTakanaga en-aut-sei=Ochiai en-aut-mei=Takanaga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimadaKatsumitsu en-aut-sei=Shimada en-aut-mei=Katsumitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=InoueYuta en-aut-sei=Inoue en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakiYoshihiro en-aut-sei=Taki en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakaiFumi en-aut-sei=Nakai en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakaiYasuhiro en-aut-sei=Nakai en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshihamaTakanori en-aut-sei=Ishihama en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyazakiRyo en-aut-sei=Miyazaki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MurakamiSatoshi en-aut-sei=Murakami en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MiyakeMinoru en-aut-sei=Miyake en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=5 en-affil=Division of Oral Pathogenesis and Disease Control, Department of Oral Pathology, Asahi University School of Dentistry kn-affil= affil-num=6 en-affil=Department of Oral Pathology, Graduate School of Oral Medicine, Matsumoto Dental University kn-affil= affil-num=7 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=8 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=9 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=10 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=11 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=12 en-affil=Stony Brook Cancer Center, Stony Brook University kn-affil= affil-num=13 en-affil=Department of Oral Pathology, Graduate School of Oral Medicine, Matsumoto Dental University kn-affil= affil-num=14 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= en-keyword=Deep learning kn-keyword=Deep learning en-keyword=Oral cytology kn-keyword=Oral cytology en-keyword=Classification kn-keyword=Classification en-keyword=Convolutional neural network kn-keyword=Convolutional neural network en-keyword=Probabilistic labeling kn-keyword=Probabilistic labeling END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=15 article-no= start-page=4384 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240726 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of Serum Indoxyl Sulfate on One-Year Adverse Events in Chronic Kidney Disease Patients with Heart Failure en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Indoxyl sulfate, a uremic toxin, is associated with mortality and cardiovascular events in patients with chronic kidney disease (CKD). This study aimed to evaluate the prognostic implications of serum indoxyl sulfate levels in patients with heart failure and CKD. Methods and Results: This was a prospective multicenter observational study. Overall, 300 patients with chronic heart failure with a previous history of hospitalization and an estimated glomerular filtration rate (eGFR) of 45 mL/min/1.73 m2 or less (CKD stage G3b to G5) without dialysis were analyzed. The primary outcome assessed in a time-to-event analysis from the measurement of indoxyl sulfate was a composite of all-cause death, hospitalization for heart failure, nonfatal myocardial infarction, and nonfatal stroke. Clinical events were followed-up to one year after indoxyl sulfate measurement. The median patient age was 75 years, and 57% of the patients were men. We divided the cohort into low and high indoxyl sulfate categories according to a median value of 9.63 mg/mL. The primary outcome occurred in 27 of 150 patients (18.0%) in the low indoxyl sulfate group and 27 of 150 patients (18.0%) in the high indoxyl sulfate group (hazard ratio, 1.00; 95% confidence interval, 0.58 to 1.70, p = 0.99). In the post hoc exploratory analyses, the results were consistent across age, sex, body mass index, left ventricular ejection fraction, eGFR, and N-terminal pro b-type natriuretic peptide. Conclusions: Among heart failure patients with CKD stages G3b to 5G, serum indoxyl sulfate concentrations were not significantly associated with the subsequent occurrence of cardiovascular events. en-copyright= kn-copyright= en-aut-name=IwasakiKeiichiro en-aut-sei=Iwasaki en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UrabeChikara en-aut-sei=Urabe en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakuragiSatoru en-aut-sei=Sakuragi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawaiYusuke en-aut-sei=Kawai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukeSoichiro en-aut-sei=Fuke en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DoiMasayuki en-aut-sei=Doi en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakaishiAtsushi en-aut-sei=Takaishi en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkaTakefumi en-aut-sei=Oka en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TokunagaNaoto en-aut-sei=Tokunaga en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Institute of Academic and Research, Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Institute of Academic and Research, Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Institute of Academic and Research, Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Iwakuni Clinical Center kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=7 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Department of Cardiology, Mitoyo General Hospital kn-affil= affil-num=9 en-affil=Department of Cardiology, Tsuyama Chuo Hospital kn-affil= affil-num=10 en-affil=Department of Cardiology, Ibara City Hospital kn-affil= affil-num=11 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School kn-affil= en-keyword=heart failure kn-keyword=heart failure en-keyword=chronic kidney disease kn-keyword=chronic kidney disease en-keyword=indoxyl sulfate kn-keyword=indoxyl sulfate END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=15 article-no= start-page=2114 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240730 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Light-Driven H2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H-2 production becomes a fully light-driven process. HydA1 and HydA2 are highly O-2 sensitive; consequently, the formation of H-2 occurs mainly under anoxic conditions. Yet, photo-H-2 production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt b(6)f complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H-2 photoproduction. Additionally, the CBB cycle competes with H-2 photoproduction. Consequently, an in-depth understanding of light-driven H-2 production via photosynthetic electron transfer and its competition with CO2 fixation is essential for improving photo-H-2 production. At the same time, the smart design of photo-H-2 production schemes and photo-H-2 bioreactors are challenges for efficient up-scaling of light-driven photo-H-2 production. en-copyright= kn-copyright= en-aut-name=HipplerMichael en-aut-sei=Hippler en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KhosravitabarFatemeh en-aut-sei=Khosravitabar en-aut-mei=Fatemeh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Department of Biological and Environmental Sciences, University of Gothenburg kn-affil= en-keyword=H-2 production kn-keyword=H-2 production en-keyword=Chlamydomonas reinhardtii kn-keyword=Chlamydomonas reinhardtii en-keyword=electron transfer kn-keyword=electron transfer en-keyword=CBB cycle kn-keyword=CBB cycle END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=15 article-no= start-page=2617 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240723 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Utilizing the Metaverse to Provide Innovative Psychosocial Support for Pediatric, Adolescent, and Young Adult Patients with Rare Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the potential of the metaverse in providing psychological support for pediatric and AYA cancer patients, with a focus on those with rare cancers. The research involved ten cancer patients and survivors from four distinct regions in Japan, who participated in metaverse sessions using customizable avatars, facilitating interactions across geographical and temporal barriers. Surveys and qualitative feedback were collected to assess the psychosocial impact of the intervention. The results demonstrated that the metaverse enabled patients to connect with peers, share experiences, and receive emotional support. The anonymity provided by avatars helped reduce appearance-related anxiety and stigma associated with cancer treatment. A case study of a 19-year-old male with spinal Ewing’s sarcoma highlighted the profound emotional relief fostered by metaverse interactions. The findings suggest that integrating virtual spaces into healthcare models can effectively address the unique needs of pediatric and AYA cancer patients, offering a transformative approach to delivering psychosocial support and fostering a global patient community. This innovative intervention has the potential to revolutionize patient care in the digital age. en-copyright= kn-copyright= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshidaHisashi en-aut-sei=Ishida en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatayamaHideki en-aut-sei=Katayama en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaNaoko en-aut-sei=Maeda en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaganoAkihito en-aut-sei=Nagano en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OchiMotoharu en-aut-sei=Ochi en-aut-mei=Motoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkamuraMasako en-aut-sei=Okamura en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwataShintaro en-aut-sei=Iwata en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkutaKunihiro en-aut-sei=Ikuta en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshidaShinichirou en-aut-sei=Yoshida en-aut-mei=Shinichirou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Medical Information and Assistive Technology Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Palliative and Supportive Care, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pediatrics, NHO National Hospital Organization Nagoya Medical Center kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Gifu University kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=7 en-affil=Division of Survivorship, Institute for Cancer Control, National Cancer Center kn-affil= affil-num=8 en-affil=Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital kn-affil= affil-num=9 en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University kn-affil= affil-num=10 en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University kn-affil= affil-num=11 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=virtual reality kn-keyword=virtual reality en-keyword=metaverse kn-keyword=metaverse en-keyword=adolescent and young adult kn-keyword=adolescent and young adult en-keyword=rare cancer kn-keyword=rare cancer en-keyword=mental health kn-keyword=mental health END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=15 article-no= start-page=2930 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Performance Investigations of VSLAM and Google Street View Integration in Outdoor Location-Based Augmented Reality under Various Lighting Conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=The growing demand for Location-based Augmented Reality (LAR) experiences has driven the integration of Visual Simultaneous Localization And Mapping (VSLAM) with Google Street View (GSV) to enhance the accuracy. However, the impact of the ambient light intensity on the accuracy and reliability is underexplored, posing significant challenges in outdoor LAR implementations. This paper investigates the impact of light conditions on the accuracy and reliability of the VSLAM/GSV integration approach in outdoor LAR implementations. This study fills a gap in the current literature and offers valuable insights into vision-based approach implementation under different light conditions. Extensive experiments were conducted at five Point of Interest (POI) locations under various light conditions with a total of 100 datasets. Descriptive statistic methods were employed to analyze the data and assess the performance variation. Additionally, the Analysis of Variance (ANOVA) analysis was utilized to assess the impact of different light conditions on the accuracy metric and horizontal tracking time, determining whether there are significant differences in performance across varying levels of light intensity. The experimental results revealed that a significant correlation (p < 0.05) exists between the ambient light intensity and the accuracy of the VSLAM/GSV integration approach. Through the confidence interval estimation, the minimum illuminance 434 lx is needed to provide a feasible and consistent accuracy. Variations in visual references, such as wet surfaces in the rainy season, also impact the horizontal tracking time and accuracy. en-copyright= kn-copyright= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RiyantokoPrismahardi Aji en-aut-sei=Riyantoko en-aut-mei=Prismahardi Aji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MentariMustika en-aut-sei=Mentari en-aut-mei=Mustika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=light intensity kn-keyword=light intensity en-keyword=Location-based Augmented Reality (LAR) kn-keyword=Location-based Augmented Reality (LAR) en-keyword=outdoor kn-keyword=outdoor en-keyword=Visual Simultaneous Localization And Mapping (VSLAM) kn-keyword=Visual Simultaneous Localization And Mapping (VSLAM) en-keyword=Google Street View (GSV) kn-keyword=Google Street View (GSV) END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=341 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240813 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pathological findings in enucleated eyes of patients with neurofibromatosis type 1: report of a case with 15-year follow-up and review of 14 patients in the literature en-subtitle= kn-subtitle= en-abstract= kn-abstract=Backgrounds Iris nodules are frequently noted as clinical manifestations of neurofibromatosis type 1 but the other intraocular manifestations are rare. The purpose of this study is to present a patient with a phthisic eye who underwent enucleation for a cosmetic reason after 15-year follow-up and also to review 14 patients with enucleation described in the literature.
Case presentation A 17-year-old man with neurofibromatosis type 1 from infancy underwent the enucleation of phthisic left eye and also had the resection of eyelid subcutaneous mass lesions on the left side for a cosmetic reason. He had undergone four-time preceding surgeries for eyelid and orbital mass reduction on the left side in childhood and had developed total retinal detachment 10 years previously. Pathologically, the enucleated eye showed massive retinal gliosis positive for both S-100 and glial fibrillary acidic protein (GFAP) in the area with involvement of the detached retinal neuronal layer, together with a more fibrotic lesion along the choroid which were, in contrast, negative for both S-100 and GFAP. The choroid, ciliary body, and iris did not show apparent neurofibroma while episcleral neurofibroma was present.
Literature review In review of enucleated eyes of 14 patients in the literature, buphthalmic eyes with early-onset glaucoma on the unilateral side was clinically diagnosed in 9 patients who frequently showed varying extent of hemifacial neurofibromatosis which involved the eyelid and orbit on the same side. Pathologically, neurofibromas in varying extent were found in the choroid of 12 patients. One patient showed choroidal malignant melanoma on the left side and fusiform enlargement of the optic nerve on the right side suspected of optic nerve glioma. The phthisic eye in another patient showed massive retinal gliosis similar to the present patient.
Conclusions In summary of the 15 patients with neurofibromatosis type 1, including the present patient, buphthalmic or phthisic eyes with no vision were enucleated for cosmetic reasons and showed choroidal neurofibroma in most patients and massive retinal gliosis in two patients including the present patient. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishidaKenji en-aut-sei=Nishida en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SenoTakaya en-aut-sei=Seno en-aut-mei=Takaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaKiyoshi en-aut-sei=Yamada en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OnoShigeki en-aut-sei=Ono en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, General Medical Center, Kawasaki Medical School kn-affil= en-keyword=Neurofibromatosis type 1 kn-keyword=Neurofibromatosis type 1 en-keyword=Enucleation kn-keyword=Enucleation en-keyword=Eye kn-keyword=Eye en-keyword=Pathology kn-keyword=Pathology en-keyword=Massive retinal gliosis kn-keyword=Massive retinal gliosis en-keyword=Choroidal neurofibroma kn-keyword=Choroidal neurofibroma en-keyword=Phthisis kn-keyword=Phthisis en-keyword=Buphthalmos kn-keyword=Buphthalmos en-keyword=Malignant melanoma kn-keyword=Malignant melanoma en-keyword=Cosmetic surgery kn-keyword=Cosmetic surgery END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=9 article-no= start-page=884 end-page=890 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel strategy for activating gene expression through triplex DNA formation targeting epigenetically suppressed genes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Triplex DNA formation is a useful genomic targeting tool that is expected to have a wide range of applications, including the antigene method; however, there are fundamental limitations in its forming sequence. We recently extended the triplex DNA-forming sequence to methylated DNA sequences containing 5mCG base pairs by developing guanidino-dN, which is capable of recognizing a 5mCG base pair with high affinity. We herein investigated the effect of triplex DNA formation using TFOs with guanidino-dN on methylated DNA sequences at the promoter of the RASSF1A gene, whose expression is epigenetically suppressed by DNA methylation in MCF-7 cells, on gene expression. Interestingly, triplex DNA formation increased the expression of the RASSF1A gene at the transcript and protein levels. Furthermore, RASSF1A-activated MCF-7 cells exhibited cell growth suppressing activity. Changes in the expression of various genes associated with the promotion of apoptosis and breast cancer survival accompanied the activation of RASSF1A in cells exhibited antiproliferative activity. These results suggest the potential of increases in gene expression through triplex DNA formation as a new genomic targeting tool. en-copyright= kn-copyright= en-aut-name=NotomiRyotaro en-aut-sei=Notomi en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiShigeki en-aut-sei=Sasaki en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaniguchiYosuke en-aut-sei=Taniguchi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Pharmaceutical Sciences, Kyushu University kn-affil= affil-num=2 en-affil= Graduate School of Pharmaceutical Sciences, Nagasaki International University kn-affil= affil-num=3 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=8 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240729 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=New lineages of RNA viruses from clinical isolates of Rhizopus microsporus revealed by fragmented and primer-ligated dsRNA sequencing (FLDS) analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizopus microsporus is a species in the order Mucorales that is known to cause mucormycosis, but it is poorly understood as a host of viruses. Here, we examined 25 clinical strains of R. microsporus for viral infection with a conventional double-stranded RNA (dsRNA) assay using agarose gel electrophoresis (AGE) and the recently established fragmented and primer-ligated dsRNA sequencing (FLDS) protocol. By AGE, five virus-infected strains were detected. Then, full-length genomic sequences of 12 novel RNA viruses were revealed by FLDS, which were related to the families Mitoviridae, Narnaviridae, and Endornaviridae, ill-defined groups of single-stranded RNA (ssRNA) viruses with similarity to the established families Virgaviridae and Phasmaviridae, and the proposed family "Ambiguiviridae." All the characterized viruses, except a potential phasmavirid with a negative-sense RNA genome, had positive-sense RNA genomes. One virus belonged to a previously established species within the family Mitoviridae, whereas the other 11 viruses represented new species or even new genera. These results show that the fungal pathogen R. microsporus harbors diverse RNA viruses and extend our understanding of the diversity of RNA viruses in the fungal order Mucorales, division Mucoromycota. Identifying RNA viruses from clinical isolates of R. microsporus may expand the repertoire of natural therapeutic agents for mucormycosis in the future. en-copyright= kn-copyright= en-aut-name=Sa'diyahWasiatus en-aut-sei=Sa'diyah en-aut-mei=Wasiatus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhaoYan-Jie en-aut-sei=Zhao en-aut-mei=Yan-Jie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChibaYuto en-aut-sei=Chiba en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BanSayaka en-aut-sei=Ban en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YaguchiTakashi en-aut-sei=Yaguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UrayamaSyun-Ichi en-aut-sei=Urayama en-aut-mei=Syun-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HagiwaraDaisuke en-aut-sei=Hagiwara en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= affil-num=3 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Medical Mycology Research Center, Chiba University kn-affil= affil-num=7 en-affil=Medical Mycology Research Center, Chiba University kn-affil= affil-num=8 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= affil-num=9 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= en-keyword=Rhizopus microsporus kn-keyword=Rhizopus microsporus en-keyword=RNA virus kn-keyword=RNA virus en-keyword=diversity kn-keyword=diversity en-keyword=new lineage kn-keyword=new lineage en-keyword=FLDS kn-keyword=FLDS END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=37 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240729 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-term follow-up of a patient with Parkinson's disease under nursing care after replacement of fixed implant-supported prostheses with an implant overdenture: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background In older patients with progressive neurodegeneration, replacing fixed implant-supported prostheses (FIP) with implant overdentures (IOD) has been proposed to prevent future mucosal injury and create an oral environment that is easier for caregivers to clean. However, there have been no reports on the progress after replacing FIP with IOD. In this report, we present the progress of an older patient with Parkinson’s disease in whom FIP was replaced with IOD.
Case presentation An 81-year-old male patient with Parkinson’s disease presented to our outpatient clinic with bruxism and crossbites. FIPs, with five Brånemark system implants, were placed in the bilateral lower molars. The FIP was replaced with an IOD with two locator attachments to create an oral environment that was easier for caregivers to clean and allow easy recovery of masticatory function if residual teeth were fractured in the care environment. As his systemic condition deteriorated, treatment was changed from outpatient to in-home visits. During dental care visits, professional oral cleaning and denture repair were continued, and good nutritional status was maintained. However, the patient developed cholecystitis and was hospitalized. During hospitalization, gastrostomy was performed because he developed aspiration pneumonia. After discharge from the hospital, the patient remained in bed all day and could not wear an IOD, resulting in buccal mucosa ulceration due to abrasion of the locator abutment. We decided to replace the abutment with cover screws; however, not all the implants could sleep submucosally. Although regular oral cleaning was resumed, new ulcers developed even when cover screws were installed. Additionally, swelling and drainage were observed at the peri-implant mucosal site where peri-implantitis had once occurred during an outpatient visit. The patient was readmitted to the hospital for a urinary tract infection, and subsequent visits were abandoned.
Conclusions By replacing FIP with IOD in an older patient with Parkinson’s disease, we addressed a barrier to caregiver-provided oral management. The removable prosthesis facilitated smooth oral care by caregivers and functional recovery in the event of trouble with residual teeth. However, it could not completely avoid the recurrence of buccal mucosal ulcers or peri-implantitis. en-copyright= kn-copyright= en-aut-name=TokumotoKana en-aut-sei=Tokumoto en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MinoTakuya en-aut-sei=Mino en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TosaIkue en-aut-sei=Tosa en-aut-mei=Ikue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OmoriKo en-aut-sei=Omori en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMichiyo en-aut-sei=Yamamoto en-aut-mei=Michiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakaokaKazuki en-aut-sei=Takaoka en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MaekawaKenji en-aut-sei=Maekawa en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KishimotoHiromitsu en-aut-sei=Kishimoto en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University kn-affil= affil-num=2 en-affil=Okayama University Dental School kn-affil= affil-num=3 en-affil=Okayama University Dental School kn-affil= affil-num=4 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Dental Clinic, AINOSATO Clinic kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science kn-affil= affil-num=7 en-affil=Department of Removable Prosthodontics and Occlusion, Osaka Dental University kn-affil= affil-num=8 en-affil=Okayama University Dental School kn-affil= affil-num=9 en-affil=Department of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University kn-affil= en-keyword=Parkinson's disease kn-keyword=Parkinson's disease en-keyword=Older people kn-keyword=Older people en-keyword=Implant overdenture kn-keyword=Implant overdenture en-keyword=Nursing homes kn-keyword=Nursing homes en-keyword=Implant-related troubles kn-keyword=Implant-related troubles en-keyword=Peri-implantitis kn-keyword=Peri-implantitis END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=8 article-no= start-page=ziae085 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240704 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Macrophages modulate mesenchymal stem cell function via tumor necrosis factor alpha in tooth extraction model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mesenchymal stem cells (MSCs) and macrophages collaboratively contribute to bone regeneration after injury. However, detailed mechanisms underlying the interaction between MSCs and inflammatory macrophages (M1) remain unclear. A macrophage-depleted tooth extraction model was generated in 5-wk-old female C57BL/6J mice using clodronate liposome (12.5 mg/kg/mouse, intraperitoneally) or saline injection (control) before maxillary first molar extraction. Mice were sacrificed on days 1, 3, 5, 7, and 10 after tooth extraction (n = 4). Regenerated bone volume evaluation of tooth extraction socket (TES) and histochemical analysis of CD80+M1, CD206+M2 (anti-inflammatory macrophages), PDGFRα+MSC, and TNF-α+ cells were performed. In vitro, isolated MSCs with or without TNF-α stimulation (10 ng/mL, 24 h, n = 3) were bulk RNA-sequenced (RNA-Seq) to identify TNF-α stimulation-specific MSC transcriptomes. Day 7 micro-CT and HE staining revealed significantly lower mean bone volume (clodronate vs control: 0.01 mm3 vs 0.02 mm3, p<.0001) and mean percentage of regenerated bone area per total TES in clodronate group (41.97% vs 54.03%, p<.0001). Clodronate group showed significant reduction in mean number of CD80+, TNF-α+, PDGFRα+, and CD80+TNF-α+ cells on day 5 (306.5 vs 558.8, p<.0001; 280.5 vs 543.8, p<.0001; 365.0 vs 633.0, p<.0001, 29.0 vs 42.5, p<.0001), while these cells recovered significantly on day 7 (493.3 vs 396.0, p=.0004; 479.3 vs 384.5, p=.0008; 593.0 vs 473.0, p=.0010, 41.0 vs 32.5, p=.0003). RNA-Seq analysis showed that 15 genes (|log2FC| > 5.0, log2TPM > 5) after TNF-α stimulation were candidates for regulating MSC’s immunomodulatory capacity. In vivo, Clec4e and Gbp6 are involved in inflammation and bone formation. Clec4e, Gbp6, and Cxcl10 knockdown increased osteogenic differentiation of MSCs in vitro. Temporal reduction followed by apparent recovery of TNF-α-producing M1 macrophages and MSCs after temporal macrophage depletion suggests that TNF-α activated MSCs during TES healing. In vitro mimicking the effect of TNF-α on MSCs indicated that there are 15 candidate MSC genes for regulation of immunomodulatory capacity. en-copyright= kn-copyright= en-aut-name=MunAung Ye en-aut-sei=Mun en-aut-mei=Aung Ye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkiyamaKentaro en-aut-sei=Akiyama en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhangJiewen en-aut-sei=Zhang en-aut-mei=Jiewen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitagawaWakana en-aut-sei=Kitagawa en-aut-mei=Wakana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KohnoTeisaku en-aut-sei=Kohno en-aut-mei=Teisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TagashiraRyuji en-aut-sei=Tagashira en-aut-mei=Ryuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshibashiKei en-aut-sei=Ishibashi en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsunagaNaoya en-aut-sei=Matsunaga en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ZouTingling en-aut-sei=Zou en-aut-mei=Tingling kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=cytokines kn-keyword=cytokines en-keyword=dental biology kn-keyword=dental biology en-keyword=injury healing kn-keyword=injury healing en-keyword=osteoimmunology kn-keyword=osteoimmunology en-keyword=stem cells kn-keyword=stem cells END start-ver=1.4 cd-journal=joma no-vol=45 cd-vols= no-issue=11 article-no= start-page=1596 end-page=1601 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigation of the Expression of Serine Protease in Vibrio vulnificus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Vibrio vulnificus is a Gram-negative estuarine bacterium that causes infection in immuno-compromised patients, eels, and shrimp. V. vulnificus NCIMB2137, a metalloprotease-negative strain isolated from a diseased eel, produces a 45-kDa chymotrypsin-like alkaline serine protease known as VvsA. The gene encoding vvsA also includes another gene, vvsB with an unknown function; however, it is assumed to be an essential molecular chaperone for the maturation of VvsA. In the present study, we used an in vitro cell-free translation system to examine the maturation pathway of VvsA. We individually expressed the vvsA and vvsB genes and detected their mRNAs. However, the sample produced from vvsA did not exhibit protease activity. A sodium dodecyl sulfate (SDS) analysis detected the VvsB protein, but not the VvsA protein. A Western blotting analysis using a histidine (His)-tag at the amino terminus of proteins also showed no protein production by vvsA. These results suggested the translation, but not the transcription of vvsA. Factors derived from Escherichia coli were used in the in vitro cell-free translation system employed in the present study. The operon of the serine protease gene containing vvsA and vvsB was expressed in E. coli. Although serine proteases were produced, they were cleaved at different sites and no active mature forms were detected. These results indicate that the operon encoding vvsA and vvsB is a gene constructed to be specifically expressed in V. vulnificus. en-copyright= kn-copyright= en-aut-name=KawaseTomoka en-aut-sei=Kawase en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DebnathAnusuya en-aut-sei=Debnath en-aut-mei=Anusuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizunoTamaki en-aut-sei=Mizuno en-aut-mei=Tamaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyakeYui en-aut-sei=Miyake en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Vibrio vulnificus serine protease kn-keyword=Vibrio vulnificus serine protease en-keyword=intermolecular chaperone kn-keyword=intermolecular chaperone en-keyword=cell-free translation system kn-keyword=cell-free translation system END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=14 article-no= start-page=4099 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240713 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Importance of Blood Glucose Measurement for Predicting the Prognosis of Long COVID: A Retrospective Study in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: The present study aimed to clarify the effects of a hyperglycemic condition on the clinical consequences of long COVID. Methods: Among 643 patients who visited the outpatient clinic of our hospital from February 2021 to September 2023, long COVID patients were classified into a hyperglycemic (HG) group with casual blood glucose levels above 140 mg/dL and a normoglycemic (NG) group. The patients' backgrounds, clinical symptoms, health status including the QOL evaluation scale (EQ-5D-5L), self-rating depression scale (SDS), and F-scale questionnaire (FSSG), blood test data, and recovery periods were analyzed. Results: The NG group included 607 patients with long COVID and the HG group included 36 patients with long COVID. Patients in the HG group were older than those in the NG group (55 vs. 41 years; p < 0.001) and included a larger percentage of males (67% vs. 44%; p = 0.009). The HG group had a larger percentage of patients with moderate-to-severe conditions in the acute infection phase (28% vs. 12%; p = 0.008), a higher BMI (25 vs. 22 kg/m(2); p < 0.001), higher blood pressure (138/81 vs. 122/72 mmHg; p < 0.001), and a larger percentage of patients with an alcohol drinking habit (53% vs. 34%; p = 0.031). Long COVID symptoms and self-rated scales were not differed between the two groups; however, the laboratory data showed that liver and renal functions and metabolic data were significantly worse in the HG group. Although there was no apparent difference between the two groups in duration from the infection to the first visit, the HG group had a significantly longer period of recovery from long COVID (median period of 421 vs. 294 days; p = 0.019). Conclusion: A hyperglycemic state associated with other lifestyle-related diseases is associated with the prolongation of recovery from long COVID. en-copyright= kn-copyright= en-aut-name=YokoyamaSho en-aut-sei=Yokoyama en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakuradaYasue en-aut-sei=Sakurada en-aut-mei=Yasue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsudaYui en-aut-sei=Matsuda en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SunadaNaruhiko en-aut-sei=Sunada en-aut-mei=Naruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HasegawaToru en-aut-sei=Hasegawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakaseRyosuke en-aut-sei=Takase en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OmuraDaisuke en-aut-sei=Omura en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SoejimaYoshiaki en-aut-sei=Soejima en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=UedaKeigo en-aut-sei=Ueda en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KishidaMasayuki en-aut-sei=Kishida en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=blood glucose kn-keyword=blood glucose en-keyword=diabetes mellitus kn-keyword=diabetes mellitus en-keyword=long COVID kn-keyword=long COVID en-keyword=omicron variant kn-keyword=omicron variant en-keyword=post-COVID-19 condition kn-keyword=post-COVID-19 condition END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=17025 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical and endocrine features of orthostatic intolerance detected in patients with long COVID en-subtitle= kn-subtitle= en-abstract= kn-abstract=Orthostatic intolerance (OI) is a key symptom of long COVID; however, the pathophysiology remains unknown. Among 688 long COVID patients who visited our clinic during the period from February 2021 to April 2023, 86 patients who were suspected of having OI and who underwent an active standing test (ST) were investigated to elucidate the clinical characteristics of OI in patients with long COVID. Of the 86 patients, 33 patients (38%) were ST-positive. Nausea and tachycardia in daily life were frequent complaints in the ST-positive group. The increase in heart rate (HR) during the ST was significantly greater during a 10-min period after standing in the ST-positive group (+ 30 bpm) than in the ST-negative group (+ 16 bpm). The initial increase in diastolic blood pressure (DBP) just after standing was significantly greater in the ST-positive group (+ 14 mmHg) than in the ST-negative group (+ 9 mmHg). Serum cortisol levels in the ST-positive patients aged over 20 years were higher and growth hormone levels in the patients under 20 years of age were lower than those in the ST-negative group. Autonomous nervous symptoms, transient DBP rise with increasing HR after standing, and endocrine dysfunctions are helpful for detecting OI related to long COVID. en-copyright= kn-copyright= en-aut-name=KatoAtsushi en-aut-sei=Kato en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoKoichiro en-aut-sei=Yamamoto en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SunadaNaruhiko en-aut-sei=Sunada en-aut-mei=Naruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakuradaYasue en-aut-sei=Sakurada en-aut-mei=Yasue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsudaYui en-aut-sei=Matsuda en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HasegawaToru en-aut-sei=Hasegawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakaseRyosuke en-aut-sei=Takase en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UedaKeigo en-aut-sei=Ueda en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Active standing test kn-keyword=Active standing test en-keyword=Long COVID kn-keyword=Long COVID en-keyword=Orthostatic intolerance kn-keyword=Orthostatic intolerance en-keyword=Post COVID-19 condition kn-keyword=Post COVID-19 condition en-keyword=Postural orthostatic tachycardia syndrome (POTS) kn-keyword=Postural orthostatic tachycardia syndrome (POTS) END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=98175 end-page=98188 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Feasibility of Active Reactance Compensator for Autonomously Maximizing Repeater Coil Current of Wireless Power Transfer System Against Variations in Resonant Frequency and Magnetic Coupling Intensity en-subtitle= kn-subtitle= en-abstract= kn-abstract=In resonant inductive coupling wireless power transfer systems, a repeater resonator is crucial in expanding the charging area, enabling efficient power supply to receivers, such as small Internet of Things (IoT) devices sparsely distributed in a wide area. However, the repeater current is highly susceptible to deviations in resonance frequency due to manufacturing tolerance and aging, as well as to the magnetic coupling between the transmitter and repeater coils, potentially leading to insufficient amplitude. Consequently, the magnetic field generated by the repeater decreases and the receiver may be difficult to obtain sufficient power from the transmitter via the repeater. To address this problem, this paper proposes a wireless power transfer system with active reactance compensators incorporated in the repeater and the transmitter. The proposed system can equivalently adjust the resonant frequencies of the transmitter and repeater to stably maximize the repeater coil current regardless of the variations in the resonant frequency and the magnetic coupling intensity. Experiments successfully verify that the proposed system can provide a more stable and larger repeater current and output power than the conventional system against the variations in the magnetic field intensity and the resonant frequency of the repeater, validating the feasibility of the proposed system for practical utilization of the repeater in expanding the charging area. en-copyright= kn-copyright= en-aut-name=IshiharaMasataka en-aut-sei=Ishihara en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmetaniKazuhiro en-aut-sei=Umetani en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KonishiAkihiro en-aut-sei=Konishi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirakiEiji en-aut-sei=Hiraki en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Life, Environment, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Life, Environment, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Science and Engineering, Chiba University kn-affil= affil-num=4 en-affil=Faculty of Life, Environment, Natural Science and Technology, Okayama University kn-affil= en-keyword=Resonant inductive coupling kn-keyword=Resonant inductive coupling en-keyword=wireless power transfer kn-keyword=wireless power transfer en-keyword=repeater kn-keyword=repeater en-keyword=intermediate resonator kn-keyword=intermediate resonator en-keyword=frequency splitting phenomenon kn-keyword=frequency splitting phenomenon END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=14 article-no= start-page=4199 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Among various carbapenemases, New Delhi metallo-beta-lactamases (NDMs) are recognized as the most powerful type capable of hydrolyzing all beta-lactam antibiotics, often conferring multi-drug resistance to the microorganism. The objective of this review is to synthesize current scientific data on NDM inhibitors to facilitate the development of future therapeutics for challenging-to-treat pathogens. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews, we conducted a MEDLINE search for articles with relevant keywords from the beginning of 2009 to December 2022. We employed various generic terms to encompass all the literature ever published on potential NDM inhibitors. Results: Out of the 1760 articles identified through the database search, 91 met the eligibility criteria and were included in our analysis. The fractional inhibitory concentration index was assessed using the checkerboard assay for 47 compounds in 37 articles, which included 8 compounds already approved by the Food and Drug Administration (FDA) of the United States. Time-killing curve assays (14 studies, 25%), kinetic assays (15 studies, 40.5%), molecular investigations (25 studies, 67.6%), in vivo studies (14 studies, 37.8%), and toxicity assays (13 studies, 35.1%) were also conducted to strengthen the laboratory-level evidence of the potential inhibitors. None of them appeared to have been applied to human infections. Conclusions: Ongoing research efforts have identified several potential NDM inhibitors; however, there are currently no clinically applicable drugs. To address this, we must foster interdisciplinary and multifaceted collaborations by broadening our own horizons. en-copyright= kn-copyright= en-aut-name=NaharLutfun en-aut-sei=Nahar en-aut-mei=Lutfun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GotohKazuyoshi en-aut-sei=Gotoh en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsaduzzamanMd en-aut-sei=Asaduzzaman en-aut-mei=Md kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=carbapenemase-producing Enterobacterales kn-keyword=carbapenemase-producing Enterobacterales en-keyword=carbapenem-resistant Enterobacterales kn-keyword=carbapenem-resistant Enterobacterales en-keyword=metallo-beta-lactamase kn-keyword=metallo-beta-lactamase en-keyword=synergy kn-keyword=synergy en-keyword=combination kn-keyword=combination END start-ver=1.4 cd-journal=joma no-vol=371 cd-vols= no-issue= article-no= start-page=fnae053 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Regulatory role of VvsB protein on serine protease activity of VvsA in Vibrio vulnificus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background:Vibrio vulnificus NCIMB2137, a Gram-negative, metalloprotease negative estuarine strain was isolated from a diseased eel. A 45 kDa chymotrypsin-like alkaline serine protease known as VvsA has been recently reported as one of the major virulence factor responsible for the pathogenesis of this strain. The vvsA gene along with a downstream gene vvsB, whose function is still unknown constitute an operon designated as vvsAB. Objective: This study examines the contribution of VvsB to the functionality of VvsA. Method: In this study, VvsB was individually expressed using Rapid Translation System (RTS system), followed by an analysis of its role in regulating the serine protease activity of VvsA. Result: The proteolytic activity of VvsA increased upon the addition of purified VvsB to the culture supernatant of V. vulnificus. However, the attempts of protein expression using an E. coli system revealed a noteworthy observation that protein expression from the vvsA gene exhibited higher protease activity compared to that from the vvsAB gene within the cytoplasmic fraction. These findings suggest an intricate interplay between VvsB and VvsA, where VvsB potentially interacts with VvsA inside the bacterium and suppress the proteolytic activity. While outside the bacterial milieu, VvsB appears to stimulate the activation of inactive VvsA. Conclusion: The findings suggest that Vibrio vulnificus regulates VvsA activity through the action of VvsB, both intracellularly and extracellularly, to ensure its survival. en-copyright= kn-copyright= en-aut-name=KawaseTomoka en-aut-sei=Kawase en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DebnathAnusuya en-aut-sei=Debnath en-aut-mei=Anusuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkamotoKeinosuke en-aut-sei=Okamoto en-aut-mei=Keinosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Biotechnology, Brainware University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=RTS system kn-keyword=RTS system en-keyword=in vitro cell-free translation system, PU kn-keyword=in vitro cell-free translation system, PU en-keyword=Proteinase unit, VvsA kn-keyword=Proteinase unit, VvsA en-keyword=Vibrio vulnificus serine protease, SD kn-keyword=Vibrio vulnificus serine protease, SD en-keyword=Shine-Dalgarno sequence kn-keyword=Shine-Dalgarno sequence END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=9 article-no= start-page=181 end-page=187 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Questionnaire Survey of Neurointerventional Simulation Training in the Japanese Society for Neuroendovascular Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: Simulation training has focused on education and practical training. However, the adoption rate of neurointerventional simulation training in Japan is unknown. Therefore, we sent a questionnaire survey form to consulting specialists from the Japanese Society for Neuroendovascular Therapy (JSNET) to clarify the actual simulation training situation and compare the differences between university hospitals and general hospitals in Japan.
Methods: The questionnaire survey was conducted in 243 neurosurgical training facilities that had JSNET consulting specialists between May 31, 2021 and July 31, 2021. The questionnaire survey forms were distributed by Google Forms.
Results: A total of 162 facilities responded to the survey (response rate: 66.7%; 35.2% from university hospitals and 64.8% from general hospitals). The adoption rate for simulation training was 53.7%, and it was significantly higher in the university hospitals than in the general hospitals (64.9% vs. 47.6%, p = 0.035). On the simulation effectiveness survey, more than 80% of respondents answered that the simulation training was a useful tool for upskill training. The open-ended question on interventional simulation training showed that there are limiting factors such as financial constraints. Additionally, respondents expressed a desire for a standard neurointerventional simulation training and education program.
Conclusion: The adoption rate for simulation training was 53.7% in the training facilities of JSNET, and it was higher in the university hospitals than in the general hospitals. Most of the respondents answered that simulation training is an effective tool to improve neurointerventional skills. They also requested the establishment of simulation training programs and simulation tools. en-copyright= kn-copyright= en-aut-name=EbisudaniYuki en-aut-sei=Ebisudani en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugiuKenji en-aut-sei=Sugiu en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MuraiSatoshi en-aut-sei=Murai en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HarumaJun en-aut-sei=Haruma en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiramatsuMasafumi en-aut-sei=Hiramatsu en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HishikawaTomohito en-aut-sei=Hishikawa en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=neurointervention kn-keyword=neurointervention en-keyword=simulation training kn-keyword=simulation training en-keyword=questionnaire survey kn-keyword=questionnaire survey END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=14 article-no= start-page=2700 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Reference Paper Collection System Using Web Scraping en-subtitle= kn-subtitle= en-abstract= kn-abstract=Collecting reference papers from the Internet is one of the most important activities for progressing research and writing papers about their results. Unfortunately, the current process using Google Scholar may not be efficient, since a lot of paper files cannot be accessed directly by the user. Even if they are accessible, their effectiveness needs to be checked manually. In this paper, we propose a reference paper collection system using web scraping to automate paper collections from websites. This system can collect or monitor data from the Internet, which is considered as the environment, using Selenium, a popular web scraping software, as the sensor; this examines the similarity against the search target by comparing the keywords using the Bert model. The Bert model is a deep learning model for natural language processing (NLP) that can understand context by analyzing the relationships between words in a sentence bidirectionally. The Python Flask is adopted at the web application server, where Angular is used for data presentations. For the evaluation, we measured the performance, investigated the accuracy, and asked members of our laboratory to use the proposed method and provide their feedback. Their results confirm the method’s effectiveness. en-copyright= kn-copyright= en-aut-name=NaingInzali en-aut-sei=Naing en-aut-mei=Inzali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AungSoe Thandar en-aut-sei=Aung en-aut-mei=Soe Thandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WaiKhaing Hsu en-aut-sei=Wai en-aut-mei=Khaing Hsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=web scraping kn-keyword=web scraping en-keyword=Google Scholar kn-keyword=Google Scholar en-keyword=data collection kn-keyword=data collection en-keyword=Bert kn-keyword=Bert en-keyword=Selenium kn-keyword=Selenium en-keyword=flask framework kn-keyword=flask framework en-keyword=Angular kn-keyword=Angular END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=6 article-no= start-page=1119 end-page=1122 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240605 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Epigenetic Regulation of Carbonic Anhydrase 9 Expression by Nitric Oxide in Human Small Airway Epithelial Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=DNA methylation is a crucial epigenetic modification that regulates gene expression and determines cell fate; however, the triggers that alter DNA methylation levels remain unclear. Recently, we showed that S-nitrosylation of DNA methyltransferase (DNMT) induces DNA hypomethylation and alters gene expression. Furthermore, we identified DBIC, a specific inhibitor of S-nitrosylation of DNMT3B, to suppress nitric oxide (NO)-induced gene alterations. However, it remains unclear how NO-induced DNA hypomethylation regulates gene expression and whether this mechanism is maintained in normal cells and triggers disease-related changes. To address these issues, we focused on carbonic anhydrase 9 (CA9), which is upregulated under nitrosative stress in cancer cells. We pharmacologically evaluated its regulatory mechanisms using human small airway epithelial cells (SAECs) and DBIC. We demonstrated that nitrosative stress promotes the recruitment of hypoxia-inducible factor 1 alpha to the CA9 promoter region and epigenetically induces CA9 expression in SAECs. Our results suggest that nitrosative stress is a key epigenetic regulator that may cause diseases by altering normal cell function. en-copyright= kn-copyright= en-aut-name=MoriyaYuto en-aut-sei=Moriya en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubotaSho en-aut-sei=Kubota en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IijimaYuta en-aut-sei=Iijima en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakasugiNobumasa en-aut-sei=Takasugi en-aut-mei=Nobumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UeharaTakashi en-aut-sei=Uehara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=nitric oxide kn-keyword=nitric oxide en-keyword=human small airway epithelial cell kn-keyword=human small airway epithelial cell en-keyword=epigenetics kn-keyword=epigenetics en-keyword=DNA methylation kn-keyword=DNA methylation en-keyword=carbonic anhydrase 9 kn-keyword=carbonic anhydrase 9 en-keyword=hypoxia-inducible factor 1 alpha kn-keyword=hypoxia-inducible factor 1 alpha END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=8 article-no= start-page=208 end-page=214 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anterior Uveitis After Discontinuation of Janus Kinase Inhibitor, Ruxolitinib en-subtitle= kn-subtitle= en-abstract= kn-abstract=Primary myelofibrosis shows widespread fibrosis in the bone marrow and is part of myeloproliferative neoplasms in which gene mutations in hematopoietic stem cells lead to abnormal clonal expansion of one or more lineage of myeloid and erythroid cells and megakaryocytes. Janus kinase (JAK) inhibitors are the main therapeutic regimen for primary myelofibrosis which harbors gene mutations, resulting in continuous activation of JAK-STAT signaling pathway. Since JAK inhibitors modulate immunological state, the administration would have a potential for uveitis. A 67-year-old patient presented with weight loss of 10 kg in the past 2 years after his retirement. He showed normocytic anemia with anisocytosis and abnormal shape, as well as hepatosplenomegaly. Suspected of hematological malignancy, bone marrow biopsy led to the diagnosis of primary myelofibrosis (grade 2) with bizarre megakaryocytes and relative maintenance of myeloid and erythroid lineage. He started to have blood transfusion. Genomic DNA analysis of the peripheral blood showed a pathogenic variant in the exon 9 of calreticulin (CALR) gene while pathogenic variants in Janus kinase-2 (JAK2), and myeloproliferative leukemia virus oncogene (MPL) were absent. He began to have oral ruxolitinib 10 mg daily at the timepoint of 5 months after the initial visit and the dose was increased to 20 mg daily 8 months later but was discontinued further 4 months later because he showed the limited effect of ruxolitinib. He had blood transfusion every week or every 2 weeks in the following 2 months until he noticed blurred vision in the right eye. The right eye showed thick fibrin membrane formation in the anterior chamber in front of the pupil which prevented the fundus from visualization. The left eye showed no inflammation and optic nerve atrophy, sequel to tuberculous meningitis in childhood. The patient started to use 0.1% betamethasone six times daily and 1% atropine once daily as eye drops. A week later, fibrin membrane disappeared and the pupillary area with total iris posterior synechia was visible in the right eye. He regained the vision in the right eye and did not show relapse of uveitis only with topical 0.1% betamethasone. Uveitis might be related with the administration and discontinuation of ruxolitinib. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaNaoto en-aut-sei=Ikeda en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MonobeYasumasa en-aut-sei=Monobe en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Internal Medicine, Kaneda Hospital kn-affil= affil-num=3 en-affil=Department of Pathology, General Medical Center, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Janus kinase inhibitor kn-keyword=Janus kinase inhibitor en-keyword=Ruxolitinib kn-keyword=Ruxolitinib en-keyword=Anemia kn-keyword=Anemia en-keyword=Myelofibrosis kn-keyword=Myelofibrosis en-keyword=Anterior uveitis kn-keyword=Anterior uveitis END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=5 article-no= start-page=804 end-page=810 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20249 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Augmented humoral response to third and fourth dose of SARS-CoV-2 mRNA vaccines in lung transplant recipients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Since lung transplant recipients (LTRs) exhibit low immunogenicity after two doses of SARS-CoV-2 mRNA vaccines, optimal vaccine strategies for SARS-CoV-2 are required in LTRs. This study aimed to investigate the efficacy and safety of the third and fourth doses of the SARS-CoV-2 mRNA vaccines in LTRs.
Methods: We conducted a single-center study of 73 LTRs and 23 healthy controls (HCs). Participants received two-to-four doses of SARS-CoV-2 mRNA vaccines. The LTRs were divided into three groups based on the number of vaccine dose. IgG titers against SARS-CoV-2 spike protein were measured, and adverse events were assessed. Factors associated with humoral response were analyzed using univariate and multivariate analyses.
Results: The Dose 4 group (n = 27) had a higher humoral response rate (P = 0.018) and higher levels of anti-SARS-CoV-2 IgG antibody (P = 0.04) than the Dose 2 group (n = 14). The Dose 3 group (n = 32) had lower humoral response rates (P = 0.005) and levels of anti-SARS-CoV-2 IgG antibody (P = 0.0005) than the HCs (n = 23) even after the same dose. Systemic adverse events were milder in the LTRs than in the HCs (P < 0.05). Increased number of vaccine dose was identified as a predictor of positive humoral response (P = 0.021).
Conclusion: Booster doses of SARS-CoV-2 mRNA vaccines may enhance humoral response with mild adverse events in LTRs. Repeated vaccination might be warranted for LTRs to prevent SARS-CoV-2 infection. en-copyright= kn-copyright= en-aut-name=KawanaShinichi en-aut-sei=Kawana en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsubaraKei en-aut-sei=Matsubara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChoshiHaruki en-aut-sei=Choshi en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshiharaMegumi en-aut-sei=Ishihara en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HabuTomohiro en-aut-sei=Habu en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HashimotoKohei en-aut-sei=Hashimoto en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakayamaMasanori en-aut-sei=Nakayama en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Office of Innovative Medicine, Organization for Research Strategy and Development, Okayama University kn-affil= affil-num=14 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Adverse events kn-keyword=Adverse events en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=Immunogenicity kn-keyword=Immunogenicity en-keyword=Lung transplantation kn-keyword=Lung transplantation en-keyword=mRNA vaccine kn-keyword=mRNA vaccine END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=5536 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Controlling 229Th isomeric state population in a VUV transparent crystal en-subtitle= kn-subtitle= en-abstract= kn-abstract=The radioisotope thorium-229 (Th-229) is renowned for its extraordinarily low-energy, long-lived nuclear first-excited state. This isomeric state can be excited by vacuum ultraviolet (VUV) lasers and Th-229 has been proposed as a reference transition for ultra-precise nuclear clocks. To assess the feasibility and performance of the nuclear clock concept, time-controlled excitation and depopulation of the Th-229 isomer are imperative. Here we report the population of the Th-229 isomeric state through resonant X-ray pumping and detection of the radiative decay in a VUV transparent Th-229-doped CaF2 crystal. The decay half-life is measured to 447(25) s, with a transition wavelength of 148.18(42) nm and a radiative decay fraction consistent with unity. Furthermore, we report a new "X-ray quenching" effect which allows to de-populate the isomer on demand and effectively reduce the half-life. Such controlled quenching can be used to significantly speed up the interrogation cycle in future nuclear clock schemes. en-copyright= kn-copyright= en-aut-name=HirakiTakahiro en-aut-sei=Hiraki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkaiKoichi en-aut-sei=Okai en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BartokosMichael en-aut-sei=Bartokos en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BeeksKjeld en-aut-sei=Beeks en-aut-mei=Kjeld kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujimotoHiroyuki en-aut-sei=Fujimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukunagaYuta en-aut-sei=Fukunaga en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HabaHiromitsu en-aut-sei=Haba en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KasamatsuYoshitaka en-aut-sei=Kasamatsu en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KitaoShinji en-aut-sei=Kitao en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LeitnerAdrian en-aut-sei=Leitner en-aut-mei=Adrian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MasudaTakahiko en-aut-sei=Masuda en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=GuanMing en-aut-sei=Guan en-aut-mei=Ming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NagasawaNobumoto en-aut-sei=Nagasawa en-aut-mei=Nobumoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OgakeRyoichiro en-aut-sei=Ogake en-aut-mei=Ryoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=PimonMartin en-aut-sei=Pimon en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=PresslerMartin en-aut-sei=Pressler en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SasaoNoboru en-aut-sei=Sasao en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SchadenFabian en-aut-sei=Schaden en-aut-mei=Fabian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SchummThorsten en-aut-sei=Schumm en-aut-mei=Thorsten kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SetoMakoto en-aut-sei=Seto en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=ShigekawaYudai en-aut-sei=Shigekawa en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShimizuKotaro en-aut-sei=Shimizu en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SikorskyTomas en-aut-sei=Sikorsky en-aut-mei=Tomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TamasakuKenji en-aut-sei=Tamasaku en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=TakatoriSayuri en-aut-sei=Takatori en-aut-mei=Sayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=WatanabeTsukasa en-aut-sei=Watanabe en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=YamaguchiAtsushi en-aut-sei=Yamaguchi en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=YodaYoshitaka en-aut-sei=Yoda en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=YoshimiAkihiro en-aut-sei=Yoshimi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=YoshimuraKoji en-aut-sei=Yoshimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=4 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=5 en-affil=National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=RIKEN kn-affil= affil-num=8 en-affil=Graduate School of Science, Osaka University kn-affil= affil-num=9 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=10 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=13 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=15 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=16 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=17 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=18 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=19 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=20 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=21 en-affil=RIKEN kn-affil= affil-num=22 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=23 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=24 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=25 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=26 en-affil=National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=27 en-affil=RIKEN kn-affil= affil-num=28 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=29 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=30 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=32 article-no= start-page=23177 end-page=23183 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240723 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lead-free iron-doped Cs3Bi2Br9 perovskite with tunable properties en-subtitle= kn-subtitle= en-abstract= kn-abstract=Perovskite based on cesium bismuth bromide offers a compelling, non-toxic alternative to lead-containing counterparts in optoelectronic applications. However, its widespread usage is hindered by its wide bandgap. This study investigates a significant bandgap tunability achieved by introducing Fe doping into the inorganic, lead-free, non-toxic, and stable Cs3Bi2Br9 perovskite at varying concentrations. The materials were synthesized using a facile method, with the aim of tuning the optoelectronic properties of the perovskite materials. Characterization through techniques such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, energy dispersive spectroscopy (EDS), and UV-vis spectroscopy was conducted to elucidate the transformation mechanism of the doping materials. The substitution process results in a significant change in the bandgap energy, transforming from the pristine Cs3Bi2Br9 with a bandgap of 2.54 eV to 1.78 eV upon 70% Fe doping. The addition of 50% Fe in Cs3Bi2Br9 leads to the formation of the orthorhombic structure in Cs2(Bi,Fe)Br5 perovskite, while complete Fe alloying at 100% results in the phase formation of CsFeBr4 perovskite. Our findings on regulation of bandgap energy and crystal structure through B site substitution hold significant promise for applications in optoelectronics. en-copyright= kn-copyright= en-aut-name=HtunThiri en-aut-sei=Htun en-aut-mei=Thiri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ElattarAmr en-aut-sei=Elattar en-aut-mei=Amr kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ElbohyHytham en-aut-sei=Elbohy en-aut-mei=Hytham kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsutsumiKosei en-aut-sei=Tsutsumi en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoriganeKazumasa en-aut-sei=Horigane en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoChiyu en-aut-sei=Nakano en-aut-mei=Chiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GuXiaoyu en-aut-sei=Gu en-aut-mei=Xiaoyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzukiHiroo en-aut-sei=Suzuki en-aut-mei=Hiroo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishikawaTakeshi en-aut-sei=Nishikawa en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KyawAung Ko Ko en-aut-sei=Kyaw en-aut-mei=Aung Ko Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Ain Shams University kn-affil= affil-num=3 en-affil=Physics Department, Faculty of Science, Damietta University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=7 en-affil=Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting and Department of Electronic & Electrical Engineering, Southern University of Science and Technology kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting and Department of Electronic & Electrical Engineering, Southern University of Science and Technology kn-affil= affil-num=11 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Detailed Re-Examination of the Period Gene Rescue Experiments Shows That Four to Six Cryptochrome-Positive Posterior Dorsal Clock Neurons (DN1p) of Drosophila melanogaster Can Control Morning and Evening Activity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Animal circadian clocks play a crucial role in regulating behavioral adaptations to daily environmental changes. The fruit fly Drosophila melanogaster exhibits 2 prominent peaks of activity in the morning and evening, known as morning (M) and evening (E) peaks. These peaks are controlled by 2 distinct circadian oscillators located in separate groups of clock neurons in the brain. To investigate the clock neurons responsible for the M and E peaks, a cell-specific gene expression system, the GAL4-UAS system, has been commonly employed. In this study, we re-examined the two-oscillator model for the M and E peaks of Drosophila by utilizing more than 50 Gal4 lines in conjunction with the UAS-period16 line, which enables the restoration of the clock function in specific cells in the period (per) null mutant background. Previous studies have indicated that the group of small ventrolateral neurons (s-LNv) is responsible for controlling the M peak, while the other group, consisting of the 5th ventrolateral neuron (5th LNv) and the three cryptochrome (CRY)-positive dorsolateral neurons (LNd), is responsible for the E peak. Furthermore, the group of posterior dorsal neurons 1 (DN1p) is thought to also contain M and E oscillators. In this study, we found that Gal4 lines directed at the same clock neuron groups can lead to different results, underscoring the fact that activity patterns are influenced by many factors. Nevertheless, we were able to confirm previous findings that the entire network of circadian clock neurons controls M and E peaks, with the lateral neurons playing a dominant role. In addition, we demonstrate that 4 to 6 CRY-positive DN1p cells are sufficient to generate M and E peaks in light-dark cycles and complex free-running rhythms in constant darkness. Ultimately, our detailed screening could serve as a catalog to choose the best Gal4 lines that can be used to rescue per in specific clock neurons. en-copyright= kn-copyright= en-aut-name=SekiguchiManabu en-aut-sei=Sekiguchi en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ReinhardNils en-aut-sei=Reinhard en-aut-mei=Nils kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukudaAyumi en-aut-sei=Fukuda en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatohShun en-aut-sei=Katoh en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RiegerDirk en-aut-sei=Rieger en-aut-mei=Dirk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Helfrich-FörsterCharlotte en-aut-sei=Helfrich-Förster en-aut-mei=Charlotte kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg kn-affil= affil-num=6 en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=period kn-keyword=period en-keyword=GAL4-UAS kn-keyword=GAL4-UAS en-keyword=clock neuron kn-keyword=clock neuron en-keyword=activity rhythm kn-keyword=activity rhythm en-keyword=two-oscillator model kn-keyword=two-oscillator model END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=3 article-no= start-page=177 end-page=185 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reduced fitness in losers of leg-biting male combat compared to uncontested males in Zophobas atratus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sexual dimorphism and male combat are observed in many species. Often, the outcome of male combat affects the outcome of subsequent combats, mating success, number of sperm, and fitness of the male’s offspring. Also, the quantity and quality of sperm may be regulated by winning or losing, depending on species ecology and mating system. However, very few studies have experimentally examined the influence of fight outcomes on male offspring fitness. We studied male combat in the giant mealworm (Zophobas atratus) in which males bite each other’s hind legs. We hypothesized that subsequent fitness could differ between winners and losers in the escalated male combat of this species. We measured several fitness traits including the number of eggs laid by mated females, and the number of hatches sired by uncontested males, winners, and losers in escalated and non-escalated combat, and compared the fitness of each winner and loser to that of an uncontested male. We also measured mating duration. The numbers of eggs and the percentages of hatched eggs of losers in the escalated combat were significantly reduced compared to that of the uncontested males. This reduction may be due to injuries from escalated leg- biting fights and a result of the sperm amount of the uncontested males being greater than that of the loser males. en-copyright= kn-copyright= en-aut-name=MatsuuraTeruhisa en-aut-sei=Matsuura en-aut-mei=Teruhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Beetle kn-keyword=Beetle en-keyword=Offspring fitness kn-keyword=Offspring fitness en-keyword=Male combat kn-keyword=Male combat en-keyword=Hind leg kn-keyword=Hind leg en-keyword=Weapon kn-keyword=Weapon END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240713 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Re-administration of platinum-based chemotherapy for recurrent endometrial cancer: an ancillary analysis of the SGSG-012/GOTIC-004/Intergroup study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background We previously demonstrated the applicability of the concept of “platinum sensitivity” in recurrent endometrial cancer. Although immune checkpoint inhibitors have been widely incorporated into endometrial cancer treatment, the debate continues regarding treatment options in patients with recurrent endometrial cancer who have previously received platinum-based chemotherapy. In this study, we assessed the duration of response to secondary platinum-based treatment using pooled data from the SGSG-012/GOTIC-004/Intergroup study.
Methods Among the 279 participants in the SGSG-012/GOTIC-004/Intergroup study wherein platinum-based chemotherapy was re-administered for managing recurrent endometrial cancer between January 2005 and December 2009, 130 (47%) responded to chemotherapy. We compared the relationship between platinum-free interval and duration of secondary platinum-based treatment using pooled data.
Results In 40 patients (31%), the duration of response to secondary platinum-based treatment exceeded the platinum-free interval. The duration of response to secondary platinum-based treatment exceeded 12 months in 51 patients (39%) [platinum-free interval: < 12 months, 14/48 (29%); 12–23 months, 18/43 (42%); 24–35 months, 8/19 (42%); ≥ 36 months, 11/20 (55%)]. In particular, in eight patients (6%), the duration of response to secondary platinum-based treatment exceeded 36 months [platinum-free interval: < 12 months, 3/48 (6%); 12–23 months, 0/19 (0%); 24–35 months, 2/19 (11%); ≥ 36 months, 3/20 (15%)].
Conclusions Re-administration of platinum-based chemotherapy for recurrent endometrial cancer may result in a long-term response exceeding the platinum-free interval in some patients. Even in the current situation, where immune checkpoint inhibitors have been introduced, re-administration of platinum-based chemotherapy is worth considering. en-copyright= kn-copyright= en-aut-name=NagaoShoji en-aut-sei=Nagao en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishioShin en-aut-sei=Nishio en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeharaKazuhiro en-aut-sei=Takehara en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoShinya en-aut-sei=Sato en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatohToyomi en-aut-sei=Satoh en-aut-mei=Toyomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimadaMuneaki en-aut-sei=Shimada en-aut-mei=Muneaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamaguchiSatoshi en-aut-sei=Yamaguchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanabeHiroshi en-aut-sei=Tanabe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakanoMasashi en-aut-sei=Takano en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HorieKouji en-aut-sei=Horie en-aut-mei=Kouji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeiYuji en-aut-sei=Takei en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ImaiYuichi en-aut-sei=Imai en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HibinoYumi en-aut-sei=Hibino en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HasegawaKosei en-aut-sei=Hasegawa en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakekumaMunetaka en-aut-sei=Takekuma en-aut-mei=Munetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraKazuto en-aut-sei=Nakamura en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakanoHirokuni en-aut-sei=Takano en-aut-mei=Hirokuni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FujiwaraKeiichi en-aut-sei=Fujiwara en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Kurume University School of Medicine kn-affil= affil-num=3 en-affil=Department of Gynecologic Oncology, NHO Shikoku Cancer Center kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, Tottori University kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba kn-affil= affil-num=6 en-affil=Department of Gynecology, Tohoku University Hospital kn-affil= affil-num=7 en-affil=Department of Medical Oncology, Hyogo Cancer Center kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, Jikei University School of Medicine kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, National Defense Medical College kn-affil= affil-num=10 en-affil=Department of Gynecologic Oncology, Saitama Cancer Center kn-affil= affil-num=11 en-affil=Department of Obstetrics and Gynecology, Jichi Medical University kn-affil= affil-num=12 en-affil=Department of Obstetrics and Gynecology, Yokohama City University Hospital kn-affil= affil-num=13 en-affil=Department of Gynecologic Oncology, NHO Shikoku Cancer Center kn-affil= affil-num=14 en-affil=Department of Gynecologic Oncology, Saitama Medical University International Medical Center kn-affil= affil-num=15 en-affil=Department of Gynecology, Shizuoka Cancer Center kn-affil= affil-num=16 en-affil=Department of Gynecology, Gunma Prefectural Cancer Center kn-affil= affil-num=17 en-affil=Department of Obstetrics and Gynecology, Jikei University School of Medicine kn-affil= affil-num=18 en-affil=Department of Gynecologic Oncology, Saitama Medical University International Medical Center kn-affil= affil-num=19 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Recurrent endometrial cancer kn-keyword=Recurrent endometrial cancer en-keyword=Re-administration of platinum-based chemotherapy kn-keyword=Re-administration of platinum-based chemotherapy en-keyword=Platinum-free interval kn-keyword=Platinum-free interval en-keyword=Secondary platinum response kn-keyword=Secondary platinum response END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=8 article-no= start-page=1509 end-page=1519 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Intramolecular [π4s + π4s] photocycloaddition of carbon- and nitrogen-bridged [32](1,4)naphthalenophanes en-subtitle= kn-subtitle= en-abstract= kn-abstract=[32](1,4)Naphthalenophanes, bearing carbon-bridge chains (syn- and anti-NPs) and nitrogen-bridge chains (syn- and anti-ANPs), were synthesized, and their X-ray structures and photoreactions were investigated. The intramolecular separation distance between the naphthalene cores for ANPs was shorter than that for NPs, suggesting that intramolecular interactions between the naphthalene rings were more efficient for ANPs compared to NPs. Upon photoirradiation at 300 nm, anti-NP, syn-ANP and anti-ANP produced the corresponding intramolecular [π4s + π4s] cycloadducts, whereas syn-NP gave an unidentified complex product mixture. Quantum yields for the photo-consumption (ΦPC) of NPs and ANPs were evaluated to quantitatively compare their photoreactivity. The ΦPC values of ANPs were approximately two-fold higher than those of ANPs.Noteworthily, the ΦPC value of syn-ANP was estimated to be unity. Based on these results we discuss the effects of the alignments of the naphthalene cores (anti vs. syn) and the bridging elements (C-bridge vs. N-bridge) on the photoreaction efficiencies of [32](1,4)naphthalenophanes. en-copyright= kn-copyright= en-aut-name=OgumaYukiko en-aut-sei=Oguma en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoMasanori en-aut-sei=Yamamoto en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SunatsukiYukinari en-aut-sei=Sunatsuki en-aut-mei=Yukinari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OtaHiromi en-aut-sei=Ota en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamajiMinoru en-aut-sei=Yamaji en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkamotoHideki en-aut-sei=Okamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Instrumental Analysis, Advanced Science Research Center, Okayama University kn-affil= affil-num=5 en-affil=Division of Molecular Science, Graduate School of Science and Engineering, Gunma University kn-affil= affil-num=6 en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Cyclophane kn-keyword=Cyclophane en-keyword=Azacyclophane kn-keyword=Azacyclophane en-keyword=Naphthalenophane kn-keyword=Naphthalenophane en-keyword=Photocycloaddition kn-keyword=Photocycloaddition en-keyword=[4 + 4] cycloaddition kn-keyword=[4 + 4] cycloaddition END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240719 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pulmonary Flow Management by Combination Therapy of Hemostatic Clipping and Balloon Angioplasty for Right Ventricular-Pulmonary Artery Shunt in Hypoplastic Left Heart Syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=Controlling pulmonary blood flow in patients who have undergone Norwood palliation, especially early postoperatively, is challenging due to a change in the balance of systemic and pulmonary vascular resistance. We applied a combination therapy of clipping and balloon angioplasty for right ventricle—pulmonary artery (RV-PA) shunt to control pulmonary blood flow, but the influence of the combination therapy on the PA condition is uncertain. Retrospectively analysis was conducted of all infants with hypoplastic left heart syndrome who had undergone Norwood palliation with RV-PA shunt at Okayama University Hospital from January 2008 to September 2022. A total of 50 consecutive patients underwent Norwood palliation with RV-PA shunt in this study period. Of them, 29 patients underwent RV-PA shunt flow clipping, and the remaining 21 had unclipped RV-PA shunt. Twenty-three patients underwent balloon angioplasty for RV-PA shunt with clips. After balloon angioplasty, oxygen saturation significantly increased from 69 (59–76)% to 80 (72–86)% (p < 0.001), and the narrowest portion of the clipped conduit significantly improved from 2.8 (1.8–3.4) to 3.8 (2.9–4.6) mm (p < 0.001). In cardiac catheterizations prior to Bidirectional cavo-pulmonary shunt (BCPS), there were no significant differences in pulmonary-to-systemic flow ratio (Qp/Qs), ventricular end-diastolic pressure, Nakata index, arterial saturation, mean pulmonary artery pressure and pulmonary vascular resistance index. On the other hand, in Cardiac catheterizations prior to Fontan, Nakata index was larger in the clipped group (p = 0.02). There was no statistically significant difference in the 5-year survival between the two groups (clipped group 96%, unclipped group 74%, log-rank test: p = 0.13). At least, our combination therapy of clipping and balloon angioplasty for RV-PA shunt did not negatively impact PA growth. Although there is a trend toward better but not statistically significant difference in outcomes in the clipped group compared to the non-clipped group, this treatment strategy may play an important role in improving outcomes in hypoplastic left heart syndrome. en-copyright= kn-copyright= en-aut-name=ShigemitsuYusuke en-aut-sei=Shigemitsu en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoMaiko en-aut-sei=Kondo en-aut-mei=Maiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KuritaYoshihiko en-aut-sei=Kurita en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukushimaYosuke en-aut-sei=Fukushima en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamotoYuya en-aut-sei=Kawamoto en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HiraiKenta en-aut-sei=Hirai en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HaraMayuko en-aut-sei=Hara en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanazawaTomoyuki en-aut-sei=Kanazawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwasakiTatsuo en-aut-sei=Iwasaki en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KataokaKoichi en-aut-sei=Kataoka en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=BabaKenji en-aut-sei=Baba en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= en-keyword=Hypoplastic left heart syndrome kn-keyword=Hypoplastic left heart syndrome en-keyword=Norwood palliation kn-keyword=Norwood palliation en-keyword=Balloon angioplasty kn-keyword=Balloon angioplasty en-keyword=Congenital heart disease kn-keyword=Congenital heart disease END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=29 article-no= start-page=5836 end-page=5847 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between π–A isotherms and single microgel/microgel array structures revealed via the direct visualization of microgels at the air/water interface en-subtitle= kn-subtitle= en-abstract= kn-abstract=The structures of single microgels and microgel arrays formed at the air/water interface were visualized directly, and their structures correlated with π–A isotherms in order to understand the compression behavior of soft and deformable microgels at this interface. Large microgels (ca. 4 μm) were synthesized so that these can be clearly visualized at the air/water interface, even under high compression, and a series of microgel compression experiments were directly evaluated using a Langmuir trough equipped with a fluorescence microscope. The experiments revealed that upon compressing the microgel arrays at the interface voids disappeared and colloidal crystallinity increased. However, the colloidal crystallinity decreased when the microgel arrays were strongly compressed. In addition, when the structures were observed at higher magnification, it became clear that the single microgel structures, when visualized from above, changed from circular to polygonal upon compressing the microgel array. The results of this study can be expected to improve the understanding of the compression behavior of microgel arrays adsorbed at the air/water interface and will thus be useful for the creation of new functional microgel stabilizers with potential applications in e.g., bubbles and emulsions. en-copyright= kn-copyright= en-aut-name=KawamotoTakahisa en-aut-sei=Kawamoto en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MinatoHaruka en-aut-sei=Minato en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=32 article-no= start-page=12686 end-page=12694 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Boosting charge separation in organic photovoltaics: unveiling dipole moment variations in excited non-fullerene acceptor layers en-subtitle= kn-subtitle= en-abstract= kn-abstract=The power conversion efficiency (PCE) of organic photovoltaics (OPVs) has reached more than 19% due to the rapid development of non-fullerene acceptors (NFAs). To compete with the PCEs (26%) of commercialized silicon-based inorganic photovoltaics, the drawback of OPVs should be minimized. This drawback is the intrinsic large loss of open-circuit voltage; however, a general approach to this issue remains elusive. Here, we report a discovery regarding highly efficient NFAs, specifically ITIC. We found that charge-transfer (CT) and charge dissociation (CD) can occur even in a neat ITIC film without the donor layer. This is surprising, as these processes were previously believed to take place exclusively at donor/acceptor heterojunctions. Femtosecond time-resolved visible to mid-infrared measurements revealed that in the neat ITIC layers, the intermolecular CT immediately proceeds after photoirradiation (<0.1 ps) to form weakly-bound excitons with a binding energy of 0.3 eV, which are further dissociated into free electrons and holes with a time-constant of 56 ps. Theoretical calculations indicate that stacking faults in ITIC (i.e., V-type molecular stacking) induce instantaneous intermolecular CT and CD in the neat ITIC layer. In contrast, J-type stacking does not support such CT and CD. This previously unknown pathway is triggered by the larger dipole moment change on the excited state generated at the lower symmetric V-type molecular stacking of ITIC. This is in sharp contrast with the need of sufficient energy offset for CT and CD at the donor-acceptor heterojunction, leading to the significant voltage loss in conventional OPVs. These results demonstrate that the rational molecular design of NFAs can increase the local dipole moment change on the excited state within the NFA layer. This finding paves the way for a groundbreaking route toward the commercialization of OPVs. en-copyright= kn-copyright= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoKosaku en-aut-sei=Kato en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UrakamiTakumi en-aut-sei=Urakami en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsujimuraSota en-aut-sei=Tsujimura en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurayamaKasumi en-aut-sei=Murayama en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HigashiMasahiro en-aut-sei=Higashi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatoHirofumi en-aut-sei=Sato en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KoboriYasuhiro en-aut-sei=Kobori en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UmeyamaTomokazu en-aut-sei=Umeyama en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ImahoriHiroshi en-aut-sei=Imahori en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Molecular Engineering, Graduate School of Engineering, Kyoto University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=6 en-affil=Department of Complex Systems Science, Graduate School of Informatics, Nagoya University kn-affil= affil-num=7 en-affil=Department of Molecular Engineering, Graduate School of Engineering, Kyoto University kn-affil= affil-num=8 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=9 en-affil=Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo kn-affil= affil-num=10 en-affil=Department of Molecular Engineering, Graduate School of Engineering, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=7 article-no= start-page=e70003 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240719 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rare case of rectal carcinoid with synchronous primary carcinoid tumors of the lung misdiagnosed as lung metastases en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 68-year-old woman was referred to our hospital for rectal surgery after a pathological diagnosis of rectal carcinoid with venous invasion following endoscopic submucosal dissection of a 5 mm-sized submucosal tumor in the lower rectum. Chest CT showed nodules in the left upper lobe and right lower lobe, but positron emission tomography and somatostatin receptor scintigraphy showed no hyperaccumulation in the lung nodules. CT-guided needle biopsy was performed on the nodular lesion in the left upper lobe, which showed focal growth of tumor cells with a high N/C ratio and positive synaptophysin, leading to a diagnosis of pulmonary metastasis of rectal carcinoid. Since the patient was asymptomatic and did not wish to undergo surgery or chemotherapy, she was followed up strictly with sufficient informed consent. Three years have passed since the diagnosis, and there is no tendency for the lung metastasis to increase, and no other new lesions have been observed. The disease had not progressed and remained stable. Therefore, immunohistological analysis of the lung biopsy specimen was performed again, which was positive for TTF-1 and negative for CDX2. Consequently, the diagnosis was changed to primary lung carcinoid tumors, and the patient remains under follow-up with no disease progression. en-copyright= kn-copyright= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShojiRhohei en-aut-sei=Shoji en-aut-mei=Rhohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School kn-affil= en-keyword=lung metastases kn-keyword=lung metastases en-keyword=neuroendocrine tumor kn-keyword=neuroendocrine tumor en-keyword=rectal carcinoid kn-keyword=rectal carcinoid END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=43 article-no= start-page=eadi8446 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of a diatom photosystem II supercomplex containing a member of Lhcx family and dimeric FCPII en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for their great success in oceans, which have a great diversity in their pigment, protein compositions, and subunit organizations. We report a unique structure of photosystem II (PSII)-FCPII supercomplex from Thalassiosira pseudonana at 2.68-angstrom resolution by cryo-electron microscopy. FCPIIs within this PSII-FCPII supercomplex exist in dimers and monomers, and a homodimer and a heterodimer were found to bind to a PSII core. The FCPII homodimer is formed by Lhcf7 and associates with PSII through an Lhcx family antenna Lhcx6_1, whereas the heterodimer is formed by Lhcf6 and Lhcf11 and connects to the core together with an Lhcf5 monomer through Lhca2 monomer. An extended pigment network consisting of diatoxanthins, diadinoxanthins, fucoxanthins, and chlorophylls a/c is revealed, which functions in efficient light harvesting, energy transfer, and dissipation. These results provide a structural basis for revealing the energy transfer and dissipation mechanisms and also for the structural diversity of FCP antennas in diatoms. en-copyright= kn-copyright= en-aut-name=FengYue en-aut-sei=Feng en-aut-mei=Yue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiZhenhua en-aut-sei=Li en-aut-mei=Zhenhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiXiaoyi en-aut-sei=Li en-aut-mei=Xiaoyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenLili en-aut-sei=Shen en-aut-mei=Lili kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiuXueyang en-aut-sei=Liu en-aut-mei=Xueyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhouCuicui en-aut-sei=Zhou en-aut-mei=Cuicui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangJinyang en-aut-sei=Zhang en-aut-mei=Jinyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SangMin en-aut-sei=Sang en-aut-mei=Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HanGuangye en-aut-sei=Han en-aut-mei=Guangye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YangWenqiang en-aut-sei=Yang en-aut-mei=Wenqiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=8 en-affil=China National Botanical Garden kn-affil= affil-num=9 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=10 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=12 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=13 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=13 article-no= start-page=3809 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240628 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Changes in Working Situations of Employed Long COVID Patients: Retrospective Study in Japanese Outpatient Clinic en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: The present study aimed to uncover the impact of long COVID on the working situations of Japanese patients. Methods: Changes in the working situations of the patients who visited our long COVID clinic were evaluated from medical records for the aspects of physical status, quality of life (QOL), and mental conditions.
Results: Of 846 long COVID patients who visited our clinic from February 2021 to December 2023, 545 employed patients aged between 18 and 65 years were included in this study. A total of 295 patients (54.1%) with long COVID (median age: 43 years, female: 55.6%) experienced changes in their working status. Those patients included 220 patients (40.4%) who took a leave of absence, 53 patients (9.7%) who retired, and 22 patients (4%) with reduced working hours. Most of the patients (93.2%) with changes in working conditions had mild disease severity in the acute phase of COVID-19. The majority of those patients with mild disease severity (58.8%) were infected in the Omicron-variant phase and included 65.3% of the female patients. The major symptoms in long COVID patients who had changes in their working situations were fatigue, insomnia, headache, and dyspnea. Scores indicating fatigue and QOL were worsened in long COVID patients who had changes in their working situations. In addition, 63.7% of the long COVID patients with changes in their working situations had decreases in their incomes.
Conclusions: Changes in the working situation of long COVID patients who were employed had a negative impact on the maintenance of their QOL. en-copyright= kn-copyright= en-aut-name=MatsudaYui en-aut-sei=Matsuda en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakuradaYasue en-aut-sei=Sakurada en-aut-mei=Yasue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SunadaNaruhiko en-aut-sei=Sunada en-aut-mei=Naruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HasegawaToru en-aut-sei=Hasegawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakaseRyosuke en-aut-sei=Takase en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OmuraDaisuke en-aut-sei=Omura en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UedaKeigo en-aut-sei=Ueda en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=employment kn-keyword=employment en-keyword=job retirement kn-keyword=job retirement en-keyword=leave of absence kn-keyword=leave of absence en-keyword=long COVID kn-keyword=long COVID en-keyword=omicron variant kn-keyword=omicron variant en-keyword=post-COVID-19 condition kn-keyword=post-COVID-19 condition END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=13 article-no= start-page=7398 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240705 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanisms and Functions of Sweet Reception in Oral and Extraoral Organs en-subtitle= kn-subtitle= en-abstract= kn-abstract=The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase C beta 2 (PLC beta 2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs. en-copyright= kn-copyright= en-aut-name=YoshidaRyusuke en-aut-sei=Yoshida en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NinomiyaYuzo en-aut-sei=Ninomiya en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=sweet taste kn-keyword=sweet taste en-keyword=energy homeostasis kn-keyword=energy homeostasis en-keyword=T1R3 kn-keyword=T1R3 en-keyword=GLUT kn-keyword=GLUT en-keyword=SGLT kn-keyword=SGLT en-keyword=sugar kn-keyword=sugar END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=13 article-no= start-page=4293 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimizing IoT Intrusion Detection Using Balanced Class Distribution, Feature Selection, and Ensemble Machine Learning Techniques en-subtitle= kn-subtitle= en-abstract= kn-abstract=Internet of Things (IoT) devices are leading to advancements in innovation, efficiency, and sustainability across various industries. However, as the number of connected IoT devices increases, the risk of intrusion becomes a major concern in IoT security. To prevent intrusions, it is crucial to implement intrusion detection systems (IDSs) that can detect and prevent such attacks. IDSs are a critical component of cybersecurity infrastructure. They are designed to detect and respond to malicious activities within a network or system. Traditional IDS methods rely on predefined signatures or rules to identify known threats, but these techniques may struggle to detect novel or sophisticated attacks. The implementation of IDSs with machine learning (ML) and deep learning (DL) techniques has been proposed to improve IDSs' ability to detect attacks. This will enhance overall cybersecurity posture and resilience. However, ML and DL techniques face several issues that may impact the models' performance and effectiveness, such as overfitting and the effects of unimportant features on finding meaningful patterns. To ensure better performance and reliability of machine learning models in IDSs when dealing with new and unseen threats, the models need to be optimized. This can be done by addressing overfitting and implementing feature selection. In this paper, we propose a scheme to optimize IoT intrusion detection by using class balancing and feature selection for preprocessing. We evaluated the experiment on the UNSW-NB15 dataset and the NSL-KD dataset by implementing two different ensemble models: one using a support vector machine (SVM) with bagging and another using long short-term memory (LSTM) with stacking. The results of the performance and the confusion matrix show that the LSTM stacking with analysis of variance (ANOVA) feature selection model is a superior model for classifying network attacks. It has remarkable accuracies of 96.92% and 99.77% and overfitting values of 0.33% and 0.04% on the two datasets, respectively. The model's ROC is also shaped with a sharp bend, with AUC values of 0.9665 and 0.9971 for the UNSW-NB15 dataset and the NSL-KD dataset, respectively. en-copyright= kn-copyright= en-aut-name=MusthafaMuhammad Bisri en-aut-sei=Musthafa en-aut-mei=Muhammad Bisri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HudaSamsul en-aut-sei=Huda en-aut-mei=Samsul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoderaYuta en-aut-sei=Kodera en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AliMd. Arshad en-aut-sei=Ali en-aut-mei=Md. Arshad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ArakiShunsuke en-aut-sei=Araki en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MwauraJedidah en-aut-sei=Mwaura en-aut-mei=Jedidah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NogamiYasuyuki en-aut-sei=Nogami en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Green Innovation Center, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of CSE, Hajee Mohammad Danesh Science and Technology University kn-affil= affil-num=5 en-affil=Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology kn-affil= affil-num=6 en-affil=Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=intrusion detection system kn-keyword=intrusion detection system en-keyword=feature selection kn-keyword=feature selection en-keyword=class balancing kn-keyword=class balancing en-keyword=ensemble technique kn-keyword=ensemble technique en-keyword=stacked long short-term memory kn-keyword=stacked long short-term memory END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=13 article-no= start-page=2326 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240625 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy of Cisplatin-CXCR4 Antagonist Combination Therapy in Oral Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cisplatin is a platinum-based compound that is widely used for treating inoperable oral squamous cell carcinoma (OSCC) in Japan; however, resistance to cisplatin presents a challenge and innovative approaches are required. We aimed to investigate the therapeutic potential of targeting the chemokine receptor CXCR4, which is involved in angiogenesis and tumor progression, using the CXCR4 inhibitor AMD3100, in combination with cisplatin. AMD3100 induced necrosis and bleeding in OSCC xenografts by inhibiting angiogenesis. We investigated the combined ability of AMD3100 plus cisplatin to enhance the antitumor effect in cisplatin-resistant OSCC. An MTS assay identified HSC-2 cells as cisplatin-resistant cells in vitro. Mice treated with the cisplatin-AMD combination exhibited the most significant reduction in tumor volume, accompanied by extensive hemorrhage and necrosis. Histological examination indicated thin and short tumor vessels in the AMD and cisplatin–AMD groups. These results indicated that cisplatin and AMD3100 had synergistic antitumor effects, highlighting their potential for vascular therapy of refractory OSCC. Antitumor vascular therapy using cisplatin combined with a CXCR4 inhibitor provides a novel strategy for addressing cisplatin-resistant OSCC. en-copyright= kn-copyright= en-aut-name=YoshidaSaori en-aut-sei=Yoshida en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SanouSho en-aut-sei=Sanou en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakeshitaYohei en-aut-sei=Takeshita en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HisatomiMiki en-aut-sei=Hisatomi en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AsaumiJunichi en-aut-sei=Asaumi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YanagiYoshinobu en-aut-sei=Yanagi en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Preliminary Examination Room, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Preliminary Examination Room, Okayama University Hospital kn-affil= en-keyword=oral squamous cell carcinoma kn-keyword=oral squamous cell carcinoma en-keyword=CXCR4 kn-keyword=CXCR4 en-keyword=cisplatin kn-keyword=cisplatin en-keyword=antitumor vascular therapy kn-keyword=antitumor vascular therapy END start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue=14 article-no= start-page=10349 end-page=10354 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Formal One Carbon Deletion of Indoline Hemiaminals under Tautomeric Control to Access 2-Aminobenzyl Compounds en-subtitle= kn-subtitle= en-abstract= kn-abstract=Unprecedented tert-BuOK-mediated one carbon deletion of indoline hemiaminals has been achieved. This novel protocol provides an efficient synthetic tool for the construction of 2-aminobenzyl compounds with high chemoselectivity. In addition, functionalized 2-aminobenzyl compounds are difficult to make, for which few limited means of access currently exist. The key to success is the use of in situ generated Heyns rearrangement products (α-amino carbonyl compounds) as precursors for formal one carbon deletion. en-copyright= kn-copyright= en-aut-name=TokushigeKeisuke en-aut-sei=Tokushige en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbeTakumi en-aut-sei=Abe en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=100 cd-vols= no-issue=1 article-no= start-page=219 end-page=228 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240625 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Novel Peptidome Technology for the Diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease by Selected Reaction Monitoring en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background:With the aging of populations worldwide, Alzheimer’s disease (AD) has become a concern due to its high prevalence and the continued lack of established treatments. Early diagnosis is required as a preventive intervention to modify the disease’s progression. In our previous study, we performed peptidomic analysis of serum samples obtained from AD patients and age-matched healthy subjects to seek peptide biomarker candidates for AD by using BLOTCHIP-MS analysis, and identified four peptides as AD biomarker candidates.
Objective:The objective was to validate the serum biomarker peptides to distinguish mild cognitive impairment (MCI) and AD in comparison to cognitively healthy controls using a new peptidome technology, the Dementia Risk Test.
Methods:We enrolled 195 subjects with normal cognitive function (NC; n = 70), MCI (n = 55), and AD (n = 70), The concentrations of cognitive impairment marker peptides (Fibrinogen α chain (FAC), Fibrinogen β chain (FBC), Plasma protease C1 inhibitor (PPC1I), α2-HS-glycoprotein (AHSG)) were quantified by using a selected reaction monitoring assay based on liquid chromatography-MS/MS.
Results:The present study confirmed that three peptides, FAC, FBC, and PPC1I, were significantly upregulated during the onset of AD. This three-peptide set was both highly sensitive in determining AD (sensitivity: 85.7%, specificity: 95.7%, AUC: 0.900) and useful in distinguishing MCI (sensitivity: 61.8%, specificity: 98.6%, AUC: 0.824) from NC.
Conclusions:In this validation study, we confirmed the high diagnostic potential of the three peptides identified in our previous study as candidate serum biomarkers for AD. The Dementia Risk Test may be a powerful tool for detecting AD-related pathological changes. en-copyright= kn-copyright= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TadokoroKoh en-aut-sei=Tadokoro en-aut-mei=Koh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaMinaki en-aut-sei=Hamada en-aut-mei=Minaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsadaKyoichi en-aut-sei=Asada en-aut-mei=Kyoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeeLyang-Ja en-aut-sei=Lee en-aut-mei=Lyang-Ja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TachikiHidehisa en-aut-sei=Tachiki en-aut-mei=Hidehisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Protosera, Inc. kn-affil= affil-num=4 en-affil=Protosera, Inc. kn-affil= affil-num=5 en-affil=Protosera, Inc. kn-affil= affil-num=6 en-affil=Protosera, Inc. kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurology, National Center of Neurology and Psychiatry kn-affil= affil-num=9 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Alzheimer’s disease kn-keyword=Alzheimer’s disease en-keyword=biochemical marker kn-keyword=biochemical marker en-keyword=dementia risk test kn-keyword=dementia risk test en-keyword=liquid chromatography-MS/MS kn-keyword=liquid chromatography-MS/MS en-keyword=mild cognitive impairment kn-keyword=mild cognitive impairment en-keyword=peptidome kn-keyword=peptidome en-keyword=selected reaction monitoring kn-keyword=selected reaction monitoring END start-ver=1.4 cd-journal=joma no-vol=125 cd-vols= no-issue=2 article-no= start-page=023104 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240708 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced thermal conductivity of fluids by percolating high-concentration few-layer graphene en-subtitle= kn-subtitle= en-abstract= kn-abstract=High-performance and small-sized heat exchangers have been demanded due to the miniaturization and higher output of electronic devices, lasers, and energy harvesting/storage systems. Graphene nanosheet suspension has attracted attention as a next-generation nanofluid because of its high thermal conductivity and low pressure drop, while being dispersed stably without any additives. Graphene-based nanofluids have been mostly investigated using graphene oxide, and there are a few studies on pure graphene because of the limitation in mass production and stabilization at high concentrations of graphene. In this study, we prepared a 10 wt. % high-concentration few-layer graphene suspension by pulverizing graphite particles. Scanning electron microscopy, atomic force microscopy, and Raman spectra confirmed the few-layer graphene is formed in the suspension. The thermal conductivity of the suspension increased with concentration and suddenly jumped at a specific concentration. Furthermore, a significant improvement in thermal conductivity of >40% compared to base liquid was confirmed at 10 wt. % graphene content. A similar trend was observed for electrical resistance; 10 wt. % graphene suspension showed 62% lower resistance than that of 1 wt. %. These results suggest the percolation of graphene in a liquid, which has not been observed for graphene-based materials in previous research. en-copyright= kn-copyright= en-aut-name=IshiiKeiko en-aut-sei=Ishii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgiyamaTakahiro en-aut-sei=Ogiyama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FumotoKoji en-aut-sei=Fumoto en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=College of Science and Engineering, Chuo University kn-affil= affil-num=2 en-affil=College of Science and Engineering, Aoyama Gakuin University kn-affil= affil-num=3 en-affil=College of Science and Engineering, Aoyama Gakuin University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=137 cd-vols= no-issue=11 article-no= start-page=jcs261977 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Toxicity of the model protein 3×GFP arises from degradation overload, not from aggregate formation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although protein aggregation can cause cytotoxicity, such aggregates can also form to mitigate cytotoxicity from misfolded proteins, although the nature of these contrasting aggregates remains unclear. We previously found that overproduction (op) of a three green fluorescent protein-linked protein (3×GFP) induces giant aggregates and is detrimental to growth. Here, we investigated the mechanism of growth inhibition by 3×GFP-op using non-aggregative 3×MOX-op as a control in Saccharomyces cerevisiae. The 3×GFP aggregates were induced by misfolding, and 3×GFP-op had higher cytotoxicity than 3×MOX-op because it perturbed the ubiquitin-proteasome system. Static aggregates formed by 3×GFP-op dynamically trapped Hsp70 family proteins (Ssa1 and Ssa2 in yeast), causing the heat-shock response. Systematic analysis of mutants deficient in the protein quality control suggested that 3×GFP-op did not cause a critical Hsp70 depletion and aggregation functioned in the direction of mitigating toxicity. Artificial trapping of essential cell cycle regulators into 3×GFP aggregates caused abnormalities in the cell cycle. In conclusion, the formation of the giant 3×GFP aggregates itself is not cytotoxic, as it does not entrap and deplete essential proteins. Rather, it is productive, inducing the heat-shock response while preventing an overload to the degradation system. en-copyright= kn-copyright= en-aut-name=NambaShotaro en-aut-sei=Namba en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriyaHisao en-aut-sei=Moriya en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Aggregation kn-keyword=Aggregation en-keyword=Fluorescent protein kn-keyword=Fluorescent protein en-keyword=Hsp70 kn-keyword=Hsp70 en-keyword=Overproduction kn-keyword=Overproduction en-keyword=Toxicity kn-keyword=Toxicity en-keyword=Yeast kn-keyword=Yeast END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=2 article-no= start-page=162 end-page=177 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Generalized hypergeometric functions for degree k hypersurface in CPN-1 and intersection numbers of moduli space of quasimaps from CP1 with two marked points to CPN-1 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we derive the generalized hypergeometric functions used in mirror computation of degree k hypersurface in CPN-1 as generating functions of intersection numbers of the moduli space of quasimaps from CP1 with two marked points to CPN-1. en-copyright= kn-copyright= en-aut-name=JinzenjiMasao en-aut-sei=Jinzenji en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuzakaKohki en-aut-sei=Matsuzaka en-aut-mei=Kohki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Mathematics, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Integrated Media, Ikueikan University kn-affil= en-keyword=Givental's I-function kn-keyword=Givental's I-function en-keyword=Generalized hypergeometric series kn-keyword=Generalized hypergeometric series en-keyword=Moduli space of quasimaps kn-keyword=Moduli space of quasimaps en-keyword=Intersection number kn-keyword=Intersection number END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=15139 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genetic background influences mineral accumulation in rice straw and grains under different soil pH conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mineral element accumulation in plants is influenced by soil conditions and varietal factors. We investigated the dynamic accumulation of 12 elements in straw at the flowering stage and in grains at the mature stage in eight rice varieties with different genetic backgrounds (Japonica, Indica, and admixture) and flowering times (early, middle, and late) grown in soil with various pH levels. In straw, Cd, As, Mn, Zn, Ca, Mg, and Cu accumulation was influenced by both soil pH and varietal factors, whereas P, Mo, and K accumulation was influenced by pH, and Fe and Ni accumulation was affected by varietal factors. In grains, Cd, As, Mn, Cu, Ni, Mo, Ca, and Mg accumulation was influenced by both pH and varietal factors, whereas Zn, Fe, and P accumulation was affected by varietal factors, and K accumulation was not altered. Only As, Mn, Ca and Mg showed similar trends in the straw and grains, whereas the pH responses of Zn, P, K, and Ni differed between them. pH and flowering time had synergistic effects on Cd, Zn, and Mn in straw and on Cd, Ni, Mo, and Mn in grains. Soil pH is a major factor influencing mineral uptake in rice straw and grains, and genetic factors, flowering stage factors, and their interaction with soil pH contribute in a combined manner. en-copyright= kn-copyright= en-aut-name=YamamotoToshio en-aut-sei=Yamamoto en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KashiharaKazunari en-aut-sei=Kashihara en-aut-mei=Kazunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FurutaTomoyuki en-aut-sei=Furuta en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhangQian en-aut-sei=Zhang en-aut-mei=Qian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YuEn en-aut-sei=Yu en-aut-mei=En kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=13 article-no= start-page=e34206 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Resolvin D2-induced reparative dentin and pulp stem cells after pulpotomy in a rat model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Vital pulp therapy (VPT) is performed to preserve dental pulp. However, the biocompatibility of the existing materials is of concern. Therefore, novel materials that can induce pulp healing without adverse effects need to be developed. Resolvin D2 (RvD2), one of specialized pro-resolving mediators, can resolve inflammation and promote the healing of periapical lesions. Therefore, RvD2 may be suitable for use in VPT. In the present study, we evaluated the efficacy of RvD2 against VPT using in vivo and in vitro models.
Methods: First molars of eight-week-old male Sprague–Dawley rats were used for pulpotomy. They were then divided into three treatment groups: RvD2, phosphate-buffered saline, and calcium hydroxide groups. Treatment results were assessed using radiological, histological, and immunohistochemical (GPR18, TNF-α, Ki67, VEGF, TGF-β, CD44, CD90, and TRPA1) analyses. Dental pulp-derived cells were treated with RvD2 in vitro and analyzed using cell-proliferation and cell-migration assays, real-time PCR (Gpr18, Tnf-α, Il-1β, Tgf-β, Vegf, Nanog, and Trpa1), ELISA (VEGF and TGF-β), immunocytochemistry (TRPA1), and flow cytometry (dental pulp stem cells: DPSCs).
Results: The formation of calcified tissue in the pulp was observed in the RvD2 and calcium hydroxide groups. RvD2 inhibited inflammation in dental pulp cells. RvD2 promoted cell proliferation and migration and the expression of TGF-β and VEGF in vitro and in vivo. RvD2 increased the number of DPSCs. In addition, RvD2 suppressed TRPA1 expression as a pain receptor.
Conclusion: RvD2 induced the formation of reparative dentin, anti-inflammatory effects, and decreased pain, along with the proliferation of DPSCs via the expression of VEGF and TGF-β, on the pulp surface in pulpotomy models. en-copyright= kn-copyright= en-aut-name=YonedaMitsuhiro en-aut-sei=Yoneda en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IdeguchiHidetaka en-aut-sei=Ideguchi en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraShin en-aut-sei=Nakamura en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AriasZulema en-aut-sei=Arias en-aut-mei=Zulema kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=4 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Dental pulp kn-keyword=Dental pulp en-keyword=Regeneration kn-keyword=Regeneration en-keyword=Pulp-capping agents kn-keyword=Pulp-capping agents en-keyword=Specialized pro-resolving mediators kn-keyword=Specialized pro-resolving mediators en-keyword=Resolvin D2 kn-keyword=Resolvin D2 en-keyword=Calcification kn-keyword=Calcification en-keyword=Cytokine kn-keyword=Cytokine en-keyword=TRPA1 kn-keyword=TRPA1 en-keyword=Animal model kn-keyword=Animal model END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue= article-no= start-page=1560 end-page=1571 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240711 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrocatalytic hydrogenation of cyanoarenes, nitroarenes, quinolines, and pyridines under mild conditions with a proton-exchange membrane reactor en-subtitle= kn-subtitle= en-abstract= kn-abstract=An electrocatalytic hydrogenation of cyanoarenes, nitroarenes, quinolines, and pyridines using a proton-exchange membrane (PEM) reactor was developed. Cyanoarenes were then reduced to the corresponding benzylamines at room temperature in the presence of ethyl phosphate. The reduction of nitroarenes proceeded at room temperature, and a variety of anilines were obtained. The quinoline reduction was efficiently promoted by adding a catalytic amount of p-toluenesulfonic acid (PTSA) or pyridinium p-toluenesulfonate (PPTS). Pyridine was also reduced to piperidine in the presence of PTSA. en-copyright= kn-copyright= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OsakiAtsushi en-aut-sei=Osaki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InoueHaruka en-aut-sei=Inoue en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoEisuke en-aut-sei=Sato en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShidaNaoki en-aut-sei=Shida en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AtobeMahito en-aut-sei=Atobe en-aut-mei=Mahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Engineering Science and Advanced Chemical Energy Research Center, Yokohama National University kn-affil= affil-num=6 en-affil=Graduate School of Engineering Science and Advanced Chemical Energy Research Center, Yokohama National University kn-affil= affil-num=7 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=cyanoarene kn-keyword=cyanoarene en-keyword=nitroarene kn-keyword=nitroarene en-keyword=PEM reactor kn-keyword=PEM reactor en-keyword=pyridine kn-keyword=pyridine en-keyword=quinoline kn-keyword=quinoline END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=1 article-no= start-page=59 end-page=72 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Die Grundlagen der wirtschaftlichen Entwicklung des Königreichs Sachsen(5) kn-title=ザクセン王国経済発展の基礎(5) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MatsuoNobushige en-aut-sei=Matsuo en-aut-mei=Nobushige kn-aut-name=松尾展成 kn-aut-sei=松尾 kn-aut-mei=展成 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学名誉教授 END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=1 article-no= start-page=41 end-page=58 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Der moderne Staat und das Nationalitätenprinzip kn-title=近代国家と民族性原理 オーストロ・マルクス主義の民族政策論争から en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OtaYoshiki en-aut-sei=Ota en-aut-mei=Yoshiki kn-aut-name=太田仁樹 kn-aut-sei=太田 kn-aut-mei=仁樹 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学名誉教授 END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=1 article-no= start-page=29 end-page=40 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Memorandum on Article 56 of the Income Tax Law kn-title=所得税法第56条に関する覚書 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=FukeHiroyuki en-aut-sei=Fuke en-aut-mei=Hiroyuki kn-aut-name=普家弘行 kn-aut-sei=普家 kn-aut-mei=弘行 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=1 article-no= start-page=1 end-page=28 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Firm Entry and Exit in the First Stage of Regional Vitalization: Revolving Door Economy or Creative Destruction kn-title=地方創生第1期における企業の参入と撤退:回転ドア型経済か創造的破壊か en-subtitle= kn-subtitle= en-abstract= kn-abstract= The growth of the regional economy needs an economic metabolism in which high-productivity firms newly enter the market, while low-productivity firms exit the market, resulting in a shift in labor and other production factors. A“ revolving door” economy is an economy in which firms that enter the market have a short existence period, withdraw and enter the market repeatedly, and new entrants do not contribute to productivity improvement. This means that if new entrants are not sufficiently innovative compared to incumbents, even if the rate of entry into business rises, they will simply be replaced by firms whose productivity level has not changed much, and this will not lead to job creation or improving productivity. A contrasting concept is the replacement of firms by Schumpeter's “creative destruction.” The high level of technology and productivity of new firms entering the market drives inefficient incumbents out of the market. Looking at the statistics, there is a tendency for both large cities to have higher business entry and exit rates, but the difference between the entry and exit rates is greater in metropolitan areas. Although it depends on the regional characteristics, location competitiveness is generally higher in metropolitan areas, and there is a tendency for the turnover rate to be high or the survival period to be short. Before and after regional revitalization, we will examine whether or not there is a departure from the revolving door economy by industry and region, using economic census and TSR (Tokyo Shoko Research) data. en-copyright= kn-copyright= en-aut-name=NakamuraRyohei en-aut-sei=Nakamura en-aut-mei=Ryohei kn-aut-name=中村良平 kn-aut-sei=中村 kn-aut-mei=良平 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=206 end-page=214 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240708 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Factors Associated with Differences in Physicians’ Attitudes toward Percutaneous Endoscopic Gastrostomy Feeding in Older Adults Receiving End-of-Life Care in Japan: A Cross-Sectional Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Although percutaneous endoscopic gastrostomy (PEG) placement is still widely practiced in Japan, studies from Western countries report that it is less beneficial for patients in end-of-life care with cognitive decline. Decisions regarding PEG placement are largely influenced by physician judgment.
Objectives: The aim of this study was to investigate the background and perceptions of Japanese physicians regarding PEG for older adults in end-of-life care and to identify the factors associated with differences in physician judgment regarding PEG.
Design: The study employed a cross-sectional design.
Setting/Subjects: A questionnaire on PEG for older adults in end-of-life care was sent to Japanese physicians. Logistic regression analysis was used to calculate the odds ratios (ORs) and confidence intervals (CIs) of the association between PEG recommendations and each factor.
Results: PEG placement was advised for bedridden patients and older adults with cognitive decline by 26% of the physicians who responded to the survey. Differences in physician perceptions of PEG feeding were associated with the recommendation for PEG, benefits of preventing aspiration pneumonia (OR: 4.9; 95% CI: 3.1-8.2), impact on post-discharge accommodation decisions (OR: 6.1; 95% CI: 1.9-30.9), and hesitancy to recommend a PEG placement (OR: 1.9; 95% CI: 1.3-4.5). Working in a facility with PEG placement (OR: 2.0; 95% CI: 1.2-3.5) was an associated background factor.
Conclusions: Differences in Japanese physicians' attitudes toward using PEG feeding for older adults in end-of-life care were significantly associated with differences in their perceptions of the impact of PEG feeding and working in a facility with PEG placement. en-copyright= kn-copyright= en-aut-name=SakamotoYoko en-aut-sei=Sakamoto en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= en-keyword=attitude kn-keyword=attitude en-keyword=end-of-life care kn-keyword=end-of-life care en-keyword=older persons kn-keyword=older persons en-keyword=decision making kn-keyword=decision making en-keyword=percutaneous endoscopic gastrostomy kn-keyword=percutaneous endoscopic gastrostomy en-keyword=tube feeding kn-keyword=tube feeding END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=S100A11 is involved in the progression of colorectal cancer through the desmosome-catenin-TCF signaling pathway en-subtitle= kn-subtitle= en-abstract= kn-abstract=Compiling evidence has indicated that S100A11 expression at high levels is closely associated with various cancer species. Consistent with the results reported elsewhere, we have also revealed that S100A11 is highly expressed in squamous cell carcinoma, mesothelioma, and pancreatic cancers and plays a crucial role in cancer progression when secreted into extracellular fluid. Those studies are all focused on the extracellular role of S100A11. However, most of S100A11 is still present within cancer cells, although the intracellular role of S100A11 in cancer cells has not been fully elucidated. Thus, we aimed to investigate S100A11 functions within cancer cells, primarily focusing on colorectal cancer cells, whose S100A11 is abundantly present in cells and still poorly studied cancer for the protein. Our efforts revealed that overexpression of S100A11 promotes proliferation and migration, and downregulation inversely dampens those cancer behaviors. To clarify how intracellular S100A11 aids cancer cell activation, we tried to identify S100A11 binding proteins, resulting in novel binding partners in the inner membrane, many of which are desmosome proteins. Our molecular approach defined that S100A11 regulates the expression level of DSG1, a component protein of desmosome, by which S100A11 activates the TCF pathway via promoting nuclear translocation of γ-catenin from the desmosome. The identified new pathway greatly helps to comprehend S100A11’s nature in colorectal cancers and others. en-copyright= kn-copyright= en-aut-name=ZhouJin en-aut-sei=Zhou en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizutaNaoko en-aut-sei=Mizuta en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamakawaAtsuko en-aut-sei=Yamakawa en-aut-mei=Atsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoKen-ichi en-aut-sei=Yamamoto en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=S100A11 kn-keyword=S100A11 en-keyword=Desmosome kn-keyword=Desmosome en-keyword=TCF signaling kn-keyword=TCF signaling en-keyword=Colorectal cancer kn-keyword=Colorectal cancer END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of artificial defect on tensile properties of thin titanium alloy wire en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the effects of artificial defects, introduced via focused ion beam (FIB) processing, on the tensile properties of thin titanium alloy wires (Ti-6Al-4V). Results indicated that the defective wires fractured when the net-section nominal stress reached the ultimate tensile strength of the smooth wires, probably because of localized stress concentrations relaxing due to plastic deformation around the defects. The effect of defects on tensile properties was classified into three regions based on the size of the defect area. In the case of small defects, wires fractured at the smooth area away from the defects where the cross-sectional strength was lower. In this case, the defects minimally affected the tensile properties. This is attributable to variations in the cross-sectional strength of the wire, which resulted in some sections with lower strength as compared with the defect area. In the case of medium-sized defects, the fracture strain decreased gradually as the defect area increased. Finally, in the case of large defects, the fracture strain was extremely small. The boundary between the medium-sized and large defects indicates the transition from plastic deformation to no plastic deformation in the smooth area. en-copyright= kn-copyright= en-aut-name=SAKAMOTOJunji en-aut-sei=SAKAMOTO en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TADANaoya en-aut-sei=TADA en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UEMORITakeshi en-aut-sei=UEMORI en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OISHIKoyo en-aut-sei=OISHI en-aut-mei=Koyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=Okayama University kn-affil= en-keyword=Ti-6Al-4V kn-keyword=Ti-6Al-4V en-keyword=Thin wire kn-keyword=Thin wire en-keyword=Tensile properties kn-keyword=Tensile properties en-keyword=Defect kn-keyword=Defect en-keyword=Focused ion beam kn-keyword=Focused ion beam en-keyword=Net-section nominal stress kn-keyword=Net-section nominal stress en-keyword=Fracture surface kn-keyword=Fracture surface en-keyword=Fracture strain kn-keyword=Fracture strain END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A case of membranous nephropathy complicated by Cronkhite–Canada syndrome successfully treated with mizoribine en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cronkhite–Canada syndrome (CCS) is a non-hereditary disorder characterized by non-neoplastic hamartomatous gastrointestinal polyposis, hair loss, nail atrophy, hyperpigmentation, and diarrhea. While the relationship between CCS and nephritis remains unclear, seven cases of nephritis complicated by CCS have been reported to date, all of which were membranous nephropathy (MN). A 57-year-old man presented with taste disturbance, hair loss, nail plate atrophy, skin pigmentation, and frequent diarrhea. Endoscopic findings showed multiple polyposis of the stomach and large intestine. Given the above, he was diagnosed with CCS. The symptoms gradually improved with prednisolone treatment, although urinary protein and hypoproteinemia appeared during the tapering of prednisolone. He was diagnosed with MN using a renal biopsy, and immunofluorescence microscopy with IgG subclass staining showed predominantly diffuse granular capillary wall staining of IgG4. The cause of secondary MN was not found, including malignant tumors. Nephrotic-range proteinuria persisted despite treatment with prednisolone and cyclosporine. Additional treatment with mizoribine resulted in incomplete remission type 1 of nephrotic syndrome, suggesting that mizoribine may be a treatment option for patients with CCS with steroid-resistant MN. Considering a high prevalence of hypoproteinemia due to chronic diarrhea and protein-losing enteropathy in patients with CCS, proteinuria might be overlooked; thus, follow-up urinalysis would be recommended in patients with CCS. en-copyright= kn-copyright= en-aut-name=NakanohHiroyuki en-aut-sei=Nakanoh en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsujiKenji en-aut-sei=Tsuji en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorimotoShiho en-aut-sei=Morimoto en-aut-mei=Shiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukushimaKazuhiko en-aut-sei=Fukushima en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Cronkhite–Canada syndrome kn-keyword=Cronkhite–Canada syndrome en-keyword=Membranous nephropathy kn-keyword=Membranous nephropathy en-keyword=Nephrotic syndrome kn-keyword=Nephrotic syndrome en-keyword=Mizoribine kn-keyword=Mizoribine END start-ver=1.4 cd-journal=joma no-vol=128 cd-vols= no-issue=27 article-no= start-page=6509 end-page=6517 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins en-subtitle= kn-subtitle= en-abstract= kn-abstract=Proton (H+) motive force (PMF) serves as the energy source for the flagellar motor rotation, crucial for microbial motility. Here, to control PMF using light, we introduced light-driven inward and outward proton pump rhodopsins, RmXeR and AR3, into Escherichia coli. The motility of E. coli cells expressing RmXeR and AR3 significantly decreased and increased upon illumination, respectively. Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with RmXeR, while it increased to 1170 pN nm with AR3. These alterations in PMF correspond to +146 mV (RmXeR) and −140 mV (AR3), respectively. Thus, bidirectional optical control of PMF in E. coli was successfully achieved by using proton pump rhodopsins. This system holds a potential for enhancing our understanding of the roles of PMF in various biological functions. en-copyright= kn-copyright= en-aut-name=NakanishiKotaro en-aut-sei=Nakanishi en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SowaYoshiyuki en-aut-sei=Sowa en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=2400078 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240704 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Unabsorbed Fecal Fat Content Correlates with a Reduction of Immunoglobulin a Coating of Gut Bacteria in High‐Lard Diet‐Fed Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Scope: Immunoglobulin A (IgA) selectively coats gut bacteria and contributes to regulatory functions in gastrointestinal inflammation and glucose metabolism. Excess intake of lard leads to decrease in the IgA coating of gut bacteria, although the underlying mechanisms remain unknown. This study validates how unabsorbed fat derived from a high-lard diet in the gut affects the IgA coating of bacteria, as assessed in mouse models using three types of dietary fat (lard, medium-, and long-chain triglycerides [MLCTs], and medium-chain triglycerides [MCTs]) exhibiting different digestibilities.
Methods and results: C57BL/6J mice are maintained on diets containing lard, MLCTs, or MCTs at 7% or 30% w/w for 10 weeks (n = 6 per group). The fecal fatty acid concentration is measured to quantify unabsorbed fat content. The ratio of IgA-coated bacteria to total bacteria (IgA coating ratio) in the feces is measured by flow cytometry. Compared to lard-fed mice, MLCT- and MCT-fed mice exhibit lower fecal concentrations of palmitic acid, stearic acid, and oleic acid and higher IgA coating ratios at both 7% and 30% dietary fat, and these parameters exhibit significant negative correlations.
Conclusion: Unabsorbed fat content in the gut may result in attenuated IgA coating of bacteria in high-lard diet-fed mice.
en-copyright= kn-copyright= en-aut-name=KatsumataEmiko en-aut-sei=Katsumata en-aut-mei=Emiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsurutaTakeshi en-aut-sei=Tsuruta en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SonoyamaKei en-aut-sei=Sonoyama en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaTakashi en-aut-sei=Yoshida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SasakiMio en-aut-sei=Sasaki en-aut-mei=Mio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TeraokaMao en-aut-sei=Teraoka en-aut-mei=Mao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WangTianyang en-aut-sei=Wang en-aut-mei=Tianyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishinoNaoki en-aut-sei=Nishino en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Research Faculty of Agriculture, Hokkaido University kn-affil= affil-num=4 en-affil=TAIYO YUSHI Corporation kn-affil= affil-num=5 en-affil=TAIYO YUSHI Corporation kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=gut bacteria kn-keyword=gut bacteria en-keyword=immunoglobulin A kn-keyword=immunoglobulin A en-keyword=lard kn-keyword=lard END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=4 article-no= start-page=469 end-page=472 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202407 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Errors in the Calculation of the Population Attributable Fraction en-subtitle= kn-subtitle= en-abstract= kn-abstract=One of the common errors in the calculation of the population attributable fraction (PAF) is the use of an adjusted risk ratio in the Levin formula. In this article, we discuss the errors visually using wireframes by varying the standardized mortality ratio (SMR) and associational risk ratio (aRR) when the prevalence of exposure is fixed. When SMR >1 and SMR > aRR, the absolute bias is positive, and its magnitude increases as the difference between SMR and aRR increases. By contrast, when aRR > SMR > 1, the absolute bias is negative and its magnitude is relatively small. Moreover, when SMR > aRR, the relative bias is larger than one, whereas when SMR < aRR, the relative bias is smaller than one. Although the target population of the PAF is the total population, the target of causation of the PAF is not the total population but the exposed group. en-copyright= kn-copyright= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoEiji en-aut-sei=Yamamoto en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Okayama University of Science kn-affil= en-keyword=Attributable fraction kn-keyword=Attributable fraction en-keyword=Bias kn-keyword=Bias en-keyword=Causality kn-keyword=Causality en-keyword=Counterfactual model kn-keyword=Counterfactual model en-keyword=Potential outcomes kn-keyword=Potential outcomes END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prediction of heart failure events based on physiologic sensor data in HINODE defibrillator patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims Hospitalizations are common in patients with heart failure and are associated with high mortality, readmission and economic burden. Detecting early signs of worsening heart failure may enable earlier intervention and reduce hospitalizations. The HeartLogic algorithm is designed to predict worsening heart failure using diagnostic data from multiple device sensors. The main objective of this analysis was to evaluate the sensitivity of the HeartLogic alert calculation in predicting worsening heart failure events (HFEs). We also evaluated the false positive alert rate (FPR) and compared the incidence of HFEs occurring in a HeartLogic alert state to those occurring out of an alert state.
Methods The HINODE study enrolled 144 patients (81 ICD and 63 CRT-D) with device sensor data transmitted via a remote monitoring system. HeartLogic alerts were then retrospectively simulated using relevant sensor data. Clinicians and patients were blinded to calculated alerts. Reported adverse events with HF symptoms were adjudicated and classified by an independent HFE committee. Sensitivity was defined as the ratio of the number of detected usable HFEs (true positives) to the total number of usable HFEs. A false positive alert was defined as an alert with no usable HFE between the alert onset date and the alert recovery date plus 30 days. The patient follow-up period was categorized as in alert state or out of alert state. The event rate ratio was the HFE rate calculated in alert to out of alert.
Results The patient cohort was 79% male and had an average age of 68 +/- 12 years. This analysis yielded 244 years of follow-up data with 73 HFEs from 37 patients. A total of 311 HeartLogic alerts at the nominal threshold (16) occurred across 106 patients providing an alert rate of 1.27 alerts per patient-year. The HFE rate was 8.4 times greater while in alert compared with out of alert (1.09 vs. 0.13 events per patient-year; P < 0.001). At the nominal alert threshold, 80.8% of HFEs were detected by a HeartLogic alert [95% confidence interval (CI): 69.9%-89.1%]. The median time from first true positive alert to an adjudicated clinical HFE was 53 days. The FPR was 1.16 (95% CI: 0.98-1.38) alerts per patient-year.
Conclusions Results suggest that signs of worsening HF can be detected successfully with remote patient follow-up. The use of HeartLogic may predict periods of increased risk for HF or clinically significant events, allowing for early intervention and reduction of hospitalization in a vulnerable patient population. en-copyright= kn-copyright= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakataYasushi en-aut-sei=Sakata en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MuroharaToyoaki en-aut-sei=Murohara en-aut-mei=Toyoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AndoKenji en-aut-sei=Ando en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkedaTakanori en-aut-sei=Ikeda en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MitsuhashiTakeshi en-aut-sei=Mitsuhashi en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NogamiAkihiko en-aut-sei=Nogami en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShimizuWataru en-aut-sei=Shimizu en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SchwartzTorri en-aut-sei=Schwartz en-aut-mei=Torri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KayserTorsten en-aut-sei=Kayser en-aut-mei=Torsten kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=BeaudointCaroline en-aut-sei=Beaudoint en-aut-mei=Caroline kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AonumaKazutaka en-aut-sei=Aonuma en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=for HINODE Investigators en-aut-sei=for HINODE Investigators en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiology, Nagoya University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Cardiology, Kokura Memorial Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Toho University Faculty of Medicine kn-affil= affil-num=6 en-affil=Department of Cardiology, Hoshi General Hospital kn-affil= affil-num=7 en-affil=Department of Cardiology, Faculty of Medicine, University of Tsukuba kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Nippon Medical School kn-affil= affil-num=9 en-affil=Boston Scientific kn-affil= affil-num=10 en-affil=Boston Scientific kn-affil= affil-num=11 en-affil=Boston Scientific kn-affil= affil-num=12 en-affil=Department of Cardiology, Faculty of Medicine, University of Tsukuba kn-affil= affil-num=13 en-affil= kn-affil= en-keyword=HeartLogic kn-keyword=HeartLogic en-keyword=heart failure kn-keyword=heart failure en-keyword=remote monitoring kn-keyword=remote monitoring en-keyword=ICD kn-keyword=ICD en-keyword=CRT kn-keyword=CRT en-keyword=hospitalization kn-keyword=hospitalization END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e63717 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240623 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long‐term survival of an infant with complete tetraploidy: A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=We present the case of a girl with complete tetraploidy who has survived to her present age of 4 years and 1 month. Infants with complete tetraploidy have been described to have a limited lifespan owing to complications. We report her characteristics, medical history, and development. en-copyright= kn-copyright= en-aut-name=OkamuraTomoka en-aut-sei=Okamura en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshimotoJunko en-aut-sei=Yoshimoto en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorimotoDaisaku en-aut-sei=Morimoto en-aut-mei=Daisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WanatabeHirokazu en-aut-sei=Wanatabe en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WashioYosuke en-aut-sei=Washio en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=abnormalities kn-keyword=abnormalities en-keyword=humans kn-keyword=humans en-keyword=hydrocephalus kn-keyword=hydrocephalus en-keyword=meningomyelocele kn-keyword=meningomyelocele en-keyword=polyploidy kn-keyword=polyploidy en-keyword=tetralogy of Fallot kn-keyword=tetralogy of Fallot END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue= article-no= start-page=102405 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202409 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal plasticity analysis of fatigue crack initiation site considering crystallographic orientation in Ti-22V-4Al alloy en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, plane bending fatigue tests were conducted on Ti-22V-4Al alloy, a beta-type titanium alloy, to examine the fatigue crack initiation behavior in detail. In addition, the prediction of fatigue crack initiation points was investigated from the perspectives of the Schmidt factor (SF) and crystal plasticity finite element method (CP-FEM). The slip system contributing to fatigue crack initiation can be accurately predicted by assessing the magnitude relationship of SF. Also, this prediction is already indicated in a lot of paper by using out of component of slip activity. However, the location where the fatigue crack will occur can be not estimated by SF on polycrystalline. Therefore, prediction of grains where fatigue cracks will occur could be achieved with high accuracy by constructing a CP-FEM that considers the mechanical interaction of polycrystals and grain boundary. Utilizing advanced methodologies such as CP-FEM and numerical calculation techniques, it is strictly investigated that the factors influencing fatigue crack initiation in polycrystalline materials. Our research concluded the understanding of fatigue crack initiation on polycrystal grains by considering the mechanical interaction of polycrystals and grain boundary. en-copyright= kn-copyright= en-aut-name=ArakawaJinta en-aut-sei=Arakawa en-aut-mei=Jinta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirazumiKoki en-aut-sei=Hirazumi en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemoriTakeshi en-aut-sei=Uemori en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakemotoYoshito en-aut-sei=Takemoto en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=β-Ti kn-keyword=β-Ti en-keyword=Fatigue crack initiation kn-keyword=Fatigue crack initiation en-keyword=Schmidt factor kn-keyword=Schmidt factor en-keyword=Crystal plasticity FEM kn-keyword=Crystal plasticity FEM en-keyword=Polycrystalline kn-keyword=Polycrystalline END start-ver=1.4 cd-journal=joma no-vol=110 cd-vols= no-issue=1 article-no= start-page=116399 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202409 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cefazolin inoculum effect in methicillin-susceptible Staphylococcus aureus clinical isolates en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the prevalence and characteristics of Cefazolin inoculum effect (CInE) among clinical MSSA isolates in Japan. Although 35.5 % (39 isolates) were positive for the blaZ gene, none met the phenotypic criteria for CInE. Our findings suggested a very low prevalence of CInE among MSSA isolates in our clinical setting. en-copyright= kn-copyright= en-aut-name=TsujiShuma en-aut-sei=Tsuji en-aut-mei=Shuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GotohKazuyoshi en-aut-sei=Gotoh en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ManabeTadahiro en-aut-sei=Manabe en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IioKoji en-aut-sei=Iio en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukushimaShinnosuke en-aut-sei=Fukushima en-aut-mei=Shinnosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsushitaOsamu en-aut-sei=Matsushita en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences kn-affil= affil-num=3 en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= en-keyword=Beta-lactamase kn-keyword=Beta-lactamase en-keyword=blaZ kn-keyword=blaZ en-keyword=Cefazolin kn-keyword=Cefazolin en-keyword=Inoculum effect kn-keyword=Inoculum effect en-keyword=Staphylococcus aureus kn-keyword=Staphylococcus aureus END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=3 article-no= start-page=3934 end-page=3949 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Designing and Prototyping an Axial-Flux Machine Using Ferrite PM and Round Wire for Traction Applications: Comparison With a Radial-Flux Machine Using Nd-Fe-B PM and Rectangular Wire en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper proposes a novel axial-flux permanent magnet machine (AFPM) employing ferrite permanent magnets (PMs) and round copper wire. The proposed AFPM adopts a novel rotor structure and uses tooth-tips with a suitable trapezoidal shape. These structures compensate for the low magnetomotive force of the round copper wire and ferrite PMs, achieving high performance at low cost. Additionally, compared with an off-the-shelf radial-flux permanent magnet machine (RFPM) using Nd-sintered PMs and rectangular copper wire, the proposed AFPM achieves the same output power and higher efficiency, despite using ferrite PMs and the round copper wire. Finally, a prototype of the proposed AFPM was manufactured and evaluated experimentally. The prototype achieved a high efficiency of over 95% across a wide operating area while maintaining required maximum torque, suggesting its potential for traction applications. en-copyright= kn-copyright= en-aut-name=TsunataRen en-aut-sei=Tsunata en-aut-mei=Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IzumiyaKosuke en-aut-sei=Izumiya en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakemotoMasatsugu en-aut-sei=Takemoto en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImaiJun en-aut-sei=Imai en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaitoTatsuya en-aut-sei=Saito en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UenoTomoyuki en-aut-sei=Ueno en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Sumitomo Electric Industries Ltd. kn-affil= affil-num=6 en-affil=Sumitomo Electric Industries Ltd. kn-affil= en-keyword=Axial gap motor kn-keyword=Axial gap motor en-keyword=axial-flux machine kn-keyword=axial-flux machine en-keyword=carbon fiber rotor kn-keyword=carbon fiber rotor en-keyword=carbon fiber-reinforced plastic kn-keyword=carbon fiber-reinforced plastic en-keyword=city commuter kn-keyword=city commuter en-keyword=ferrite magnet kn-keyword=ferrite magnet en-keyword=flat copper wire kn-keyword=flat copper wire en-keyword=high circumferential speed kn-keyword=high circumferential speed en-keyword=radial-flux machine kn-keyword=radial-flux machine END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=4 article-no= start-page=491 end-page=499 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240628 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of mutation spectra induced by gamma-rays and carbon ion beams en-subtitle= kn-subtitle= en-abstract= kn-abstract=The ionizing radiation with high linear energy transfer (LET), such as a heavy ion beam, induces more serious biological effects than low LET ones, such as gamma- and X-rays. This indicates a difference in the DNA damage produced by low and high LET radiations and their biological effects. We have been studying the differences in DNA damage produced by gamma-rays and carbon ion beams. Therefore, we analyze mutations induced by both ionizing radiations to discuss the differences in their biological effects in this study. pUC19 plasmid DNA was irradiated by carbon ion beams in the solution containing 1M dimethyl sulfoxide to mimic a cellular condition. The irradiated DNA was cloned in competent cells of Escherichia coli. The clones harboring some mutations in the region of lacZ alpha were selected, and the sequence alterations were analyzed. A one-deletion mutation is significant in the carbon-irradiated DNA, and the C:G <-> T:A transition is minor. On the other hand, the gamma-irradiated DNA shows mainly G:C <-> T:A transversion. These results suggest that carbon ion beams produce complex DNA damage, and gamma-rays are prone to single oxidative base damage, such as 8-oxoguanine. Carbon ion beams can also introduce oxidative base damage, and the damage species is 5-hydroxycytosine. This was consistent with our previous results of DNA damage caused by heavy ion beams. We confirmed the causal DNA damage by mass spectrometry for these mutations. en-copyright= kn-copyright= en-aut-name=TokuyamaYuka en-aut-sei=Tokuyama en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriKanae en-aut-sei=Mori en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsobeMidori en-aut-sei=Isobe en-aut-mei=Midori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TeratoHiroaki en-aut-sei=Terato en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Analytical Research Center for Experimental Science, Saga University kn-affil= affil-num=2 en-affil=Analytical Research Center for Experimental Science, Saga University kn-affil= affil-num=3 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=4 en-affil=Advanced Science Research Center, Okayama University kn-affil= en-keyword=base damage kn-keyword=base damage en-keyword=mutation kn-keyword=mutation en-keyword=gamma-rays kn-keyword=gamma-rays en-keyword=heavy ion beam kn-keyword=heavy ion beam END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=2 article-no= start-page=16 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Harderian Gland Development and Degeneration in the Fgf10-Deficient Heterozygous Mouse en-subtitle= kn-subtitle= en-abstract= kn-abstract=The mouse Harderian gland (HG) is a secretory gland that covers the posterior portion of the eyeball, opening at the base of the nictitating membrane. The HG serves to protect the eye surface from infection with its secretions. Mice open their eyelids at about 2 weeks of age, and the development of the HG primordium mechanically opens the eye by pushing the eyeball from its rear. Therefore, when HG formation is disturbed, the eye exhibits enophthalmos (the slit-eye phenotype), and a line of Fgf10(+/-) heterozygous loss-of-function mice exhibits slit-eye due to the HG atrophy. However, it has not been clarified how and when HGs degenerate and atrophy in Fgf10(+/-) mice. In this study, we observed the HGs in embryonic (E13.5 to E19), postnatal (P0.5 to P18) and 74-week-old Fgf10(+/-) mice. We found that more than half of the Fgf10(+/-) mice had markedly degenerated HGs, often unilaterally. The degenerated HG tissue had a melanized appearance and was replaced by connective tissue, which was observed by P10. The development of HGs was delayed or disrupted in the similar proportion of Fgf10(+/-) embryos, as revealed via histology and the loss of HG-marker expression. In situ hybridization showed Fgf10 expression was observed in the Harderian mesenchyme in wild-type as well as in the HG-lacking heterozygote at E19. These results show that the Fgf10 haploinsufficiency causes delayed or defective HG development, often unilaterally from the unexpectedly early neonatal period. en-copyright= kn-copyright= en-aut-name=IkedaShiori en-aut-sei=Ikeda en-aut-mei=Shiori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoKeita en-aut-sei=Sato en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujitaHirofumi en-aut-sei=Fujita en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Ono-MinagiHitomi en-aut-sei=Ono-Minagi en-aut-mei=Hitomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyaishiSatoru en-aut-sei=Miyaishi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NohnoTsutomu en-aut-sei=Nohno en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OhuchiHideyo en-aut-sei=Ohuchi en-aut-mei=Hideyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Cytology and Histology, Medical School, Okayama University kn-affil= affil-num=2 en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Legal Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cytology and Histology, Medical School, Okayama University kn-affil= affil-num=7 en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Harderian gland kn-keyword=Harderian gland en-keyword=Fgf10 kn-keyword=Fgf10 en-keyword=haploinsufficiency kn-keyword=haploinsufficiency en-keyword=mouse kn-keyword=mouse END start-ver=1.4 cd-journal=joma no-vol=820 cd-vols= no-issue= article-no= start-page=137598 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neurogenesis impairment with glial activation in the hippocampus-connected regions of intracerebroventricular streptozotocin-injected mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Adult neurogenesis in the hippocampus and subventricular zone (SVZ) is impaired by intracerebroventricular administration of streptozotocin (icv-STZ) to rodents. Although neural cells in the several brain regions which connect with the hippocampus or SVZ is thought to be involved in the adult neurogenesis, few studies have investigated morphological alterations of glial cells in these areas. The present study revealed that icv-STZ induces reduction of neural progenitor cells and a dramatic increase in reactive astrocytes and microglia especially in the hippocampus and various hippocampus-connected brain areas. In contrast, there was no significant neuronal damage excluding demyelination of the stria medullaris. The results indicate the hippocampal neurogenesis impairment of this model might be occurred by activated glial cells in the hippocampus, or hippocampus-connected regions. en-copyright= kn-copyright= en-aut-name=MasaiKaori en-aut-sei=Masai en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakayamaYuta en-aut-sei=Nakayama en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShinKotaro en-aut-sei=Shin en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaharaChiaki en-aut-sei=Sugahara en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Streptozotocin kn-keyword=Streptozotocin en-keyword=Adult neurogenesis kn-keyword=Adult neurogenesis en-keyword=Astrocyte kn-keyword=Astrocyte en-keyword=Microglia kn-keyword=Microglia END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240627 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of proportions and prognostic impact of pathological complete response between evaluations of representative specimen and total specimen in primary breast cancer after neoadjuvant chemoradiotherapy: an ancillary study of JCOG0306 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background In JCOG0306 trial, a phase II study to examine the efficacy of neoadjuvant chemotherapy followed by radiation therapy (NAC-RT) to primary breast cancer, pathological complete response (pCR) was evaluated from specimens of the representative cross-section including the tumor center that had been accurately marked [representative specimen (RS) method]. In this ancillary study, we examined if the RS method was comparable to the conventional total specimen (TS) method, which is widely employed in Japan, to identify the pCR group showing excellent prognosis.
Methods We obtained long-term follow-up data of 103 patients enrolled in JCOG0306 trial. As histological therapeutic effect, pCR (ypT0 and ypT0/is) and quasi-pCR [QpCR, ypT0/is plus Grade 2b (only a few remaining invasive cancer cells)] were evaluated with RS and TS methods. Concordance of pCR between these two methods and associations of the pCR with prognosis were examined.
Results ypT0, ypT0/is, and QpCR were observed in 28 (27.2%), 39 (37.9%), and 45 (43.7%) patients with RS method, whereas these were 20 (19.4%), 25 (24.3%) and 40 (38.9%) with TS method, respectively. Between RS and TS methods, concordance proportions of ypT0 and ypTis were 92.2% and 86.4%, respectively. Risk of recurrence of ypT0/is group was lower than that of non-ypT0/is group (HR 0.408, 95% CI [0.175–0.946], P = 0.037) and risk of death of ypT0/is group was lower than that of non-ypT0/is group (HR 0.251, 95% CI [0.073–0.857], P = 0.027). The ypT0 and ypT0/is groups with RS method showed excellent prognosis similarly with those with TS method, and RS method was able to differentiate the OS and RFS between pCR and non-pCR than TS method significantly even if pCR was classified ypT0 or ypT0/is. With TS method, QpCR criteria stratified patients into the better and worse prognosis groupsmore clearly than pCR criteria of ypT0 or ypT0/is.
Conclusions RS method was comparable to TS method for the evaluation of pCR in the patients who received NAC-RT to primary breast cancer provided the tumor center was accurately marked. As pCR criteria with RS method, ypT0/is appeared more appropriate than ypT0. en-copyright= kn-copyright= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsudaHitoshi en-aut-sei=Tsuda en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasakiKeita en-aut-sei=Sasaki en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizusawaJunki en-aut-sei=Mizusawa en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkiyamaFutoshi en-aut-sei=Akiyama en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurosumiMasafumi en-aut-sei=Kurosumi en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SawakiMasataka en-aut-sei=Sawaki en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TamuraNobuko en-aut-sei=Tamura en-aut-mei=Nobuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaKiyo en-aut-sei=Tanaka en-aut-mei=Kiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KogawaTakahiro en-aut-sei=Kogawa en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakahashiMina en-aut-sei=Takahashi en-aut-mei=Mina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HayashiNaoki en-aut-sei=Hayashi en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MukaiHirofumi en-aut-sei=Mukai en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MasudaNorikazu en-aut-sei=Masuda en-aut-mei=Norikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HaraFumikata en-aut-sei=Hara en-aut-mei=Fumikata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IwataHiroji en-aut-sei=Iwata en-aut-mei=Hiroji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Basic Pathology, National Defense Medical College kn-affil= affil-num=3 en-affil=JCOG Data Center/Operations Office, National Cancer Center Hospital kn-affil= affil-num=4 en-affil=JCOG Data Center/Operations Office, National Cancer Center Hospital kn-affil= affil-num=5 en-affil=Department of Pathology, Cancer Institute Hospital kn-affil= affil-num=6 en-affil=Department of Diagnostic Pathology, Kameda Kyobashi Clinic kn-affil= affil-num=7 en-affil=Department of Breast Oncology, Aichi Cancer Center Hospital kn-affil= affil-num=8 en-affil=Department of Breast Surgery, Toranomon Hospital kn-affil= affil-num=9 en-affil=Department of Breast Surgery, Toranomon Hospital kn-affil= affil-num=10 en-affil=Department of Breast Medical Oncology, Cancer Institute Hospital kn-affil= affil-num=11 en-affil=Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=12 en-affil=Department of Breast Surgery Oncology, St Lukes International Hospital kn-affil= affil-num=13 en-affil=Department of Breast and Medical Oncology, National Cancer Center Hospital East kn-affil= affil-num=14 en-affil=Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital kn-affil= affil-num=15 en-affil=Department of Breast Medical Oncology, Cancer Institute Hospital kn-affil= affil-num=16 en-affil=Department of Breast Oncology, Aichi Cancer Center Hospital kn-affil= en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=Neoadjuvant chemoradiotherapy kn-keyword=Neoadjuvant chemoradiotherapy en-keyword=Pathological therapeutic effect kn-keyword=Pathological therapeutic effect en-keyword=Specimen sampling method kn-keyword=Specimen sampling method END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=12 article-no= start-page=6648 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240617 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local E-rhBMP-2/β-TCP Application Rescues Osteocyte Dendritic Integrity and Reduces Microstructural Damage in Alveolar Bone Post-Extraction in MRONJ-like Mouse Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/beta-Tricalcium phosphate (E-rhBMP-2/beta-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/beta-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/beta-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/beta-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ. en-copyright= kn-copyright= en-aut-name=DangAnh Tuan en-aut-sei=Dang en-aut-mei=Anh Tuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TosaIkue en-aut-sei=Tosa en-aut-mei=Ikue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaraEmilio Satoshi en-aut-sei=Hara en-aut-mei=Emilio Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MikaiAkihiro en-aut-sei=Mikai en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KitagawaWakana en-aut-sei=Kitagawa en-aut-mei=Wakana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OohashiToshitaka en-aut-sei=Oohashi en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=medication-related osteonecrosis of the jaw kn-keyword=medication-related osteonecrosis of the jaw en-keyword=BMP-2 kn-keyword=BMP-2 en-keyword=osteocyte dendritic network kn-keyword=osteocyte dendritic network en-keyword=microcrack accumulation kn-keyword=microcrack accumulation en-keyword=bone remodeling kn-keyword=bone remodeling END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=12 article-no= start-page=1888 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240614 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prognostic Implications of Insulin Resistance in Heart Failure in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diabetes mellitus (DM) is a major risk and prognostic factor for heart failure (HF). Insulin resistance (IR) is an important component of DM, but the relationship between IR and HF prognosis has not yet been established across a wide variety of HF populations. We retrospectively evaluated the relationship between IR and clinical outcomes of HF patients at our hospital between 2017 and 2021. IR was defined as a homeostatic model assessment of IR (HOMA-IR) index >= 2.5, calculated from fasting blood glucose and insulin concentrations. The primary outcome was a composite of all-cause death and hospitalisation for HF (HHF). Among 682 patients included in the analyses, 337 (49.4%) had IR. The median age was 70 [interquartile range (IQR): 59-77] years old, and 66% of the patients were men. Among the patients, 41% had a left ventricular ejection fraction below 40%, and 32% had DM. The median follow-up period was 16.5 [IQR: 4.4-37.3] months. IR was independently associated with the primary outcome (HR: 1.91, 95% CI: 1.39-2.62, p < 0.0001), death (hazard ratio [HR]: 1.86, 95% confidence interval [CI]: 1.28-2.83, p < 0.01), and HHF (HR: 1.91, 95% CI: 1.28-2.83, p < 0.01). HOMA-IR is an independent prognostic factor of HF in a wide variety of HF populations. en-copyright= kn-copyright= en-aut-name=IwasakiKeiichiro en-aut-sei=Iwasaki en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=heart failure kn-keyword=heart failure en-keyword=insulin resistance kn-keyword=insulin resistance en-keyword=HOMA-IR kn-keyword=HOMA-IR en-keyword=diabetes mellitus kn-keyword=diabetes mellitus END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=2926 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Large-volume focus control at 10 MHz refresh rate via fast line-scanning amplitude-encoded scattering-assisted holography en-subtitle= kn-subtitle= en-abstract= kn-abstract=The capability of focus control has been central to optical technologies that require both high temporal and spatial resolutions. However, existing varifocal lens schemes are commonly limited to the response time on the microsecond timescale and share the fundamental trade-off between the response time and the tuning power. Here, we propose an ultrafast holographic focusing method enabled by translating the speed of a fast 1D beam scanner into the speed of the complex wavefront modulation of a relatively slow 2D spatial light modulator. Using a pair of a digital micromirror device and a resonant scanner, we demonstrate an unprecedented refresh rate of focus control of 31 MHz, which is more than 1,000 times faster than the switching rate of a digital micromirror device. We also show that multiple micrometer-sized focal spots can be independently addressed in a range of over 1 MHz within a large volume of 5 mm × 5 mm × 5.5 mm, validating the superior spatiotemporal characteristics of the proposed technique – high temporal and spatial precision, high tuning power, and random accessibility in a three-dimensional space. The demonstrated scheme offers a new route towards three-dimensional light manipulation in the 100 MHz regime. en-copyright= kn-copyright= en-aut-name=ShibukawaAtsushi en-aut-sei=Shibukawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiguchiRyota en-aut-sei=Higuchi en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SongGookho en-aut-sei=Song en-aut-mei=Gookho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikamiHideharu en-aut-sei=Mikami en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JangMooseok en-aut-sei=Jang en-aut-mei=Mooseok kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Research Institute for Electronic Science, Hokkaido University kn-affil= affil-num=2 en-affil=Research Institute for Electronic Science, Hokkaido University kn-affil= affil-num=3 en-affil=Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology kn-affil= affil-num=4 en-affil=Research Institute for Electronic Science, Hokkaido University kn-affil= affil-num=5 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=5 article-no= start-page=253 end-page=266 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Freeze-thaw Resistance of Concrete using Ground Granulated Blast-furnace Slag and Blast-furnace Slag Sand in Salt Water en-subtitle= kn-subtitle= en-abstract= kn-abstract=The freeze-thaw resistance of concrete is significantly lower in salt water than in fresh water. Concrete deteriorates through repeated freezing and thawing, but in salt water, freezing alone leads to destruction. This paper investigated the effect of calcium hydroxide in concrete on the failure of concrete under such low temperatures. Calcium hydroxide precipitates at the transition zone between aggregate and cement paste due to the hydration of cement. The lower the temperature and the higher the concentration of salt water, the more calcium hydroxide dissolves. From concrete, more calcium hydroxide is eluted in salt water than in fresh water. This accelerates the deterioration of mortar and concrete due to freeze-thaw action. Mortar and concrete using ground granulated blast-furnace slag produces less calcium hydroxide. In mortar and concrete using blast-furnace slag sand, calcium hydroxide precipitated around the aggregate reacts with cement paste and blast-furnace slag sand to modify the transition zone. From these results, it was clarified that concrete using blast-furnace slag exhibits high freeze-thaw resistance even in salt water.
This paper is the English translation of the authors’ previous work [Ayano, T., Fujii, T. and Okazaki, K., (2023). “Freeze-thaw resistance of concrete using ground granulated blast-furnace and blast-furnace slag sand in salt water.” Japanese Journal of JSCE, 79(12), 23-00042. (in Japanese)]. en-copyright= kn-copyright= en-aut-name=AyanoToshiki en-aut-sei=Ayano en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiTakashi en-aut-sei=Fujii en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkazakiKanako en-aut-sei=Okazaki en-aut-mei=Kanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Social Engineering and Environmental Management, Graduate School of Environmental and Life Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=13 article-no= start-page=6986 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240626 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genome-Wide Association Study with Three Control Cohorts of Japanese Patients with Esotropia and Exotropia of Comitant Strabismus and Idiopathic Superior Oblique Muscle Palsy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Esotropia and exotropia in the entity of comitant strabismus are multifactorial diseases with both genetic and environmental backgrounds. Idiopathic superior oblique muscle palsy, as the predominant entity of non-comitant (paralytic) strabismus, also has a genetic background, as evidenced by varying degrees of muscle hypoplasia. A genome-wide association study (GWAS) was conducted of 711 Japanese patients with esotropia (n= 253), exotropia (n = 356), and idiopathic superior oblique muscle palsy (n = 102). The genotypes of single nucleotide polymorphisms (SNPs) were determined by Infinium Asian Screening Array. Three control cohorts from the Japanese population were used: two cohorts from BioBank Japan (BBJ) and the Nagahama Cohort. BBJ (180K) was genotyped by a different array, Illumina Infinium OmniExpressExome or HumanOmniExpress, while BBJ (ASA) and the Nagahama Cohort were genotyped by the same Asian array. After quality control of SNPs and individuals, common SNPs between the case cohort and the control cohort were chosen in the condition of genotyping by different arrays, while all SNPs genotyped by the same array were used for SNP imputation. The SNPs imputed with R-square values ≥ 0.3 were used to compare the case cohort of each entity or the combined entity with the control cohort. In comparison with BBJ (180K), the esotropia group and the exotropia group showed CDCA7 and HLA-F, respectively, as candidate genes at a significant level of p < 5 × 10−8, while the idiopathic superior oblique muscle palsy group showed DAB1 as a candidate gene which is involved in neuronal migration. DAB1 was also detected as a candidate in comparison with BBJ (ASA) and the Nagahama Cohort at a weak level of significance of p < 1 × 10−6. In comparison with BBJ (180K), RARB (retinoic acid receptor-β) was detected as a candidate at a significant level of p < 5 × 10−8 in the combined group of esotropia, exotropia, and idiopathic superior oblique muscle palsy. In conclusion, a series of GWASs with three different control cohorts would be an effective method with which to search for candidate genes for multifactorial diseases such as strabismus. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HamasakiIchiro en-aut-sei=Hamasaki en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KamataniYoichiro en-aut-sei=Kamatani en-aut-mei=Yoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawaguchiTakahisa en-aut-sei=Kawaguchi en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaguchiIzumi en-aut-sei=Yamaguchi en-aut-mei=Izumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsudaFumihiko en-aut-sei=Matsuda en-aut-mei=Fumihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaitoAkira en-aut-sei=Saito en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakazonoKazuyuki en-aut-sei=Nakazono en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KamitsujiShigeo en-aut-sei=Kamitsuji en-aut-mei=Shigeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Ophthalmology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=4 en-affil=Center for Genomic Medicine, Graduate School of Medicine, Kyoto University kn-affil= affil-num=5 en-affil=Center for Genomic Medicine, Graduate School of Medicine, Kyoto University kn-affil= affil-num=6 en-affil=Center for Genomic Medicine, Graduate School of Medicine, Kyoto University kn-affil= affil-num=7 en-affil=StaGen Co., Ltd. kn-affil= affil-num=8 en-affil=StaGen Co., Ltd. kn-affil= affil-num=9 en-affil=StaGen Co., Ltd. kn-affil= en-keyword=esotropia kn-keyword=esotropia en-keyword=exotropia kn-keyword=exotropia en-keyword=superior oblique muscle palsy kn-keyword=superior oblique muscle palsy en-keyword=genome-wide association study kn-keyword=genome-wide association study en-keyword=comitant strabismus kn-keyword=comitant strabismus en-keyword=non-comitant strabismus kn-keyword=non-comitant strabismus en-keyword=Japanese population kn-keyword=Japanese population en-keyword=BioBank Japan kn-keyword=BioBank Japan en-keyword=Nagahama Cohort kn-keyword=Nagahama Cohort en-keyword=Asian array kn-keyword=Asian array END start-ver=1.4 cd-journal=joma no-vol=41 cd-vols= no-issue=3 article-no= start-page=281 end-page=289 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Volume X-Ray Micro-Computed Tomography Analysis of the Early Cephalized Central Nervous System in a Marine Flatworm, Stylochoplana pusilla en-subtitle= kn-subtitle= en-abstract= kn-abstract=Platyhelminthes are a phylum of simple bilaterian invertebrates with prototypic body systems. Compared with non-bilaterians such as cnidarians, the bilaterians are likely to exhibit integrated free-moving behaviors, which require a concentrated nervous system “brain” rather than the distributed nervous system of radiatans. Marine flatworms have an early cephalized ‘central’ nervous system compared not only with non-bilaterians but also with parasitic flatworms or freshwater planarians. In this study, we used the marine flatworm Stylochoplana pusilla as an excellent model organism in Platyhelminthes because of the early cephalized central nervous system. Here, we investigated the three-dimensional structures of the flatworm central nervous system by the use of X-ray micro-computed tomography (micro-CT) in a synchrotron radiation facility. We found that the obtained tomographic images were sufficient to discriminate some characteristic structures of the nervous system, including nerve cords around the cephalic ganglion, mushroom body-like structures, and putative optic nerves forming an optic commissure-like structure. Through the micro-CT imaging, we could obtain undistorted serial section images, permitting us to visualize precise spatial relationships of neuronal subpopulations and nerve tracts. 3-D micro-CT is very effective in the volume analysis of the nervous system at the cellular level; the methodology is straightforward and could be applied to many other non-model organisms. en-copyright= kn-copyright= en-aut-name=IkenagaTakanori en-aut-sei=Ikenaga en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiAoshi en-aut-sei=Kobayashi en-aut-mei=Aoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeuchiAkihisa en-aut-sei=Takeuchi en-aut-mei=Akihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UesugiKentaro en-aut-sei=Uesugi en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaezawaTakanobu en-aut-sei=Maezawa en-aut-mei=Takanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibataNorito en-aut-sei=Shibata en-aut-mei=Norito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakamotoTatsuya en-aut-sei=Sakamoto en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Science and Engineering, Kagoshima University kn-affil= affil-num=2 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Japan Synchrotron Radiation Research Institute/SPring-8 kn-affil= affil-num=4 en-affil=Japan Synchrotron Radiation Research Institute/SPring-8 kn-affil= affil-num=5 en-affil=Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College kn-affil= affil-num=6 en-affil=Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College kn-affil= affil-num=7 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=bilaterians kn-keyword=bilaterians en-keyword=micro-CT scan kn-keyword=micro-CT scan en-keyword=central nervous system kn-keyword=central nervous system en-keyword=Platyhelminthes kn-keyword=Platyhelminthes en-keyword=marine flatworms kn-keyword=marine flatworms END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=25 article-no= start-page=e2322765121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Argonaute-independent, Dicer-dependent antiviral defense against RNA viruses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=RNAi kn-keyword=RNAi en-keyword=Argonaute kn-keyword=Argonaute en-keyword=Dicer kn-keyword=Dicer en-keyword=fungal virus kn-keyword=fungal virus en-keyword=chestnut blight kn-keyword=chestnut blight END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=25 article-no= start-page=e2318150121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Replication of single viruses across the kingdoms, Fungi, Plantae, and Animalia en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungusRosellinia necatrix could replicate in protoplasts of the carrot (Daucus carota), Nicotiana benthamiana and Nicotiana tabacum, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm Spodoptera frugiperda and the fruit fly Drosophila melanogaster. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution. en-copyright= kn-copyright= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IchikawaHiroaki en-aut-sei=Ichikawa en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuwataRyusei en-aut-sei=Kuwata en-aut-mei=Ryusei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Agrobiological Sciences, National Agriculture and Food Research Organization kn-affil= affil-num=4 en-affil=Faculty of Veterinary Medicine, Okayama University of Science kn-affil= affil-num=5 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=cross- kingdom infection kn-keyword=cross- kingdom infection en-keyword=partitivirus kn-keyword=partitivirus en-keyword=fungal virus kn-keyword=fungal virus en-keyword=Plantae kn-keyword=Plantae en-keyword=Animalia kn-keyword=Animalia END start-ver=1.4 cd-journal=joma no-vol=109 cd-vols= no-issue=17 article-no= start-page=174503 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Time-dependent Ginzburg-Landau theory of the vortex spin Hall effect en-subtitle= kn-subtitle= en-abstract= kn-abstract=We develop a time-dependent Ginzburg-Landau theory of the vortex spin Hall effect, i.e., a spin Hall effect that is driven by the motion of superconducting vortices. For the direct vortex spin Hall effect in which an input charge current drives the transverse spin current accompanying the vortex motion, we start from the well-known Schmid-Caroli-Maki solution for the time-dependent Ginzburg-Landau equation under the applied electric field, and find out the expression of the induced spin current. For the inverse vortex spin Hall effect in which an input spin current drives the longitudinal vortex motion and produces the transverse charge current, we microscopically construct the time-dependent Ginzburg-Landau equation under the applied spin accumulation gradient, and calculate the induced transverse charge current as well as the open circuit voltage. The time-dependent Ginzburg-Landau equation and its analytical solution developed here can be a basis for more quantitative numerical simulations of the vortex spin Hall effect. en-copyright= kn-copyright= en-aut-name=AdachiHiroto en-aut-sei=Adachi en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoYusuke en-aut-sei=Kato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OheJun-ichiro en-aut-sei=Ohe en-aut-mei=Jun-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Basic Science, University of Tokyo kn-affil= affil-num=3 en-affil=Department of Physics, Toho University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=12 article-no= start-page=e7351 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240625 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prevalence of neurotrophic tropomyosin receptor kinase (NTRK) fusion gene positivity in patients with solid tumors in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Members of the neurotrophic tropomyosin receptor kinase (NTRK) gene family, NTRK1, NTRK2, and NTRK3 encode TRK receptor tyrosine kinases. Intra- or inter-chromosomal gene rearrangements produce NTRK gene fusions encoding fusion proteins which are oncogenic drivers in various solid tumors.
Methods: This study investigated the prevalence of NTRK fusion genes and identified fusion partners in Japanese patients with solid tumors recorded in the Center for Cancer Genomics and Advanced Therapeutics database of comprehensive genomic profiling test.
Results: In the analysis population (n = 46,621), NTRK fusion genes were detected in 91 patients (0.20%). The rate was higher in pediatric cases (<18 years; 1.69%) than in adults (0.16%). NTRK gene fusions were identified in 21 different solid tumor types involving 38 different partner genes including 22 (57.9%) previously unreported NTRK gene fusions. The highest frequency of NTRK gene fusions was head and neck cancer (1.31%) and thyroid cancer (1.31%), followed by soft tissue sarcoma (STS; 0.91%). A total of 97 NTRK fusion gene partners were analyzed involving mainly NTRK1 (49.5%) or NTRK3 (44.2%) gene fusions. The only fusion gene detected in head and neck cancer was ETV6::NTRK3 (n = 22); in STS, ETV6::NTRK3 (n = 7) and LMNA::NTRK1 (n = 5) were common. Statistically significant mutual exclusivity of NTRK fusions with alterations was confirmed in TP53, KRAS, and APC. NTRK gene fusion was detected from 11 STS cases: seven unclassified sarcoma, three sarcoma NOS, and one Ewing sarcoma.
Conclusions: NTRK gene fusion identification in solid tumors enables accurate diagnosis and potential TRK inhibitor therapy. en-copyright= kn-copyright= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OsoneTatsunori en-aut-sei=Osone en-aut-mei=Tatsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OgawaToru en-aut-sei=Ogawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaguchiTomoyuki en-aut-sei=Taguchi en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HattoriKana en-aut-sei=Hattori en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KohsakaShinji en-aut-sei=Kohsaka en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Orthopedic Surgery, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Medical Affairs & Pharmacovigilance, Bayer Yakuhin, Ltd kn-affil= affil-num=4 en-affil=Medical Affairs & Pharmacovigilance, Bayer Yakuhin, Ltd kn-affil= affil-num=5 en-affil=Medical Affairs & Pharmacovigilance, Bayer Yakuhin, Ltd kn-affil= affil-num=6 en-affil=National Cancer Center Research Institute kn-affil= en-keyword=comprehensive genomic profiling kn-keyword=comprehensive genomic profiling en-keyword=neurotrophic tropomyosin receptor kinase (NTRK) gene fusion kn-keyword=neurotrophic tropomyosin receptor kinase (NTRK) gene fusion en-keyword=next-generation sequencing kn-keyword=next-generation sequencing en-keyword=solid tumors kn-keyword=solid tumors END start-ver=1.4 cd-journal=joma no-vol=44 cd-vols= no-issue=6 article-no= start-page=2497 end-page=2509 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240531 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Senescent Fibroblasts Potentiate Peritoneal Metastasis of Diffuse-type Gastric Cancer Cells via IL-8–mediated Crosstalk en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aim: Diffuse-type gastric cancer (DGC) often forms peritoneal metastases, leading to poor prognosis. However, the underlying mechanism of DGC-mediated peritoneal metastasis is poorly understood. DGC is characterized by desmoplastic stroma, in which heterogeneous cancer-associated fibroblasts (CAFs), including myofibroblastic CAFs (myCAFs) and senescent CAFs (sCAFs), play a crucial role during tumor progression. This study investigated the CAF subtypes induced by GC cells and the role of sCAFs in peritoneal metastasis of DGC cells. Materials and Methods: Conditioned medium of human DGC cells (KATOIII, NUGC-4) and human intestinal-type GC (IGC) cells (MKN-7, N87) was used to induce CAFs. CAF subtypes were evaluated by analyzing the expression of α–smooth muscle actin (α-SMA), senescence-associated β-galactosidase (SA-β-gal), and p16 in human normal fibroblasts (GF, FEF-3). A cytokine array was used to explore the underlying mechanism of GC-induced CAF subtype development. The role of sCAFs in peritoneal metastasis of DGC cells was analyzed using a peritoneally metastatic DGC tumor model. The relationships between GC subtypes and CAF-related markers were evaluated using publicly available datasets. Results: IGC cells significantly induced α-SMA+ myCAFs by secreting transforming growth factor–β, whereas DGC cells induced SA-β-gal+/p16+ sCAFs by secreting interleukin (IL)-8. sCAFs further secreted IL-8 to promote DGC cell migration. In vivo experiments demonstrated that co-inoculation of sCAFs significantly enhanced peritoneal metastasis of NUGC-4 cells, which was attenuated by administration of the IL-8 receptor antagonist navarixin. p16 and IL-8 expression was significantly associated with poor prognosis of DGC patients. Conclusion: sCAFs promote peritoneal metastasis of DGC via IL-8–mediated crosstalk. en-copyright= kn-copyright= en-aut-name=LIYUNCHENG en-aut-sei=LI en-aut-mei=YUNCHENG kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TAZAWAHIROSHI en-aut-sei=TAZAWA en-aut-mei=HIROSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NAGAIYASUO en-aut-sei=NAGAI en-aut-mei=YASUO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FUJITASHUTO en-aut-sei=FUJITA en-aut-mei=SHUTO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OKURATOMOHIRO en-aut-sei=OKURA en-aut-mei=TOMOHIRO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SHOJIRYOHEI en-aut-sei=SHOJI en-aut-mei=RYOHEI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YAMADAMOTOHIKO en-aut-sei=YAMADA en-aut-mei=MOTOHIKO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KIKUCHISATORU en-aut-sei=KIKUCHI en-aut-mei=SATORU kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KURODASHINJI en-aut-sei=KURODA en-aut-mei=SHINJI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OHARATOSHIAKI en-aut-sei=OHARA en-aut-mei=TOSHIAKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NOMAKAZUHIRO en-aut-sei=NOMA en-aut-mei=KAZUHIRO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NISHIZAKIMASAHIKO en-aut-sei=NISHIZAKI en-aut-mei=MASAHIKO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KAGAWASHUNSUKE en-aut-sei=KAGAWA en-aut-mei=SHUNSUKE kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FUJIWARATOSHIYOSHI en-aut-sei=FUJIWARA en-aut-mei=TOSHIYOSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Gastric cancer kn-keyword=Gastric cancer en-keyword=peritoneal metastasis kn-keyword=peritoneal metastasis en-keyword=senescent fibroblast kn-keyword=senescent fibroblast en-keyword=IL-8 kn-keyword=IL-8 en-keyword=CXCR1/2 kn-keyword=CXCR1/2 END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=8 article-no= start-page=1108 end-page=1112 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240619 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The treatment effect of endovascular therapy for chronic limb‐threatening ischemia with systemic sclerosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Systemic sclerosis (SSc) is a collagen disease with immune abnormalities, vasculopathy, and fibrosis. Ca blockers and prostaglandins are used to treat peripheral circulatory disturbances. Chronic limb-threatening ischemia (CLTI) is a disease characterized by extremity ulcers, necrosis, and pain due to limb ischemia. Since only a few patients present with coexistence of CLTI and SSc, the treatment outcomes of revascularization in these cases are unknown. In this study, we evaluated the clinical characteristics and treatment outcomes of seven patients with CLTI and SSc, and 35 patients with uncomplicated CLTI who were hospitalized from 2012 to 2022. A higher proportion of patients with uncomplicated CLTI had diabetes and male. There were no significant differences in the age at which ischemic ulceration occurred, other comorbidities, or in treatments, including antimicrobial agents, revascularization and amputation, improvement of pain, and the survival time from ulcer onset between the two subgroups. EVT or amputation was performed in six or two of the seven patients with CLTI and SSc, respectively. Among those who underwent EVT, 33% (2/6) achieved epithelialization and 67% (4/6) experienced pain relief. These results suggest that the revascularization in cases with CLTI and SSc should consider factors such as infection and general condition, since revascularization improve the pain of these patients. en-copyright= kn-copyright= en-aut-name=MatsudaYoshihiro en-aut-sei=Matsuda en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyakeTomoko en-aut-sei=Miyake en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NomuraHayato en-aut-sei=Nomura en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HiraiYoji en-aut-sei=Hirai en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawakamiYoshio en-aut-sei=Kawakami en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakodaNaoya en-aut-sei=Sakoda en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorizaneShin en-aut-sei=Morizane en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=chronic limb-threatening ischemia (CLTI) kn-keyword=chronic limb-threatening ischemia (CLTI) en-keyword=endovascular therapy (EVT) kn-keyword=endovascular therapy (EVT) en-keyword=revascularization kn-keyword=revascularization en-keyword=systemic sclerosis (SSc) kn-keyword=systemic sclerosis (SSc) END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=1383309 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Late-onset renal variant Fabry disease with R112H mutation and mild increase in plasma globotriaosylsphingosine: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fabry disease (FD) is an X-linked disorder resulting in a deficiency of alpha-galactosidase A (GLA) activity. The R112H mutation of GLA is relatively common in Japanese FD patients, characterized by a late-onset phenotype, almost normal to mild lyso-Gb3 elevation, and mild clinical symptoms, despite low GLA activity. This is due to the structural features of the R112H GLA protein. We herein report the case of a 42-year-old male patient with late-onset FD with a R112H mutation. The patient exhibited only renal involvement with no other organ damage and was successfully treated with galactosidase beta and subsequent migalastat for approximately 10 years. Especially, migalastat was clinically effective in normalizing plasma lyso-Gb3 levels and inhibiting the progression of renal damage associated with FD. Therefore, the use of migalastat in the FD patients with R112H mutation is highly recommended based on this case report. en-copyright= kn-copyright= en-aut-name=TanakaKeiko en-aut-sei=Tanaka en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugiyamaHitoshi en-aut-sei=Sugiyama en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorinagaHiroshi en-aut-sei=Morinaga en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnishiAkifumi en-aut-sei=Onishi en-aut-mei=Akifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanabeKatsuyuki en-aut-sei=Tanabe en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MaruyamaHiroki en-aut-sei=Maruyama en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University kn-affil= affil-num=4 en-affil=Department of Nephrology, Fukuyama City Hospital kn-affil= affil-num=5 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University kn-affil= affil-num=6 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University kn-affil= affil-num=7 en-affil=Department of Clinical Nephroscience, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=8 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University kn-affil= en-keyword=Fabry disease kn-keyword=Fabry disease en-keyword=R112H mutation kn-keyword=R112H mutation en-keyword=migalastat kn-keyword=migalastat en-keyword=proteinuria kn-keyword=proteinuria en-keyword=chronic kidney disease kn-keyword=chronic kidney disease END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=4 article-no= start-page=810 end-page=814 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240619 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Combination of reduced post-transplant cyclophosphamide and early tacrolimus initiation increases the incidence of chronic graft-versus-host disease in human leukocyte antigen-haploidentical peripheral blood stem-cell transplantation en-subtitle= kn-subtitle= en-abstract= kn-abstract=We evaluated the clinical impacts of the concurrent modification of post-transplant cyclophosphamide (PTCy) dose and tacrolimus (Tac)-initiation timing in 61 patients with human leukocyte antigen-haploidentical transplantation. Reduced-dose PTCy (80 mg/kg) was associated with a higher incidence of moderate-to-severe chronic graft-versus-host disease (GVHD) than standard-dose PTCy (100 mg/kg) (35.0% vs. 26.6%, p = 0.053). Notably, early-initiation Tac (day -1) increased moderate-to-severe chronic GVHD than standard-initiation Tac (day 5) in the reduced-dose PTCy group (p = 0.032), whereas Tac-initiation timing did not impact chronic GVHD in the standard-dose PTCy group. These data indicate that the combination of reduced-dose PTCy and early-initiation Tac can amplify chronic GVHD. en-copyright= kn-copyright= en-aut-name=TeraoToshiki en-aut-sei=Terao en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraMakoto en-aut-sei=Nakamura en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakasukaHiroki en-aut-sei=Takasuka en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishimoriHisakazu en-aut-sei=Nishimori en-aut-mei=Hisakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsuokaKen-Ichi en-aut-sei=Matsuoka en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= en-keyword=chronic GVHD kn-keyword=chronic GVHD en-keyword=haploidentical kn-keyword=haploidentical en-keyword=hematopoietic stem-cell transplantation kn-keyword=hematopoietic stem-cell transplantation en-keyword=PTCy kn-keyword=PTCy en-keyword=tacrolimus kn-keyword=tacrolimus END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=5082 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240614 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Strain-induced long-range charge-density wave order in the optimally doped Bi2Sr2-x Lax CuO6 superconductor en-subtitle= kn-subtitle= en-abstract= kn-abstract=The mechanism of high-temperature superconductivity in copper oxides (cuprate) remains elusive, with the pseudogap phase considered a potential factor. Recent attention has focused on a long-range symmetry-broken charge-density wave (CDW) order in the underdoped regime, induced by strong magnetic fields. Here by Cu-63,Cu-65-nuclear magnetic resonance, we report the discovery of a long-range CDW order in the optimally doped Bi2Sr2-xLaxCuO6 superconductor, induced by in-plane strain exceeding divided by epsilon divided by = 0.15 %, which deliberately breaks the crystal symmetry of the CuO2 plane. We find that compressive/tensile strains reduce superconductivity but enhance CDW, leaving superconductivity to coexist with CDW. The findings show that a long-range CDW order is an underlying hidden order in the pseudogap state, not limited to the underdoped regime, becoming apparent under strain. Our result sheds light on the intertwining of various orders in the cuprates. en-copyright= kn-copyright= en-aut-name=KawasakiShinji en-aut-sei=Kawasaki en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsukudaNao en-aut-sei=Tsukuda en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LinChengtian en-aut-sei=Lin en-aut-mei=Chengtian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhengGuo-Qing en-aut-sei=Zheng en-aut-mei=Guo-Qing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Max-Planck-Institut fur Festkorperforschung kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=6 article-no= start-page=e11518 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240618 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heterospecific interaction in two beetle species: Males with weapons decrease the reproductive success of species with weaponless males en-subtitle= kn-subtitle= en-abstract= kn-abstract=Many species often show male-male combat for mating opportunities and resources within the species. Sexual selection through this radical combat leads to the evolution of males with exaggerated traits used as weapons, such as horns or mandibles, that often result in victory during combat. However, heterospecific interaction due to errors in species identification has often been observed, which results in decreased mating opportunities within the same species and fewer fertilized eggs. Males with exaggerated weapons may show dominance in resource acquisition over males without weapons and may decrease the reproductive success of the latter due to competition between the two. However, few studies have examined heterospecific interaction focusing on males with or without weapons. In this study, we investigated the effects of the male weapon on reproductive traits in heterospecific interaction in two species: the broad-horned flour beetle (Gnatocerus cornutus), in which males have exaggerated weapon traits; and the red flour beetle (Tribolium castaneum), in which males have no weapon traits. Both species are closely related and use the same food resources. G. cornutus males interfered with the resource acquisition and reproductive opportunities of T. castaneum by attacking T. castaneum. The reproductive success of T. castaneum decreased when they cohabited with G. cornutus males. These findings show that male weapon traits, which are important for sexual selection within the same species, can also greatly influence reproduction in other species. en-copyright= kn-copyright= en-aut-name=OnishiRui en-aut-sei=Onishi en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Natural Science, and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Natural Science, and Technology, Okayama University kn-affil= en-keyword=Gnatocerus cornutus kn-keyword=Gnatocerus cornutus en-keyword=heterospecific interaction kn-keyword=heterospecific interaction en-keyword=male-male competition kn-keyword=male-male competition en-keyword=sexual selection kn-keyword=sexual selection en-keyword=Tribolium castaneum kn-keyword=Tribolium castaneum END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=4 article-no= start-page=e13265 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240611 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimising the oral midazolam dose for premedication in people with intellectual disabilities and/or autism spectrum disorder en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: In people with intellectual disabilities and/or autism spectrum disorder, oral midazolam (OM) is very effective as premedication for facilitating medical treatment. In this retrospective study, we investigated the optimal dosage of OM for premedication.
Methods: Patients with intellectual disability and/or autism spectrum disorder who were given OM as a premedication were selected from anaesthesia records. The primary outcome variable was the dose of OM (mg/kg) required to produce an adequate sedation.
Results: The mean OM dose required was 0.32 ± 0.10 mg/kg. The required OM dose decreased significantly as age and weight increased, and age and weight were also shown to be significantly associated with the dose of OM in the multivariate linear regression analysis.
Conclusion: The dosage of OM to achieve adequate sedation should decrease as the patient ages. Furthermore, adequate sedation can be achieved with even lower doses of OM in obese people. en-copyright= kn-copyright= en-aut-name=HiguchiHitoshi en-aut-sei=Higuchi en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyakeKota en-aut-sei=Miyake en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyakeSaki en-aut-sei=Miyake en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujimotoMaki en-aut-sei=Fujimoto en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishiokaYukiko en-aut-sei=Nishioka en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaedaShigeru en-aut-sei=Maeda en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyawakiTakuya en-aut-sei=Miyawaki en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Dental Anesthesiology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Dental Anesthesiology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Dental Anesthesiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=autism spectrum disorder kn-keyword=autism spectrum disorder en-keyword=intellectual disabilities kn-keyword=intellectual disabilities en-keyword=oral midazolam kn-keyword=oral midazolam en-keyword=premedication kn-keyword=premedication en-keyword=sedation kn-keyword=sedation END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=3 article-no= start-page=276 end-page=281 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Postnatal longitudinal analysis of serum nitric oxide and eosinophil counts in extremely preterm infants en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Nitric oxide (NO) may be related to the pathogenesis of several morbidities in extremely preterm infants, including late-onset adrenal insufficiency. However, eosinophilia is observed under pathological conditions with adrenal insufficiency. Therefore, this study explored postnatal changes in NO levels and eosinophil counts in extremely preterm infants with and without morbidities.
Methods: Nineteen extremely preterm infants with a median gestational age of 27.0 weeks and median birth weight of 888 g were enrolled in this study. Serum levels of nitrogen oxides (NOx) and peripheral blood eosinophil counts were measured at birth and every 2 weeks thereafter. Morbidities of the study group were diagnosed using a single criterion.
Results: Serum NOx levels (mean ± standard deviation) were 22.5 ± 14.9 μmol/L, 51.2 ± 23.7 μmol/L, 42.4 ± 15.2 μmol/L, and 33.8 ± 9.4 μmol/L at birth and 2, 4, and 6 weeks of age, respectively. The serum NOx level at 2 weeks of age was significantly higher than that at birth and 6 weeks of age. Eosinophil counts, which increase with adrenal insufficiency, were measured simultaneously and were 145 ± 199/μL, 613 ± 625/μL, 466 ± 375/μL, and 292 ± 228/μL at birth and 2, 4, and 6 weeks of age, respectively. These values showed that the eosinophil count was significantly higher at 2 weeks of age than at birth and 6 weeks of age. The serum NOx level of infants without chorioamnionitis was significantly increased at 4 weeks of age, and the eosinophil count of infants with necrotizing enterocolitis was significantly increased at 2 weeks of age. No correlation with the NOx level or eosinophil count was observed in infants with late-onset circulatory collapse.
Conclusion: The postnatal serum NOx level and eosinophil count were significantly correlated with each other and peaked at 2 weeks of age. en-copyright= kn-copyright= en-aut-name=WatanabeHirokazu en-aut-sei=Watanabe en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WashioYosuke en-aut-sei=Washio en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamaiKei en-aut-sei=Tamai en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimotoDaisaku en-aut-sei=Morimoto en-aut-mei=Daisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkamuraTomoka en-aut-sei=Okamura en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshimotoJunko en-aut-sei=Yoshimoto en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakanishiHidehiko en-aut-sei=Nakanishi en-aut-mei=Hidehiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KageyamaMisao en-aut-sei=Kageyama en-aut-mei=Misao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UchiyamaAtsushi en-aut-sei=Uchiyama en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KusudaSatoshi en-aut-sei=Kusuda en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Neonatology, Okayama Medical Center, National Hospital Organization kn-affil= affil-num=4 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=6 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=7 en-affil=Department of Neonatology, Maternal and Perinatal Center, Tokyo Women’s Medical University kn-affil= affil-num=8 en-affil=Department of Neonatology, Okayama Medical Center, National Hospital Organization kn-affil= affil-num=9 en-affil=Department of Neonatology, Maternal and Perinatal Center, Tokyo Women’s Medical University kn-affil= affil-num=10 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=11 en-affil=Department of Neonatology, Maternal and Perinatal Center, Tokyo Women’s Medical University kn-affil= en-keyword=eosinophils kn-keyword=eosinophils en-keyword=extremely preterm infant kn-keyword=extremely preterm infant en-keyword=nitric oxide kn-keyword=nitric oxide en-keyword=relative adrenal insufficiency kn-keyword=relative adrenal insufficiency END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=11 article-no= start-page=e31872 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240615 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bacterial DNA and serum IgG antibody titer assays for assessing infection of human-pathogenic and dog-pathogenic Porphyromonas species in dogs en-subtitle= kn-subtitle= en-abstract= kn-abstract=Periodontal disease is highly prevalent in both humans and dogs. Although there have been reports of cross-infection of periodontopathic bacteria, methods for assessing it have yet to be established. The actual status of cross-infection remains to be seen. The purpose of this study was to evaluate the utility of bacterial DNA and serum immunoglobulin G (IgG) antibody titer assays to assess infection of human-pathogenic and dog-pathogenic Porphyromonas species in dogs. Four experimental beagles were used for establishing methods. Sixty-six companion dogs at veterinary clinics visiting for treatment and prophylaxis of periodontal disease were used and divided into healthy, gingivitis, and periodontitis groups. Periodontal pathogens such as Porphyromonas gingivalis and Porphyromonas gulae were investigated as target bacteria. DNA levels of both bacteria were measured using species-specific primers designed for real-time polymerase chain reaction (PCR). Serum IgG titers of both bacteria were measured by enzyme-linked immunosorbent assay (ELISA).
PCR primers were confirmed to have high sensitivity and specificity. However, there was no relationship between the amount of bacterial DNA and the severity of the periodontal disease. In addition, dogs with periodontitis had higher IgG titers against both bacteria compared to dogs in the healthy and gingivitis groups; there was cross-reactivity between the two bacteria. Receiver operating characteristic (ROC) analysis of IgG titers against both bacteria showed high sensitivity (>90 %) and specificity (>75 %). Since both bacteria were distinguished by DNA assays, the combination of these assays may be useful in the evaluation of cross-infection. en-copyright= kn-copyright= en-aut-name=Tai-TokuzenMasako en-aut-sei=Tai-Tokuzen en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ItoTakashi en-aut-sei=Ito en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamuraKazuya en-aut-sei=Tamura en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirayamaHaruko en-aut-sei=Hirayama en-aut-mei=Haruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaHirohito en-aut-sei=Ogawa en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraShin en-aut-sei=Nakamura en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkuboKeisuke en-aut-sei=Okubo en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MominokiKatsumi en-aut-sei=Mominoki en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University kn-affil= affil-num=5 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Center for Collaborative Research, Department of Oral Science and Translational Research, Nova Southeastern University kn-affil= affil-num=7 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Comprehensive Dentistry, The Center for Graduate Medical Education (Dental Division), Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University kn-affil= affil-num=11 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Cross infection kn-keyword=Cross infection en-keyword=Human and dog kn-keyword=Human and dog en-keyword=Periodontal disease kn-keyword=Periodontal disease en-keyword=Porphyromonas gingivalis kn-keyword=Porphyromonas gingivalis en-keyword=Porphyromonas gulae kn-keyword=Porphyromonas gulae en-keyword=Detection assay kn-keyword=Detection assay END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=11 article-no= start-page=2632 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In Vitro Study of Tumor-Homing Peptide-Modified Magnetic Nanoparticles for Magnetic Hyperthermia en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer cells have higher heat sensitivity compared to normal cells; therefore, hyperthermia is a promising approach for cancer therapy because of its ability to selectively kill cancer cells by heating them. However, the specific and rapid heating of tumor tissues remains challenging. This study investigated the potential of magnetic nanoparticles (MNPs) modified with tumor-homing peptides (THPs), specifically PL1 and PL3, for tumor-specific magnetic hyperthermia therapy. The synthesis of THP-modified MNPs involved the attachment of PL1 and PL3 peptides to the surface of the MNPs, which facilitated enhanced tumor cell binding and internalization. Cell specificity studies revealed an increased uptake of PL1- and PL3-MNPs by tumor cells compared to unmodified MNPs, indicating their potential for targeted delivery. In vitro hyperthermia experiments demonstrated the efficacy of PL3-MNPs in inducing tumor cell death when exposed to an alternating magnetic field (AMF). Even without exposure to an AMF, an additional ferroptotic pathway was suggested to be mediated by the nanoparticles. Thus, this study suggests that THP-modified MNPs, particularly PL3-MNPs, hold promise as a targeted approach for tumor-specific magnetic hyperthermia therapy. en-copyright= kn-copyright= en-aut-name=ZhouShengli en-aut-sei=Zhou en-aut-mei=Shengli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsutsumiuchiKaname en-aut-sei=Tsutsumiuchi en-aut-mei=Kaname kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ImaiRitsuko en-aut-sei=Imai en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiYukiko en-aut-sei=Miki en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoAnna en-aut-sei=Kondo en-aut-mei=Anna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagawaHiroshi en-aut-sei=Nakagawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeKazunori en-aut-sei=Watanabe en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhtsukiTakashi en-aut-sei=Ohtsuki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=3 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=4 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=5 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=6 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=7 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=8 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=tumor-homing peptide kn-keyword=tumor-homing peptide en-keyword=magnetic hyperthermia kn-keyword=magnetic hyperthermia en-keyword=magnetic nanoparticles kn-keyword=magnetic nanoparticles en-keyword=ferroptosis kn-keyword=ferroptosis en-keyword=tumor-specific delivery kn-keyword=tumor-specific delivery END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=11 article-no= start-page=5889 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anti-HMGB1 mAb Therapy Reduces Epidural Hematoma Injury en-subtitle= kn-subtitle= en-abstract= kn-abstract=Epidural and subdural hematomas are commonly associated with traumatic brain injury. While surgical removal is the primary intervention for these hematomas, it is also critical to prevent and reduce complications such as post-traumatic epilepsy, which may result from inflammatory responses in the injured brain areas. In the present study, we observed that high mobility group box-1 (HMGB1) decreased in the injured brain area beneath the epidural hematoma (EDH) in rats, concurrent with elevated plasma levels of HMGB1. Anti-HMGB1 monoclonal antibody therapy strongly inhibited both HMGB1 release and the subsequent increase in plasma levels. Moreover, this treatment suppressed the up-regulation of inflammatory cytokines and related molecules such as interleukin-1-beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) in the injured areas. Our in vitro experiments using SH-SY5Y demonstrated that hematoma components—thrombin, heme, and ferrous ion— prompted HMGB1 translocation from the nuclei to the cytoplasm, a process inhibited by the addition of the anti-HMGB1 mAb. These findings suggest that anti-HMGB1 mAb treatment not only inhibits HMGB1 translocation but also curtails inflammation in injured areas, thereby protecting the neural tissue. Thus, anti-HMGB1 mAb therapy could serve as a complementary therapy for an EDH before/after surgery. en-copyright= kn-copyright= en-aut-name=GaoShangze en-aut-sei=Gao en-aut-mei=Shangze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangDengli en-aut-sei=Wang en-aut-mei=Dengli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomonoYasuko en-aut-sei=Tomono en-aut-mei=Yasuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FuLi en-aut-sei=Fu en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GaoYuan en-aut-sei=Gao en-aut-mei=Yuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiYohei en-aut-sei=Takahashi en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YataMariko en-aut-sei=Yata en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=epidural hematoma kn-keyword=epidural hematoma en-keyword=HMGB1 kn-keyword=HMGB1 en-keyword=inflammatory response kn-keyword=inflammatory response END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=5938 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Palaeoproteomic investigation of an ancient human skeleton with abnormal deposition of dental calculus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Detailed investigation of extremely severe pathological conditions in ancient human skeletons is important as it could shed light on the breadth of potential interactions between humans and disease etiologies in the past. Here, we applied palaeoproteomics to investigate an ancient human skeletal individual with severe oral pathology, focusing our research on bacterial pathogenic factors and host defense response. This female skeleton, from the Okhotsk period (i.e., fifth to thirteenth century) of Northern Japan, poses relevant amounts of abnormal dental calculus deposition and exhibits oral dysfunction due to severe periodontal disease. A shotgun mass-spectrometry analysis identified 81 human proteins and 15 bacterial proteins from the calculus of the subject. We identified two pathogenic or bioinvasive proteins originating from two of the three "red complex" bacteria, the core species associated with severe periodontal disease in modern humans, as well as two additional bioinvasive proteins of periodontal-associated bacteria. Moreover, we discovered defense response system-associated human proteins, although their proportion was mostly similar to those reported in ancient and modern human individuals with lower calculus deposition. These results suggest that the bacterial etiology was similar and the host defense response was not necessarily more intense in ancient individuals with significant amounts of abnormal dental calculus deposition. en-copyright= kn-copyright= en-aut-name=Uchida-FukuharaYoko en-aut-sei=Uchida-Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimamuraShigeru en-aut-sei=Shimamura en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SawafujiRikai en-aut-sei=Sawafuji en-aut-mei=Rikai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiuchiTakumi en-aut-sei=Nishiuchi en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YonedaMinoru en-aut-sei=Yoneda en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshidaHajime en-aut-sei=Ishida en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumuraHirofumi en-aut-sei=Matsumura en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsutayaTakumi en-aut-sei=Tsutaya en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=3 en-affil=Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=4 en-affil=Research Center for Experimental Modeling of Human Disease, Kanazawa University kn-affil= affil-num=5 en-affil=The University Museum, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus kn-affil= affil-num=7 en-affil=School of Health Sciences, Sapporo Medical University kn-affil= affil-num=8 en-affil=Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI) kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=5 article-no= start-page=e0300644 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240517 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=PAI-1 mediates acquired resistance to MET-targeted therapy in non-small cell lung cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mechanisms underlying primary and acquired resistance to MET tyrosine kinase inhibitors (TKIs) in managing non-small cell lung cancer remain unclear. In this study, we investigated the possible mechanisms acquired for crizotinib in MET-amplified lung carcinoma cell lines. Two MET-amplified lung cancer cell lines, EBC-1 and H1993, were established for acquired resistance to MET-TKI crizotinib and were functionally elucidated. Genomic and transcriptomic data were used to assess the factors contributing to the resistance mechanism, and the alterations hypothesized to confer resistance were validated. Multiple mechanisms underlie acquired resistance to crizotinib in MET-amplified lung cancer cell lines. In EBC-1-derived resistant cells, the overexpression of SERPINE1, the gene encoding plasminogen activator inhibitor-1 (PAI-1), mediated the drug resistance mechanism. Crizotinib resistance was addressed by combination therapy with a PAI-1 inhibitor and PAI-1 knockdown. Another mechanism of resistance in different subline cells of EBC-1 was evaluated as epithelial-to-mesenchymal transition with the upregulation of antiapoptotic proteins. In H1993-derived resistant cells, MEK inhibitors could be a potential therapeutic strategy for overcoming resistance with downstream mitogen-activated protein kinase pathway activation. In this study, we revealed the different mechanisms of acquired resistance to the MET inhibitor crizotinib with potential therapeutic application in patients with MET-amplified lung carcinoma. en-copyright= kn-copyright= en-aut-name=ThuYin Min en-aut-sei=Thu en-aut-mei=Yin Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OchiKosuke en-aut-sei=Ochi en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsudakaShimpei en-aut-sei=Tsudaka en-aut-mei=Shimpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakatsuFumiaki en-aut-sei=Takatsu en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DateKeiichi en-aut-sei=Date en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MatsudaNaoki en-aut-sei=Matsuda en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwataKazuma en-aut-sei=Iwata en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakataKentaro en-aut-sei=Nakata en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1371307 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dissection of the signal transduction machinery responsible for the lysyl oxidase-like 4-mediated increase in invasive motility in triple-negative breast cancer cells: mechanistic insight into the integrin-β1-NF-κB-MMP9 axis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-beta 1 at the cancer plasma membrane. However, it has yet to be uncovered how the LOXL4-mediated abundance of integrin-beta 1 hastens the invasive outgrowth of TNBC cells at the molecular level.
Methods LOXL4-overexpressing stable clones were established from MDA-MB-231 cells and subjected to molecular analyses, real-time qPCR and zymography to clarify their invasiveness, signal transduction, and matrix metalloprotease (MMP) activity, respectively.
Results Our results show that LOXL4 potently promotes the induction of matrix metalloprotease 9 (MMP9) via activation of nuclear factor-kappa B (NF-kappa B). Our molecular analysis revealed that TNF receptor-associated factor 4 (TRAF4) and TGF-beta activated kinase 1 (TAK1) were required for the activation of NF-kappa B through I kappa beta kinase kinase (IKK alpha/beta) phosphorylation.
Conclusion Our results demonstrate that the newly identified LOXL4-mediated axis, integrin-beta 1-TRAF4-TAK1-IKK alpha/beta-I kappa beta alpha-NF-kappa B-MMP9, is crucial for TNBC cell invasiveness. en-copyright= kn-copyright= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KomalasariNi Luh Gede Yoni en-aut-sei=Komalasari en-aut-mei=Ni Luh Gede Yoni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Kasano-CamonesCarlos Ichiro en-aut-sei=Kasano-Camones en-aut-mei=Carlos Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NinomiyaKazumi en-aut-sei=Ninomiya en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoKen-Ichi en-aut-sei=Yamamoto en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GoharaYuma en-aut-sei=Gohara en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OchiToshiki en-aut-sei=Ochi en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=RumaI. Made Winarsa en-aut-sei=Ruma en-aut-mei=I. Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SumardikaI. Wayan en-aut-sei=Sumardika en-aut-mei=I. Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ZhouJin en-aut-sei=Zhou en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HonjoTomoko en-aut-sei=Honjo en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SakaguchiYoshihiko en-aut-sei=Sakaguchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KuribayashiFutoshi en-aut-sei=Kuribayashi en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=6 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=7 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=8 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=13 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=14 en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology kn-affil= affil-num=15 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=16 en-affil=Department of Microbiology, Tokushima Bunri University kn-affil= affil-num=17 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=18 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=19 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=20 en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University kn-affil= affil-num=21 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=22 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=23 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=invasion kn-keyword=invasion en-keyword=lysyl oxidase kn-keyword=lysyl oxidase en-keyword=NF-κB kn-keyword=NF-κB en-keyword=MMP9 kn-keyword=MMP9 END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue= article-no= start-page=6505595 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Circadian Rhythms Fluctuate the Treatment Effects of Intravesical Treatments on Rat Urinary Frequency Models en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives. It is still not clear how the intravesical instillation of drugs affects rat urinary frequency. This study aimed to examine the dynamics of intravesical treatments' treatment effect on rat urinary frequency models by real-time and extended monitoring using a novel continuous urination monitoring system. Methods. Nine eleven-week-old female Wistar rats were divided into three groups to receive intravesical instillation of 0.1% acetic acid (AA), 1.0% AA, or phosphate-buffered saline (PBS). Thirty minutes later, these drugs were voided, and rats were moved to a continuous urination monitoring system, UM-100. UM-100 monitored rat urination quantitatively and continuously for 24 hours. Rats were then euthanized, and histopathologic examinations using a damage score validated the severity of bladder inflammation. We used nine additional rats to determine the treatment effect of various drugs against the urinary frequency. These rats were also treated with 1.0% AA in the same way and divided into three groups (n = 3 each) to receive intravesical instillation of lidocaine, silver nitrate (AgNO3), or dimethyl sulfoxide (DMSO), respectively. Thirty minutes later, rats were catheterized again and moved to the UM-100, and their voiding was monitored for 24 hours. Results. Intravesical instillation of AA increased the urinary frequency and decreased the mean voided volume (VV) in a concentration-dependent manner, with statistical significance at a concentration of 1.0% (urinary frequency; p = 0.0007 , mean VV; p = 0.0032 , respectively) compared with PBS. Histopathological analysis of these models demonstrated a significantly higher damage score of bladder mucosa in both 0.1% AA and 1.0% AA compared with PBS, with the severity in concordance with the clinical severity of urinary frequency (0.1% AA: p < 0.0001 , 1.0% AA: p < 0.0001 ). Moreover, intravesical instillation of lidocaine, AgNO3, and DMSO decreased the urinary frequency. Continuous monitoring with UM-100 also demonstrated that the treatment effect of these intravesically instilled drugs occurred only at night. Conclusions. The extended monitoring of rat urination by UM-100 revealed a significant fluctuation in the treatment effect of intravesically instilled drugs between day and night. These findings may help establish novel therapies for urinary frequency. en-copyright= kn-copyright= en-aut-name=WatanabeTomofumi en-aut-sei=Watanabe en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TominagaYusuke en-aut-sei=Tominaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamaYuki en-aut-sei=Maruyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagasakiNaoya en-aut-sei=Nagasaki en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SekitoTakanori en-aut-sei=Sekito en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatanabeToyohiko en-aut-sei=Watanabe en-aut-mei=Toyohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=11 article-no= start-page=6269 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SPRED2 Is a Novel Regulator of Autophagy in Hepatocellular Carcinoma Cells and Normal Hepatocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sprouty-related enabled/vasodilator-stimulated phosphoprotein homology 1 domain containing 2 (SPRED2) is an inhibitor of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and has been shown to promote autophagy in several cancers. Here, we aimed to determine whether SPRED2 plays a role in autophagy in hepatocellular carcinoma (HCC) cells. The Cancer Genome Atlas (TCGA) Liver Cancer Database showed a negative association between the level of SPRED2 and p62, a ubiquitin-binding scaffold protein that accumulates when autophagy is inhibited. Immunohistochemically, accumulation of p62 was detected in human HCC tissues with low SPRED2 expression. Overexpression of SPRED2 in HCC cells increased the number of autophagosomes and autophagic vacuoles containing damaged mitochondria, decreased p62 levels, and increased levels of light-chain-3 (LC3)-II, an autophagy marker. In contrast, SPRED2 deficiency increased p62 levels and decreased LC3-II levels. SPRED2 expression levels were negatively correlated with translocase of outer mitochondrial membrane 20 (TOM20) expression levels, suggesting its role in mitophagy. Mechanistically, SPRED2 overexpression reduced ERK activation followed by the mechanistic or mammalian target of rapamycin complex 1 (mTORC1)-mediated signaling pathway, and SPRED2 deficiency showed the opposite pattern. Finally, hepatic autophagy was impaired in the liver of SPRED2-deficient mice with hepatic lipid droplet accumulation in response to starvation. These results indicate that SPRED2 is a critical regulator of autophagy not only in HCC cells, but also in hepatocytes, and thus the manipulation of this process may provide new insights into liver pathology. en-copyright= kn-copyright= en-aut-name=WangTianyi en-aut-sei=Wang en-aut-mei=Tianyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GaoTong en-aut-sei=Gao en-aut-mei=Tong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujisawaMasayoshi en-aut-sei=Fujisawa en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshimuraTeizo en-aut-sei=Yoshimura en-aut-mei=Teizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=autophagy kn-keyword=autophagy en-keyword=mitophagy kn-keyword=mitophagy en-keyword=SPRED proteins kn-keyword=SPRED proteins en-keyword=MAPK/ERK kn-keyword=MAPK/ERK en-keyword=mTOR kn-keyword=mTOR en-keyword=hepatocellular carcinoma kn-keyword=hepatocellular carcinoma END start-ver=1.4 cd-journal=joma no-vol=109 cd-vols= no-issue=20 article-no= start-page=L201103 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Realization of nodal-ring semimetal in pressurized black phosphorus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Topological semimetals are intriguing targets for exploring unconventional physical properties of massless fermions. Among them, nodal-line or nodal-ring semimetals have attracted attention for their unique one-dimensional band contact in momentum space and resulting nontrivial quantum phenomena. By field angular resolved magnetotransport measurements and theoretical calculations, we show that pressurized black phosphorus (BP) is an ideal nodal-ring semimetal with weak spin-orbit coupling, which has a sole and carrier density-tunable nodal ring isolated from other trivial bands. We also revealed that the large magnetoresistance effect and its field-angular dependence in semimetallic BP are due to highly anisotropic relaxation time. Our results establish pressurized BP as an elemental model material for exploring nontrivial quantum properties unique to the topological nodal ring. en-copyright= kn-copyright= en-aut-name=AkibaKazuto en-aut-sei=Akiba en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkahamaYuichi en-aut-sei=Akahama en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TokunagaMasashi en-aut-sei=Tokunaga en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiTatsuo C. en-aut-sei=Kobayashi en-aut-mei=Tatsuo C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Science, University of Hyogo kn-affil= affil-num=3 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Switchable synthesis of 3-aminoindolines and 2′-aminoarylacetic acids using Grignard reagents and 3-azido-2-hydroxyindolines en-subtitle= kn-subtitle= en-abstract= kn-abstract=The switchable synthesis of 3-aminoindolines and 2′-aminoaryl acetic acids from the same substrates, 3-azido-2-hydroxyindolines, was developed through denitrogenative electrophilic amination of Grignard reagents. The key to success is the serendipitous discovery that the reaction conditions, including solvents and reaction temperature, can affect the chemoselectivity. It is noteworthy that isotope-labeling experiments revealed the occurrence of the aziridine intermediate in the production of 2′-aminoaryl acetic acids. en-copyright= kn-copyright= en-aut-name=YamashiroToshiki en-aut-sei=Yamashiro en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbeTakumi en-aut-sei=Abe en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=4610 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240530 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes Pit1 localization and function en-subtitle= kn-subtitle= en-abstract= kn-abstract=NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication. en-copyright= kn-copyright= en-aut-name=LiYuying en-aut-sei=Li en-aut-mei=Yuying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangQiong en-aut-sei=Wang en-aut-mei=Qiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JiaHuimin en-aut-sei=Jia en-aut-mei=Huimin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshikawaKazuya en-aut-sei=Ishikawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KosamiKen-Ichi en-aut-sei=Kosami en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UebaTakahiro en-aut-sei=Ueba en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsujimotoAtsumi en-aut-sei=Tsujimoto en-aut-mei=Atsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamanakaMiki en-aut-sei=Yamanaka en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YabumotoYasuyuki en-aut-sei=Yabumoto en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MikiDaisuke en-aut-sei=Miki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SasakiEriko en-aut-sei=Sasaki en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FukaoYoichiro en-aut-sei=Fukao en-aut-mei=Yoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraMasayuki en-aut-sei=Fujiwara en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=Kaneko-KawanoTakako en-aut-sei=Kaneko-Kawano en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TanLi en-aut-sei=Tan en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KojimaChojiro en-aut-sei=Kojima en-aut-mei=Chojiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WingRod A. en-aut-sei=Wing en-aut-mei=Rod A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SebastianAlfino en-aut-sei=Sebastian en-aut-mei=Alfino kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NishimuraHideki en-aut-sei=Nishimura en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FukadaFumi en-aut-sei=Fukada en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NiuQingfeng en-aut-sei=Niu en-aut-mei=Qingfeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShimizuMotoki en-aut-sei=Shimizu en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YoshidaKentaro en-aut-sei=Yoshida en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TerauchiRyohei en-aut-sei=Terauchi en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=ShimamotoKo en-aut-sei=Shimamoto en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences kn-affil= affil-num=2 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=College of Agronomy, Jiangxi Agricultural University kn-affil= affil-num=4 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=7 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=8 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=9 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=10 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Faculty of Science, Kyushu University kn-affil= affil-num=12 en-affil=Department of Bioinformatics, Ritsumeikan University kn-affil= affil-num=13 en-affil=YANMAR HOLDINGS Co., Ltd. kn-affil= affil-num=14 en-affil=College of Pharmaceutical Sciences, Ritsumeikan University kn-affil= affil-num=15 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=16 en-affil=Graduate School of Engineering Science, Yokohama National University kn-affil= affil-num=17 en-affil=Arizona Genomics Institute, School of Plant Sciences, University of Arizona kn-affil= affil-num=18 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=19 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=20 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=21 en-affil=Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology kn-affil= affil-num=22 en-affil=Iwate Biotechnology Research Center kn-affil= affil-num=23 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=24 en-affil=Iwate Biotechnology Research Center kn-affil= affil-num=25 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=26 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=9869 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240430 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Absolute lymphocyte count and neutrophil-to-lymphocyte ratio as predictors of CDK 4/6 inhibitor efficacy in advanced breast cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) are the standard agents for treating patients with estrogen receptor-positive and human epidermal growth factor receptor 2-negative advanced breast cancer (ER + HER2 - ABC). However, markers predicting the outcomes of CDK4/6i treatment have yet to be identified. This study was a single-center retrospective cohort study. We retrospectively evaluated 101 patients with ER + HER2 - ABC receiving CDK4/6i in combination with endocrine therapy at Fukuyama City Hospital between November 2017 and July 2021. We investigated the clinical outcomes and the safety of CDK4/6i treatment, and the absolute lymphocyte count (ALC) and neutrophil-to-lymphocyte ratio (NLR) as predictive markers for CDK4/6i. We defined the cut-off values as 1000/mu L for ALC and 3 for NLR, and divided into "low" and "high" groups, respectively. We evaluated 43 and 58 patients who received abemaciclib and palbociclib, respectively. Patients with high ALC and low NLR had significantly longer overall survival than those with low ALC and high NLR (high vs. low; ALC: HR 0.29; 95% CI 0.12-0.70; NLR: HR 2.94; 95% CI 1.21-7.13). There was no significant difference in efficacy between abemaciclib and palbociclib and both had good safety profiles. We demonstrated that ALC and NLR might predict the outcomes of CDK4/6i treatment in patients with ER + HER2 - ABC. en-copyright= kn-copyright= en-aut-name=NakamotoShogo en-aut-sei=Nakamoto en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwamotoTakayuki en-aut-sei=Iwamoto en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuboShinichiro en-aut-sei=Kubo en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMari en-aut-sei=Yamamoto en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaTetsumasa en-aut-sei=Yamashita en-aut-mei=Tetsumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuwaharaChihiro en-aut-sei=Kuwahara en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IkedaMasahiko en-aut-sei=Ikeda en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital kn-affil= affil-num=5 en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital kn-affil= affil-num=6 en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital kn-affil= affil-num=7 en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital kn-affil= affil-num=8 en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=4600 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240530 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials en-subtitle= kn-subtitle= en-abstract= kn-abstract=Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications. en-copyright= kn-copyright= en-aut-name=SaidaYuri en-aut-sei=Saida en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GauthierThomas en-aut-sei=Gauthier en-aut-mei=Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiHiroo en-aut-sei=Suzuki en-aut-mei=Hiroo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhmuraSatoshi en-aut-sei=Ohmura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShikataRyo en-aut-sei=Shikata en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwasakiYui en-aut-sei=Iwasaki en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoyamaGodai en-aut-sei=Noyama en-aut-mei=Godai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KishibuchiMisaki en-aut-sei=Kishibuchi en-aut-mei=Misaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaYuichiro en-aut-sei=Tanaka en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YajimaWataru en-aut-sei=Yajima en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=GodinNicolas en-aut-sei=Godin en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=PrivaultGael en-aut-sei=Privault en-aut-mei=Gael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TokunagaTomoharu en-aut-sei=Tokunaga en-aut-mei=Tomoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OnoShota en-aut-sei=Ono en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KoshiharaShin-Ya en-aut-sei=Koshihara en-aut-mei=Shin-Ya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TsurutaKenji en-aut-sei=Tsuruta en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=BertoniRoman en-aut-sei=Bertoni en-aut-mei=Roman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=HadaMasaki en-aut-sei=Hada en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=2 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Engineering, Hiroshima Institute of Technology kn-affil= affil-num=5 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=6 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=7 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=11 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=12 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=13 en-affil=Graduate School of Engineering, Nagoya University kn-affil= affil-num=14 en-affil=Institute for Materials Research, Tohoku University kn-affil= affil-num=15 en-affil=School of Science, Tokyo Institute of Technology kn-affil= affil-num=16 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=18 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=19 en-affil=Institute of Pure and Applied Science and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba kn-affil= END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=301 end-page=306 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Palliative Gamma Knife Radiosurgery for a Small Part of a Large Vestibular Schwannoma in an Elderly Patient en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a case of a large vestibular schwannoma in an 80-year-old female patient that shrank after palliative Gamma Knife radiosurgery (GKS). Neurological symptoms included hearing deterioration and facial palsy. The tumor volume was 21.9 mL. Craniotomy was considered high-risk, and conventional GKS was risky, owing to the risk of transient enlargement. Therefore, GKS was performed on only a portion of the tumor. The marginal dose (12 Gy) volume was 3.8 mL (17.4%). The tumor began to shrink after transient enlargement. Sixty months later, the tumor volume was only 3.1 mL, and the patient was able to maintain independent activities of daily living without salvage treatment. en-copyright= kn-copyright= en-aut-name=NakazakiKiyoshi en-aut-sei=Nakazaki en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiraiSatoshi en-aut-sei=Hirai en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HishikawaTomohito en-aut-sei=Hishikawa en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Neurosurgery, Brain Attack Center Ota Memorial Hospital kn-affil= affil-num=2 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= en-keyword=vestibular schwannoma kn-keyword=vestibular schwannoma en-keyword=Gamma Knife radiosurgery kn-keyword=Gamma Knife radiosurgery en-keyword=large volume kn-keyword=large volume en-keyword=palliative kn-keyword=palliative en-keyword=elderly patient kn-keyword=elderly patient END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=295 end-page=300 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Calcification of a Hydrophilic Acrylic Intraocular Lens after Glaucoma Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract=A Japanese woman in her 70s was referred to our hospital for the evaluation and treatment of high intraocular pressure (IOP) in her right eye. She had undergone bilateral cataract surgeries and the insertion of hydrophilic acrylic intraocular lenses (IOLs). We performed trabeculotomy and trabeculectomy to lower her right IOP; thereafter, a circular opacity was observed on the right eye’s IOL surface. We removed the right IOL because that eye’s vision had decreased due to IOL opacification. The analysis of the removed IOL revealed that the main opacity component was calcium phosphate. This is the first post-glaucoma-surgery IOL calcification case report. en-copyright= kn-copyright= en-aut-name=OkamotoSara en-aut-sei=Okamoto en-aut-mei=Sara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShiodeYusuke en-aut-sei=Shiode en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimuraShuhei en-aut-sei=Kimura en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HosokawaMio en-aut-sei=Hosokawa en-aut-mei=Mio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatobaRyo en-aut-sei=Matoba en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanzakiYuki en-aut-sei=Kanzaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KindoHiroya en-aut-sei=Kindo en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoritaTetsuro en-aut-sei=Morita en-aut-mei=Tetsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsujiAkihiro en-aut-sei=Tsuji en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakahashiKosuke en-aut-sei=Takahashi en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MorizaneYuki en-aut-sei=Morizane en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Fukuyama City Hospital kn-affil= affil-num=10 en-affil=Fukuyama City Hospital kn-affil= affil-num=11 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=intraocular lens kn-keyword=intraocular lens en-keyword=IOL kn-keyword=IOL en-keyword=IOL calcification kn-keyword=IOL calcification en-keyword=hydrophilic acrylic IOL kn-keyword=hydrophilic acrylic IOL en-keyword=glaucoma surgery kn-keyword=glaucoma surgery END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=291 end-page=294 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of Gallbladder Metastasis of Malignant Melanoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the clinical course of malignant melanoma, which can metastasize to multiple organs, gallbladder metastases are rarely detected. A 69-year-old man who underwent resection of a primary malignant melanoma was subsequently treated with nivolumab for lung metastases and achieved complete response. Seven years after surgery, multiple nodules were found in the gallbladder, and he underwent laparoscopic cholecystectomy. The postoperative diagnosis was metastases of malignant melanoma. He has been recurrence-free 8 months after surgery. If radical resection is possible, such surgery should be performed for gallbladder metastases found in patients with other controlled lesions of malignant melanoma. en-copyright= kn-copyright= en-aut-name=MinagiHitoshi en-aut-sei=Minagi en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AokiHideki en-aut-sei=Aoki en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DoitaSusumu en-aut-sei=Doita en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyakeEiki en-aut-sei=Miyake en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaToshihiro en-aut-sei=Ogawa en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaniguchiFumitaka en-aut-sei=Taniguchi en-aut-mei=Fumitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ArataTakashi en-aut-sei=Arata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatsudaKoh en-aut-sei=Katsuda en-aut-mei=Koh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanakayaKohji en-aut-sei=Tanakaya en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center kn-affil= affil-num=2 en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center kn-affil= affil-num=3 en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center kn-affil= affil-num=4 en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center kn-affil= affil-num=5 en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center kn-affil= affil-num=6 en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center kn-affil= affil-num=7 en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center kn-affil= affil-num=8 en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center kn-affil= affil-num=9 en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center kn-affil= affil-num=10 en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center kn-affil= en-keyword=malignant melanoma kn-keyword=malignant melanoma en-keyword=gallbladder metastasis kn-keyword=gallbladder metastasis en-keyword=laparoscopic cholecystectomy kn-keyword=laparoscopic cholecystectomy END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=285 end-page=290 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Organized Chronic Subdural Hematoma (OCSDH) Mimicking Meningioma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Organized chronic subdural hematoma (OCSDH) is a relatively rare condition that forms over a longer period of time compared to chronic subdural hematoma and is sometimes difficult to diagnose with preoperative imaging. We resected an intracranial lesion in a 37-year-old Japanese man; the lesion had been increasing in size for >17 years. The preoperative diagnosis based on imaging findings was meningioma; however, pathological findings revealed OCSDH. Clinicians should be aware that OCSDH mimics other tumors and consider surgical strategies for this disease. en-copyright= kn-copyright= en-aut-name=HiranoShuichiro en-aut-sei=Hirano en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiKentaro en-aut-sei=Fujii en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=meningioma kn-keyword=meningioma en-keyword=organized chronic subdural hematoma kn-keyword=organized chronic subdural hematoma END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=281 end-page=284 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spontaneous Bilateral Pneumothorax in a Patient with Anorexia Nervosa: The Management of Prolonged Postoperative Air Leakage en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 24-year-old Japanese female with anorexia nervosa presented to our hospital for bilateral pneumothorax, and 12-Fr thoracostomy catheters were inserted into the bilateral pleural cavities. On hospital day 9, a thoracoscopic bullectomy was performed. However, air leakage relapsed on both sides on postoperative day 1. The air leakage on the right side was particularly persistent, and we switched the drainage to a Heimlich valve. Both lungs expanded gradually and the chest tube was removed on postoperative day 19. Passive pleural drainage might be an option for prolonged air leakage after a bullectomy in patients with anorexia nervosa. en-copyright= kn-copyright= en-aut-name=OkadaKazuhiro en-aut-sei=Okada en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakiYuho en-aut-sei=Maki en-aut-mei=Yuho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsubaraKei en-aut-sei=Matsubara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiranoYutaka en-aut-sei=Hirano en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraToshiya en-aut-sei=Fujiwara en-aut-mei=Toshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsuuraMotoki en-aut-sei=Matsuura en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=2 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=3 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=4 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=5 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=6 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= en-keyword=spontaneous pneumothorax kn-keyword=spontaneous pneumothorax en-keyword=anorexia nervosa kn-keyword=anorexia nervosa en-keyword=Heimlich valve kn-keyword=Heimlich valve END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=271 end-page=279 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Humidified High-Flow Nasal Cannula Oxygen Therapy with a Pulmonary Infection Control Window as a Ventilation Switching Indication in Combination with Atomizing Inhalation of Terbutaline on the Lung Function of Patients with Acute Exacerbation of COPD en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated how humidified high-flow nasal cannula oxygen therapy (HFNC) with a pulmonary infection control (PIC) window as a ventilation switching indication in combination with atomizing inhalation of terbutaline affects the lung function of patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). We examined 140 hospitalized AECOPD patients randomized to control and observation groups. Conventional supportive therapy and invasive mechanical ventilation with tracheal intubation were conducted in both groups, with a PIC window as the indication for ventilation switching. Noninvasive positive pressure ventilation (NIPPV) plus atomizing inhalation of terbutaline was used in the control group. In the observation group, HFNC combined with atomizing inhalation of terbutaline was used. Compared to the control group, after 48-hr treatment and treatment completion, the observation group had significantly increased levels of lung function indicators (maximal voluntary ventilation [MVV] plus forced vital capacity [FVC], p<0.05) and oxygen metabolism indicators (arterial oxygen partial pressure [PaO2], arterial oxygen content [CaO2], and oxygenation index, p<0.05). The comparison of the groups revealed that the levels of airway remodeling indicators (matrix metalloproteinase-2 [MMP-2], tissue inhibitor of metalloproteinase 2 [TIMP-2] plus MMP-9) and inflammatory indicators (interferon gamma [IFN-γ] together with interleukin-17 [IL-17], IL-10 and IL-4) were significantly lower after 48 h of treatment as well as after treatment completion (both p<0.05). These results demonstrate that HFNC with a PIC window as the indication for ventilation switching combined with atomizing inhalation of terbutaline can relieve the disorder of oxygen metabolism and correct airway hyper-reactivity. en-copyright= kn-copyright= en-aut-name=YeMengjiao en-aut-sei=Ye en-aut-mei=Mengjiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhangRenwei en-aut-sei=Zhang en-aut-mei=Renwei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine kn-affil= affil-num=2 en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine kn-affil= en-keyword=chronic obstructive pulmonary disease kn-keyword=chronic obstructive pulmonary disease en-keyword=inhalation kn-keyword=inhalation en-keyword=oxygen therapy kn-keyword=oxygen therapy en-keyword=pulmonary function kn-keyword=pulmonary function en-keyword=ventilation kn-keyword=ventilation END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=259 end-page=270 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Role of the Lipid Profile and Oxidative Stress in Fatigue, Sleep Disorders and Cognitive Impairment in Patients with Multiple Sclerosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this study is to investigate the relationship of the lipid profile, dysfunctional high-density lipoprotein, ischaemia-modified albumin and thiol–disulfide homeostasis with cognitive impairment, fatigue and sleep disorders in patients with multiple sclerosis. The cognitive functions of patients were evaluated with the Brief International Cognitive Assessment for Multiple Sclerosis battery. Fatigue was evaluated with the Fatigue Severity Scale and the Fatigue Impact Scale. The Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale were used to assess patients’ sleep disturbance. Peripheral blood samples were collected, and lipid levels and myeloperoxidase and paraoxonase activity were measured. The myeloperoxidase/paraoxonase ratio, which indicates dysfunctional high-density lipoprotein, was calculated. Thiol–disulfide homeostasis and ischaemia-modified albumin were measured.
We did not identify any relationship between dysfunctional high-density lipoprotein and the physical disability, cognitive decline, fatigue and sleep problems of multiple sclerosis. Thiol–disulfide homeostasis was associated with cognitive scores. The shift of the balance towards disulfide was accompanied by a decrease in cognitive scores. On the other hand, we did not detect any relationship between fatigue and sleep disorders and thiol–disulfide homeostasis. Our findings revealed a possible correlation between cognitive dysfunction and thiol–disulfide homeostasis in multiple sclerosis patients. en-copyright= kn-copyright= en-aut-name=VuralGonul en-aut-sei=Vural en-aut-mei=Gonul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DemirEsra en-aut-sei=Demir en-aut-mei=Esra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GumusyaylaSadiye en-aut-sei=Gumusyayla en-aut-mei=Sadiye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ErenFunda en-aut-sei=Eren en-aut-mei=Funda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BarakliSerdar en-aut-sei=Barakli en-aut-mei=Serdar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NeseliogluSalim en-aut-sei=Neselioglu en-aut-mei=Salim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ErelOzcan en-aut-sei=Erel en-aut-mei=Ozcan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University kn-affil= affil-num=2 en-affil=Department of Neurology, Ankara City Hospital kn-affil= affil-num=3 en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University kn-affil= affil-num=4 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= affil-num=5 en-affil=Department of Neurology, Ankara City Hospital kn-affil= affil-num=6 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= affil-num=7 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= en-keyword=multiple sclerosis kn-keyword=multiple sclerosis en-keyword=dysfunctional HDL kn-keyword=dysfunctional HDL en-keyword=thiol–disulfide homeostasis kn-keyword=thiol–disulfide homeostasis en-keyword=cognitive decline kn-keyword=cognitive decline END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=251 end-page=258 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative Analysis of Thoracic Rotation Exercises: Range of Motion Improvement in Standing and Quadruped Variants en-subtitle= kn-subtitle= en-abstract= kn-abstract=There have been few investigations into the effectiveness of thoracic spine exercises for improving thoracic range of motion (ROM) in any plane. This study assessed the effectiveness of two thoracic spine exercises: one in the quadruped position and one in the thoracic standing position. We determined how these exercises affect thoracic spine mobility ROM over a 2-week intervention period. Thirty-nine healthy participants were enrolled and assigned to a Quadruped Thoracic Rotation group (n=17 participants: 9 females and 8 males) or Flamenco Thoracic Spine Rotation group (n=22: 14 females and 8 males). All participants were administered a KOJI AWARENESSTM screening test, and the initial thoracic spine ROM before intervention exercise was measured in a laboratory setting. Quadruped Thoracic Rotation was performed as the quadruped exercise and Flamenco Thoracic Spine Rotation as the standing exercise. The KOJI AWARENESSTM thoracic spine test and ROM were evaluated on the day after the first exercise session and again after the program. Despite their different approaches to thoracic mobility, the quadruped exercise and standing exercise achieved equivalent improvement in thoracic ROM after 2 weeks. Practitioners have a range of exercise options for enhancing thoracic mobility based on their environmental or task-specific needs. en-copyright= kn-copyright= en-aut-name=MurofushiKoji en-aut-sei=Murofushi en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitomoSho en-aut-sei=Mitomo en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirohataKenji en-aut-sei=Hirohata en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FuruyaHidetaka en-aut-sei=Furuya en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatagiriHiroki en-aut-sei=Katagiri en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KaneokaKoji en-aut-sei=Kaneoka en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YagishitaKazuyoshi en-aut-sei=Yagishita en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Sports Science Center, Tokyo Medical and Dental University (TMDU) kn-affil= affil-num=2 en-affil=Japan Sports Agency kn-affil= affil-num=3 en-affil=Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University (TMDU) kn-affil= affil-num=4 en-affil=Department of Rehabilitation, Sonoda Third Hospital/Tokyo Medical Institute Tokyo Spine Center kn-affil= affil-num=5 en-affil=Department of Orthopedics, Dokkyo Medical University Saitama Medical Center kn-affil= affil-num=6 en-affil=Faculty of Sport Science, Waseda University kn-affil= affil-num=7 en-affil=Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University (TMDU) kn-affil= en-keyword=thoracic spine kn-keyword=thoracic spine en-keyword=thoracic rotation range of motion kn-keyword=thoracic rotation range of motion en-keyword=exercise intervention kn-keyword=exercise intervention END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=245 end-page=250 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Impact of Reduced Skeletal Muscle Mass on Patients with Knee Osteoarthritis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although several studies have suggested a possible association between sarcopenia and knee osteoarthritis (OA) in the elderly, there remains no definitive evidence. Recently, however, the serum creatinine/cystatin C ratio (sarcopenia index: SI) was reported to correlate with skeletal muscle mass. The present retrospective study therefore investigated the impact of reduced skeletal muscle mass on advanced knee OA using SI. In 55 individuals scheduled for knee osteotomy or knee arthroplasty, correlations between SI and patient-reported outcomes such as the Knee Society Score (KSS), Knee Injury and Osteoarthritis Outcome Score (KOOS), and Oxford Knee Score (OKS) were explored. Significant associations were found between SI and the KSS functional activity score (β=0.37; p=0.022), KOOS subscale for activities of daily living (β=0.42; p=0.0096), and OKS (β=0.42; p=0.0095). This study underscores the role of reduced muscle mass in functional outcomes and introduces SI as a valuable marker for assessing muscle loss in knee OA patients. en-copyright= kn-copyright= en-aut-name=AkagawaManabu en-aut-sei=Akagawa en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoHidetomo en-aut-sei=Saito en-aut-mei=Hidetomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiYasuhiro en-aut-sei=Takahashi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwamotoYosuke en-aut-sei=Iwamoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IidaJunpei en-aut-sei=Iida en-aut-mei=Junpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshikawaTakayuki en-aut-sei=Yoshikawa en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AbeToshiki en-aut-sei=Abe en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SaitoKimio en-aut-sei=Saito en-aut-mei=Kimio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KijimaHiroaki en-aut-sei=Kijima en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KasukawaYuji en-aut-sei=Kasukawa en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HongoMichio en-aut-sei=Hongo en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyakoshiNaohisa en-aut-sei=Miyakoshi en-aut-mei=Naohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Orthopedic Surgery, Omagari Kousei Medical Center kn-affil= affil-num=2 en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Orthopedic Surgery, Omagari Kousei Medical Center kn-affil= affil-num=4 en-affil=Department of Orthopedic Surgery, Omagari Kousei Medical Center kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Omagari Kousei Medical Center kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Omagari Kousei Medical Center kn-affil= affil-num=7 en-affil=Department of Orthopedic Surgery, Omagari Kousei Medical Center kn-affil= affil-num=8 en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine kn-affil= en-keyword=knee osteoarthritis kn-keyword=knee osteoarthritis en-keyword=sarcopenia index kn-keyword=sarcopenia index en-keyword=reduced muscle mass kn-keyword=reduced muscle mass en-keyword=activities of daily living kn-keyword=activities of daily living en-keyword=functional activity kn-keyword=functional activity END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=237 end-page=243 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Multidisciplinary Approach to Hip Fractures: Evaluating Outcomes on Mortality and Secondary Hip Fractures en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fracture liaison services (FLS) have been introduced in Japan and several other countries to reduce medical complications and secondary fractures. We aimed to evaluate the effects of the implementation of an FLS approach on patient outcomes during hospitalization at our hospital and over a 2-year follow-up post-injury. This retrospective cohort study included patients ≥ 60 years admitted to our hospital for hip fragility fractures between October 1, 2016, and July 31, 2020. Patient groups were defined as those treated before (control group, n=238) and after (FLS group, n=196) establishment of the FLS protocol at our institution. The two groups were compared in terms of time to surgery, length of hospital stay, and the incidence of complications after admission, including secondary hip fracture and mortality rates. The follow-up period was 24 months. FLS focuses on early surgery within 48 h of injury and assessing osteoporosis treatment before injury to guide post-discharge anti-osteoporosis medication. FLS reduced the length of hospital stay (p<0.001) and the prevalence of complications after admission (p<0.001), particularly cardiovascular disease, and it increased adherence to anti-osteoporosis medication. These FLS effects resulted in lower secondary hip fracture and mortality rates at 12 and 24 months post-injury. FLS for fragility hip fractures can improve patient outcomes during hospitalization and over a 2-year follow-up period. en-copyright= kn-copyright= en-aut-name=MuraokaOsamu en-aut-sei=Muraoka en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ImaiNorio en-aut-sei=Imai en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KuraishiTatsuya en-aut-sei=Kuraishi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImaiMakoto en-aut-sei=Imai en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukuharaTakashi en-aut-sei=Fukuhara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshimineToshifumi en-aut-sei=Yoshimine en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital kn-affil= affil-num=2 en-affil=Division of Comprehensive Musculoskeletal Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=3 en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital kn-affil= affil-num=4 en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital kn-affil= affil-num=6 en-affil=Department of Internal Medicine, Niigata Prefectural Tokamachi Hospital kn-affil= en-keyword=fracture liaison services kn-keyword=fracture liaison services en-keyword=complications after admission kn-keyword=complications after admission en-keyword=secondary hip fracture kn-keyword=secondary hip fracture en-keyword=mortality kn-keyword=mortality END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=227 end-page=235 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Lipopolysaccharide on the Duration of Zolpidem-Induced Loss of Righting Reflex in Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Zolpidem, a non-benzodiazepine hypnotic, is primarily used to treat insomnia. In a previous study, pior treatment with non-benzodiazepine receptor agonists was associated with inflammation. The present study aimed to clarify the association between the effects of zolpidem and inflammation in mice treated with lipopolysaccharide (LPS), a known model of inflammation. We assessed the zolpidem-induced loss of righting reflex (LORR) duration 24 h after LPS treatment in mice. Additionally, the expressions of γ-aminobutyric acid (GABA)A receptor subunit and K+-Cl− cotransporter isoform 2 (KCC2) mRNA in the hippocampus and frontal cortex were examined in LPS-treated mice. Pretreatment with LPS was associated with significantly prolonged duration of zolpidem-induced LORR compared to control mice. This effect was significantly attenuated by administering bicuculline, a GABAA receptor antagonist, or flumazenil, a benzodiazepine receptor antagonist, in LPS-treated mice. Compared to controls, LPS-treated mice showed no significant change in the expression of GABAA receptor subunits in the hippocampus or frontal cortex. Bumetanide, an Na+-K+-2Cl− cotransporter isoform 1 blocker, attenuated the extended duration of zolpidem-induced LORR observed in LPS-treated mice. LPS significantly decreased Kcc2 mRNA expression in the hippocampus and the frontal cortex. These findings suggest that inflammation increases zolpidem-induced LORR, possibly through a reduction in KCC2 expression. en-copyright= kn-copyright= en-aut-name=WadaYudai en-aut-sei=Wada en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UshioSoichiro en-aut-sei=Ushio en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KitamuraYoshihisa en-aut-sei=Kitamura en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=lipopolysaccharide kn-keyword=lipopolysaccharide en-keyword=zolpidem kn-keyword=zolpidem en-keyword=GABAA receptor kn-keyword=GABAA receptor en-keyword=K+-Cl− cotransporters kn-keyword=K+-Cl− cotransporters END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=215 end-page=225 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Assessment of a New Elbow Joint Positioning Method Using Area Detector Computed Tomography en-subtitle= kn-subtitle= en-abstract= kn-abstract=We propose a sitting position that achieves both high image quality and a reduced radiation dose in elbow joint imaging by area detector computed tomography (ADCT), and we compared it with the ‘superman’ and supine positions. The volumetric CT dose index (CTDIvol) for the sitting, superman, and supine positions were 2.7, 8.0, and 20.0 mGy and the dose length products (DLPs) were 43.4, 204.7, and 584.8 mGy • cm, respectively. In the task-based transfer function (TTF), the highest value was obtained for the sitting position in both bone and soft tissue images. The noise power spectrum (NPS) of bone images showed that the superman position had the lowest value up to approx. 1.1 cycles/mm or lower, whereas the sitting position had the lowest value when the NPS was greater than approx. 1.1 cycles/mm. The overall image quality in an observer study resulted in the following median Likert scores for Readers 1 and 2: 5.0 and 5.0 for the sitting position, 4.0 and 3.5 for the superman position, and 4.0 and 2.0 for the supine position. These results indicate that our proposed sitting position with ADCT of the elbow joint can provide superior image quality and allow lower radiation doses compared to the superman and supine positions. en-copyright= kn-copyright= en-aut-name=AkagawaTakuya en-aut-sei=Akagawa en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukuiRyohei en-aut-sei=Fukui en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KidaKatsuhiro en-aut-sei=Kida en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuuraRyutaro en-aut-sei=Matsuura en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimadaMakoto en-aut-sei=Shimada en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KinoshitaMitsuhiro en-aut-sei=Kinoshita en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagawaYoko en-aut-sei=Akagawa en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GotoSachiko en-aut-sei=Goto en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Tokushima Red Cross Hospital kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Radiology, Osaka International Cancer Institute kn-affil= affil-num=6 en-affil=Department of Radiology, Tokushima Red Cross Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Tokushima Red Cross Hospital kn-affil= affil-num=8 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= en-keyword=area detector computed tomography kn-keyword=area detector computed tomography en-keyword=elbow joint kn-keyword=elbow joint en-keyword=sitting position kn-keyword=sitting position en-keyword=dose reduction kn-keyword=dose reduction en-keyword=image quality assessment kn-keyword=image quality assessment END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=205 end-page=213 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Thoughts on and Proposal for the Education, Training, and Recruitment of Infectious Disease Specialists en-subtitle= kn-subtitle= en-abstract= kn-abstract=The global pandemic of COVID-19 has underscored the significance of establishing and sustaining a practical and efficient infection control system for the benefit and welfare of society. Infectious disease (ID) specialists are expected to take on leadership roles in enhancing organizational infrastructures for infection prevention and control (IPC) at the hospital, community, and national levels. However, due to an absolute shortage and an uneven distribution, many core hospitals currently lack the ID specialists. Given the escalating global risk of emerging and re-emerging infectious diseases as well as antimicrobial resistance pathogens, the education and training of ID specialists constitutes an imperative concern. As demonstrated by historical changes in the healthcare reimbursement system, the establishment and enhancement of IPC measures is pivotal to ensuring medical safety. The existing structure of academic society-driven certification and training initiatives for ID specialists, contingent upon the discretionary decisions of individual physicians, possesses both quantitative and qualitative shortcomings. In this article, I first address the present situations and challenges related to ID specialists and then introduce my idea of securing ID specialists based on the new concepts and platforms; (i) ID Specialists as National Credentials, (ii) Establishment of the Department of Infectious Diseases in Medical and Graduate Schools, (iii) Endowed ID Educative Courses Funded by Local Government and Pharmaceutical Companies, and (iv) Recruitment of Young Physicians Engaged in Healthcare Services in Remote Areas. As clarified by the COVID-19 pandemic, ID specialists play a crucial role in safeguarding public health. Hopefully, this article will advance the discussion and organizational reform for the education and training of ID specialists. en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=emerging infectious diseases kn-keyword=emerging infectious diseases en-keyword=infection prevention and control kn-keyword=infection prevention and control en-keyword=medical education kn-keyword=medical education en-keyword=silent pandemic kn-keyword=silent pandemic END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=7 article-no= start-page=394 end-page=407 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240531 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The specific shapes of capillaries are associated with worse prognosis in patients with invasive breast cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Angiogenesis is considered essential for tumor progression; however, whether histological counting of blood vessel numbers, expressed as microvessel density (MVD), can be a prognostic factor in breast cancer remains controversial. It has been suggested that the specific morphology of blood vessels such as glomeruloid microvascular proliferation (GMP) is associated with clinical parameters. Here, we aimed to clarify the significance of MVD with revised immunohistochemistry and to identify new blood vessel shapes that predict prognosis in breast cancer. Four hundred and eleven primary breast cancer specimens were collected, and the sections were immunohistochemically stained with CD31 (single staining) and CD31 and Collagen IV (double staining). The prognosis of patients was examined based on the MVD value, and the presence of GMP and other blood vessels with other specific shapes. As a result, high MVD value and the presence of GMP were not associated with worse prognosis. By contrast, patients with deep-curved capillaries surrounding tumor cell nests (C-shaped) or excessively branched capillaries near tumor cell nests showed a significantly poor prognosis. The presence of these capillaries was also correlated with clinicopathological parameters such as Ki-67 index. Thus, the morphology of capillaries rather than MVD can be a better indicator of tumor aggressiveness. en-copyright= kn-copyright= en-aut-name=SweHnin‐Wint‐Wint en-aut-sei=Swe en-aut-mei=Hnin‐Wint‐Wint kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujisawaMasayoshi en-aut-sei=Fujisawa en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KomatsubaraYu en-aut-sei=Komatsubara en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshimuraTeizo en-aut-sei=Yoshimura en-aut-mei=Teizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=angiogenesis kn-keyword=angiogenesis en-keyword=blood vessels kn-keyword=blood vessels en-keyword=breast cancer kn-keyword=breast cancer en-keyword=CD31 antigen kn-keyword=CD31 antigen en-keyword=immunohistochemistry kn-keyword=immunohistochemistry en-keyword=microvessel density kn-keyword=microvessel density en-keyword=survival analysis kn-keyword=survival analysis END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue= article-no= start-page=103650 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of cellulose nanofibers on soil water retention and aggregate stability en-subtitle= kn-subtitle= en-abstract= kn-abstract=Innovative solutions that address global challenges such as water scarcity and soil erosion are critical for maintaining sustainable agriculture. Due to their water-absorbing and soil-binding properties, cellulose nanofibers (CNF) can be applied to soil to enhance soil water retention and aggregate stability. In this study, we analyzed the effects of the drying temperature, dosage, irrigation water quality, and soil type on the efficacy of CNFs. Our results revealed that CNF dried at 5 degrees C is more effective at absorbing water than others, and adding 1% CNF enhanced soil water content up to 98%. The CNF samples absorbed water due to their hydrophilic molecular groups and morphological structure, as confirmed by Fourier-transform infrared spectroscopy and scanning electron microscopy. CNF addition increased the soil volumetric water content and prolonged water retention by 22 days in the paddy soil samples, highlighting its potential for drought-prone areas. Furthermore, irrigation water quality, such as pH and cation values, influenced the interactions between CNF and water molecules, suggesting adjustments to the water retention curve. In its hydrated state, CNF promotes colloid flocculation and binds to soil particles, thereby strengthening the bonds crucial for aggregate formation and stability. CNF enhanced macro-aggregate formation by up to 48% and 59% in the masa and paddy soil samples, respectively. Our study emphasizes the potential of CNF for water conservation, soil health, and overall agricultural sustainability. en-copyright= kn-copyright= en-aut-name=NgoAn Thuy en-aut-sei=Ngo en-aut-mei=An Thuy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriYasushi en-aut-sei=Mori en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BuiLong Thanh en-aut-sei=Bui en-aut-mei=Long Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Soil amendments kn-keyword=Soil amendments en-keyword=water -saving polymers kn-keyword=water -saving polymers en-keyword=soil moisture improvement kn-keyword=soil moisture improvement en-keyword=mean weight diameter kn-keyword=mean weight diameter en-keyword=irrigation water kn-keyword=irrigation water END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=28 article-no= start-page=5739 end-page=5747 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Total synthesis and structure–antifouling activity relationship of scabrolide F en-subtitle= kn-subtitle= en-abstract= kn-abstract=An efficient synthetic strategy for scabrolide F (7), a norcembranolide diterpene that was isolated from the Taiwanese soft coral Sinularia scabra, has only recently been reported by our group. Herein, we report details of the first total synthesis of 7. The tetrahydrofuran domain of 7 was stereoselectively constructed via the 5-endo-tet cyclization of a hydroxy vinyl epoxide. The reaction of alkyl iodide 30 with dithiane 38, followed by the introduction of an alkene moiety, afforded allylation precursor 41. The coupling of alkyl iodide 42 and allylic stannane 43 was examined as a model experiment of allylation. Because the desired allylated product 44 was not obtained, an alternative synthetic route toward 7 was investigated instead. In the second synthetic approach, fragment–coupling between alkyl iodide 56 and aldehyde 58, macrolactonization, and transannular ring-closing metathesis were used as the key steps to achieve the first total synthesis of 7. We hope that this synthetic strategy provides access to the total synthesis of other macrocyclic norcembranolides. We also evaluated the antifouling activity and toxicity of 7 and its synthetic intermediates toward the cypris larvae of the barnacle Amphibalanus amphitrite. This study is the first to report the antifouling activity of norcembranolides as well as the biological activity of 7. en-copyright= kn-copyright= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugitaniYuki en-aut-sei=Sugitani en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorishitaRyohei en-aut-sei=Morishita en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YorisueTakefumi en-aut-sei=Yorisue en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Institute of Natural and Environmental Sciences, University of Hyogo kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=3 article-no= start-page=e004237 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Plasma angiotensin-converting enzyme 2 (ACE2) is a marker for renal outcome of diabetic kidney disease (DKD) (U-CARE study 3) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction ACE cleaves angiotensin I (Ang I) to angiotensin II (Ang II) inducing vasoconstriction via Ang II type 1 (AT1) receptor, while ACE2 cleaves Ang II to Ang (1-7) causing vasodilatation by acting on the Mas receptor. In diabetic kidney disease (DKD), it is still unclear whether plasma or urine ACE2 levels predict renal outcomes or not.
Research design and methods Among 777 participants with diabetes enrolled in the Urinary biomarker for Continuous And Rapid progression of diabetic nEphropathy study, the 296 patients followed up for 9 years were investigated. Plasma and urinary ACE2 levels were measured by the ELISA. The primary end point was a composite of a decrease of estimated glomerular filtration rate (eGFR) by at least 30% from baseline or initiation of hemodialysis or peritoneal dialysis. The secondary end points were a 30% increase or a 30% decrease in albumin-to-creatinine ratio from baseline to 1 year.
Results The cumulative incidence of the renal composite outcome was significantly higher in group 1 with lowest tertile of plasma ACE2 (p=0.040). Group 2 with middle and highest tertile was associated with better renal outcomes in the crude Cox regression model adjusted by age and sex (HR 0.56, 95% CI 0.31 to 0.99, p=0.047). Plasma ACE2 levels demonstrated a significant association with 30% decrease in ACR (OR 1.46, 95% CI 1.044 to 2.035, p=0.027) after adjusting for age, sex, systolic blood pressure, hemoglobin A1c, and eGFR.
Conclusions Higher baseline plasma ACE2 levels in DKD were protective for development and progression of albuminuria and associated with fewer renal end points, suggesting plasma ACE2 may be used as a prognosis marker of DKD.Trial registration number UMIN000011525. en-copyright= kn-copyright= en-aut-name=UenoAsami en-aut-sei=Ueno en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnishiYasuhiro en-aut-sei=Onishi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiseKoki en-aut-sei=Mise en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaguchiSatoshi en-aut-sei=Yamaguchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KannoAyaka en-aut-sei=Kanno en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NojimaIchiro en-aut-sei=Nojima en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiguchiChigusa en-aut-sei=Higuchi en-aut-mei=Chigusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShikataKenichi en-aut-sei=Shikata en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyamotoSatoshi en-aut-sei=Miyamoto en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakatsukaAtsuko en-aut-sei=Nakatsuka en-aut-mei=Atsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=EguchiJun en-aut-sei=Eguchi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HidaKazuyuki en-aut-sei=Hida en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KatayamaAkihiro en-aut-sei=Katayama en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=WatanabeMayu en-aut-sei=Watanabe en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakatoTatsuaki en-aut-sei=Nakato en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ToneAtsuhito en-aut-sei=Tone en-aut-mei=Atsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TeshigawaraSanae en-aut-sei=Teshigawara en-aut-mei=Sanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MatsuokaTakashi en-aut-sei=Matsuoka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KameiShinji en-aut-sei=Kamei en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=MurakamiKazutoshi en-aut-sei=Murakami en-aut-mei=Kazutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShimizuIkki en-aut-sei=Shimizu en-aut-mei=Ikki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=MiyashitaKatsuhito en-aut-sei=Miyashita en-aut-mei=Katsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=AndoShinichiro en-aut-sei=Ando en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=NunoueTomokazu en-aut-sei=Nunoue en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center kn-affil= affil-num=14 en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center kn-affil= affil-num=15 en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center kn-affil= affil-num=16 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=17 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=18 en-affil=Okayama Saiseikai General Hospital kn-affil= affil-num=19 en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital kn-affil= affil-num=20 en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital kn-affil= affil-num=21 en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital kn-affil= affil-num=22 en-affil=Sakakibara Heart Institute of Okayama kn-affil= affil-num=23 en-affil=Japanese Red Cross Okayama Hospital kn-affil= affil-num=24 en-affil=Okayama City General Medical Center kn-affil= affil-num=25 en-affil=Nunoue Clinic kn-affil= affil-num=26 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=5 article-no= start-page=e0302537 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240521 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The use of artificial intelligence in induced pluripotent stem cell-based technology over 10-year period: A systematic scoping review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Stem cell research, particularly in the domain of induced pluripotent stem cell (iPSC) technology, has shown significant progress. The integration of artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), has played a pivotal role in refining iPSC classification, monitoring cell functionality, and conducting genetic analysis. These enhancements are broadening the applications of iPSC technology in disease modelling, drug screening, and regenerative medicine. This review aims to explore the role of AI in the advancement of iPSC research.
Methods
In December 2023, data were collected from three electronic databases (PubMed, Web of Science, and Science Direct) to investigate the application of AI technology in iPSC processing.
Results
This systematic scoping review encompassed 79 studies that met the inclusion criteria. The number of research studies in this area has increased over time, with the United States emerging as a leading contributor in this field. AI technologies have been diversely applied in iPSC technology, encompassing the classification of cell types, assessment of disease-specific phenotypes in iPSC-derived cells, and the facilitation of drug screening using iPSC. The precision of AI methodologies has improved significantly in recent years, creating a foundation for future advancements in iPSC-based technologies.
Conclusions
Our review offers insights into the role of AI in regenerative and personalized medicine, highlighting both challenges and opportunities. Although still in its early stages, AI technologies show significant promise in advancing our understanding of disease progression and development, paving the way for future clinical applications. en-copyright= kn-copyright= en-aut-name=VoQuan Duy en-aut-sei=Vo en-aut-mei=Quan Duy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IdaToshihiro en-aut-sei=Ida en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=4535 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cryptophyte algae are an evolutionarily distinct and ecologically important group of photosynthetic unicellular eukaryotes. Photosystem II (PSII) of cryptophyte algae associates with alloxanthin chlorophyll a/c-binding proteins (ACPs) to act as the peripheral light-harvesting system, whose supramolecular organization is unknown. Here, we purify the PSII-ACPII supercomplex from a cryptophyte alga Chroomonas placoidea (C. placoidea), and analyze its structure at a resolution of 2.47 & Aring; using cryo-electron microscopy. This structure reveals a dimeric organization of PSII-ACPII containing two PSII core monomers flanked by six symmetrically arranged ACPII subunits. The PSII core is conserved whereas the organization of ACPII subunits exhibits a distinct pattern, different from those observed so far in PSII of other algae and higher plants. Furthermore, we find a Chl a-binding antenna subunit, CCPII-S, which mediates interaction of ACPII with the PSII core. These results provide a structural basis for the assembly of antennas within the supercomplex and possible excitation energy transfer pathways in cryptophyte algal PSII, shedding light on the diversity of supramolecular organization of photosynthetic machinery. en-copyright= kn-copyright= en-aut-name=MaoZhiyuan en-aut-sei=Mao en-aut-mei=Zhiyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiXingyue en-aut-sei=Li en-aut-mei=Xingyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiZhenhua en-aut-sei=Li en-aut-mei=Zhenhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenLiangliang en-aut-sei=Shen en-aut-mei=Liangliang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiXiaoyi en-aut-sei=Li en-aut-mei=Xiaoyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YangYanyan en-aut-sei=Yang en-aut-mei=Yanyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HanGuangye en-aut-sei=Han en-aut-mei=Guangye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=8 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=9 en-affil=Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=2 article-no= start-page=e0299700 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240228 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Changes in the place of death before and during the COVID-19 pandemic in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
In the global aging, the coronavirus disease 2019 (COVID-19) pandemic may have affected the place of death (PoD) in Japan, where hospital deaths have dominated for decades. We analyzed the PoD trends before and during the COVID-19 pandemic in Japan.
Methods
This nationwide observational study used vital statistics based on death certificates from Japan between 1951 and 2021. The proportion of PoD; deaths at home, hospitals, and nursing homes; and annual percentage change (APC) were estimated using joinpoint regression analysis. Analyses were stratified by age groups and causes of death.
Results
After 2019, home deaths exhibited upward trends, while hospital death turned into downward trends. By age, no significant trend change was seen in the 0-19 age group, while hospital deaths decreased in the 20-64 age group in 2019. The trend change in home death in the >= 65 age group significantly increased since 2019 with an APC of 12.3% (95% confidence interval [CI]: 9.0 to 15.7), while their hospital death trends decreased by -4.0% (95% CI: -4.9 to -3.1) in 2019-2021. By cause of death, home death due to cancer and the old age increased since 2019 with an APC of 29.3% (95% CI: 25.4 to 33.2) and 8.8% (95% CI: 5.5 to 12.2), respectively.
Conclusion
PoD has shifted from hospital to home during the COVID-19 pandemic in Japan. The majority of whom were older population with cancer or old age. en-copyright= kn-copyright= en-aut-name=ShibataMasashi en-aut-sei=Shibata en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoyamaToshihiro en-aut-sei=Koyama en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KashiwagiHideyuki en-aut-sei=Kashiwagi en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of General Medicine, Iizuka Hospital kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Transitional and Palliative Care, Iizuka Hospital kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=5 article-no= start-page=414 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240424 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Go/No-Go Ratios Modulate Inhibition-Related Brain Activity: An Event-Related Potential Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=(1) Background: Response inhibition refers to the conscious ability to suppress behavioral responses, which is crucial for effective cognitive control. Currently, research on response inhibition remains controversial, and the neurobiological mechanisms associated with response inhibition are still being explored. The Go/No-Go task is a widely used paradigm that can be used to effectively assess response inhibition capability. While many studies have utilized equal numbers of Go and No-Go trials, how different ratios affect response inhibition remains unknown; (2) Methods: This study investigated the impact of different ratios of Go and No-Go conditions on response inhibition using the Go/No-Go task combined with event-related potential (ERP) techniques; (3) Results: The results showed that as the proportion of Go trials decreased, behavioral performance in Go trials significantly improved in terms of response time, while error rates in No-Go trials gradually decreased. Additionally, the NoGo-P3 component at the central average electrodes (Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and PC2) exhibited reduced amplitude and latency; (4) Conclusions: These findings indicate that different ratios in Go/No-Go tasks influence response inhibition, with the brain adjusting processing capabilities and rates for response inhibition. This effect may be related to the brain's predictive mechanism model. en-copyright= kn-copyright= en-aut-name=ZhangNan en-aut-sei=Zhang en-aut-mei=Nan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AnWeichao en-aut-sei=An en-aut-mei=Weichao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YuYinghua en-aut-sei=Yu en-aut-mei=Yinghua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WuJinglong en-aut-sei=Wu en-aut-mei=Jinglong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YangJiajia en-aut-sei=Yang en-aut-mei=Jiajia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=response inhibition kn-keyword=response inhibition en-keyword=ratio kn-keyword=ratio en-keyword=go/no-go task kn-keyword=go/no-go task en-keyword=ERP kn-keyword=ERP en-keyword=NoGo-P3 component kn-keyword=NoGo-P3 component END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=6 article-no= start-page=e8914 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240524 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Benign adrenal cyst: A rare type of adrenal incidentaloma en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YamamotoKoichiro en-aut-sei=Yamamoto en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OguniKohei en-aut-sei=Oguni en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=adrenal cyst kn-keyword=adrenal cyst en-keyword=adrenal incidentaloma kn-keyword=adrenal incidentaloma en-keyword=adrenal tumor kn-keyword=adrenal tumor en-keyword=hypertension kn-keyword=hypertension END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=10 article-no= start-page=2270 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recognition of 8-Oxo-2′-deoxyguanosine in DNA Using the Triphosphate of 2′-Deoxycytidine Connecting the 1,3-Diazaphenoxazine Unit, dCdapTP en-subtitle= kn-subtitle= en-abstract= kn-abstract=DNA is constantly damaged by various external and internal factors. In particular, oxidative damage occurs in a steady state, and 8-oxo-2 '-deoxyguanosine (oxodG) is known as the main oxidative damage. OxodG is a strong genotoxic nucleoside and is thought to be involved in the pathogenesis of cancer and neurological diseases. However, a breakthrough method to detect the position of oxodG in DNA has not yet been developed. Therefore, we attempted to develop a novel method to detect oxodG in DNA using artificial nucleosides. Recently, we have succeeded in the recognition of oxodG in DNA by a single nucleotide elongation reaction using nucleoside derivatives based on a purine skeleton with a 1,3-diazaphenoxazine unit. In this study, we developed a new nucleoside derivative with a pyrimidine skeleton in order to further improve the recognition ability and enzymatic reaction efficiency. We, therefore, designed and synthesized 2 '-deoxycytidine-1,3-diazaphenoxazine (Cdap) and its triphosphate derivatives. The results showed that it was incorporated into the primer strand relative to the dG template because of its cytidine skeleton, but it was more effective at the complementary position of the oxodG template. These results indicate that the new nucleoside derivative can be considered as one of the new candidates for the detection of oxodG in DNA. en-copyright= kn-copyright= en-aut-name=SakuradaTakato en-aut-sei=Sakurada en-aut-mei=Takato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChikadaYuta en-aut-sei=Chikada en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyaharaRyo en-aut-sei=Miyahara en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaniguchiYosuke en-aut-sei=Taniguchi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Pharmaceutical Sciences, Kyushu University kn-affil= affil-num=2 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Pharmaceutical Sciences, Kyushu University kn-affil= affil-num=4 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=8-oxo-2 '-deoxyguanosine kn-keyword=8-oxo-2 '-deoxyguanosine en-keyword=single nucleotide elongation reaction kn-keyword=single nucleotide elongation reaction en-keyword=artificial nucleoside triphosphate kn-keyword=artificial nucleoside triphosphate en-keyword=2 '-deoxycytidine derivatives kn-keyword=2 '-deoxycytidine derivatives END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=10 article-no= start-page=1811 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of Nutritional Status on Neutrophil-to-Lymphocyte Ratio as a Predictor of Efficacy and Adverse Events of Immune Check-Point Inhibitors en-subtitle= kn-subtitle= en-abstract= kn-abstract=The neutrophil -to-lymphocyte ratio (NLR) is useful for predicting the effectiveness of treatment with immune checkpoint inhibitors (ICIs) and immune-related adverse events (irAEs). Because a growing body of evidence has recently shown that the number of lymphocytes that comprise NLR fluctuates according to nutritional status, this study examined whether the usefulness of NLR varies in ICI treatment due to changes in nutritional status. A retrospective analysis was performed on 1234 patients who received ICI treatment for malignant tumors at our hospital. Progression-free survival (PFS) was significantly prolonged in patients with NLR < 4. Multivariate analysis revealed that the factors associated with the occurrence of irAE were NLR < 4 and the use of ipilimumab. However, when limited to cases with serum albumin levels <3.8 g/dL, lymphocyte counts significantly decreased, and the associations between NLR and PFS and between NLR and irAE occurrence disappeared. In contrast, when limited to the cases with serum albumin levels ≥3.8 g/dL, the associations remained, with significantly prolonged PFS and significantly increased irAE occurrence at NLR < 4. NLR may be a good predictive tool for PFS and irAE occurrence during ICI treatment when a good nutritional status is maintained. en-copyright= kn-copyright= en-aut-name=SueMasahiko en-aut-sei=Sue en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirataShoichiro en-aut-sei=Hirata en-aut-mei=Shoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= en-keyword=immune-related adverse events kn-keyword=immune-related adverse events en-keyword=serum albumin kn-keyword=serum albumin en-keyword=real-world practice kn-keyword=real-world practice END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=10 article-no= start-page=807 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploring the Regulators of Keratinization: Role of BMP-2 in Oral Mucosa en-subtitle= kn-subtitle= en-abstract= kn-abstract=The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism. en-copyright= kn-copyright= en-aut-name=MuXindi en-aut-sei=Mu en-aut-mei=Xindi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NguyenHa Thi Thu en-aut-sei=Nguyen en-aut-mei=Ha Thi Thu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZhaoKun en-aut-sei=Zhao en-aut-mei=Kun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KomoriTaishi en-aut-sei=Komori en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OohashiToshitaka en-aut-sei=Oohashi en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil= kn-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Oral Rehabilitation and Implantology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cell differentiation kn-keyword=cell differentiation en-keyword=epithelia kn-keyword=epithelia en-keyword=growth factor(s) kn-keyword=growth factor(s) en-keyword=bioinformatics kn-keyword=bioinformatics en-keyword=extracellular matrix (ECM) kn-keyword=extracellular matrix (ECM) en-keyword=mucocutaneous disorders kn-keyword=mucocutaneous disorders END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=128 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240522 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Subtotal esophagectomy and concurrent reconstruction with free jejunal flap for primary esophageal cancer after pancreatoduodenectomy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Pancreatoduodenectomy and subtotal esophagectomy are widely considered the most invasive and difficult surgical procedures in gastrointestinal surgery. Subtotal esophagectomy after pancreatoduodenectomy is expected to be extremely difficult due to complicated anatomical changes, and selecting an appropriate intestinal reconstruction method will also be a difficult task. Therefore, perhaps because the method is considered impossible, there have been few reports of subtotal esophagectomy after pancreatoduodenectomy.
Case presentation A 73-year-old man with a history of pancreatoduodenectomy was diagnosed with superficial thoracic esophageal squamous cell carcinoma. Definitive chemoradiation therapy was recommended at another hospital; however, he visited our department to undergo surgery. We performed the robot-assisted thoracoscopic subtotal esophagectomy. There were some difficulties with the reconstruction: the gastric tube could not be used, the reconstruction was long, and the organs reconstructed in the previous surgery had to be preserved. However, the concurrent reconstruction was achieved with the help of a free jejunal flap and vascular reconstruction. All reconstructions from the previous surgery, including the remnant stomach, were preserved via regional abdominal lymph node dissection. After reconstruction, intravenous indocyanine green showed that circulation in the reconstructed intestines was preserved. On postoperative day 1, no recurrent nerve paralysis was observed during laryngoscopy. The patient could start oral intake smoothly 2 weeks after surgery and did not exhibit any postoperative complications related to the reconstruction. The patient was transferred to another hospital on postoperative day 21.
Conclusions Owing to the free jejunal flap interposition method, we safely performed one stage subtotal esophagectomy and concurrent reconstruction, preservation of the remnant stomach, and pancreaticobiliary reconstruction in patients with a history of pancreatoduodenectomy. We believe that this method is acceptable and useful for patients undergoing complicated reconstruction. en-copyright= kn-copyright= en-aut-name=MoriwakeKazuya en-aut-sei=Moriwake en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawasakiKento en-aut-sei=Kawasaki en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsumotoTasuku en-aut-sei=Matsumoto en-aut-mei=Tasuku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HashimotoMasashi en-aut-sei=Hashimoto en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoTakuya en-aut-sei=Kato en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MaedaNaoaki en-aut-sei=Maeda en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanabeShunsuke en-aut-sei=Tanabe en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShirakawaYasuhiro en-aut-sei=Shirakawa en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Reconstruction with the free jejunum flap kn-keyword=Reconstruction with the free jejunum flap en-keyword=Subtotal esophagectomy kn-keyword=Subtotal esophagectomy en-keyword=After pancreatoduodenectomy kn-keyword=After pancreatoduodenectomy END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=5 article-no= start-page=877 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240427 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Isolation of Vibrio cholerae and Vibrio vulnificus from Estuarine Waters, and Genotyping of V. vulnificus Isolates Using Loop-Mediated Isothermal Amplification en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bacteria in the genus Vibrio are ubiquitous in estuarine and coastal waters. Some species (including Vibrio cholerae and Vibrio vulnificus) are known human pathogens causing ailments like cholera, diarrhea, or septicemia. Notably, V. vulnificus can also cause a severe systemic infection (known as vibriosis) in eels raised in aquaculture facilities. Water samples were periodically collected from the estuary of the Asahi River, located in the southern part of Okayama City, Japan. These samples were directly plated onto CHROMagar Vibrio plates, and colonies displaying turquoise-blue coloration were selected. Thereafter, polymerase chain reaction was used to identify V. cholerae and V. vulnificus. A total of 30 V. cholerae strains and 194 V. vulnificus strains were isolated during the warm season when the water temperature (WT) was higher than 20 degrees C. Concurrently, an increase in coliforms was observed during this period. Notably, V. vulnificus has two genotypes, designated as genotype 1 and genotype 2. Genotype 1 is pathogenic to humans, while genotype 2 is pathogenic to both humans and eels. The loop-mediated isothermal amplification method was developed to rapidly determine genotypes at a low cost. Of the 194 strains isolated, 80 (41.2%) were identified as genotype 1 strains. Among the 41 strains isolated when the WTs were higher than 28 degrees C, 25 strains (61.0%) belonged to genotype 1. In contrast, of the 32 strains isolated when the WTs were lower than 24 degrees C, 27 strains (84.4%) belonged to genotype 2. These results suggest that the distribution of the two genotypes was influenced by WT. en-copyright= kn-copyright= en-aut-name=MiyoshiShin-Ichi en-aut-sei=Miyoshi en-aut-mei=Shin-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurataMegumi en-aut-sei=Kurata en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiroseRiho en-aut-sei=Hirose en-aut-mei=Riho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshikawaMasaya en-aut-sei=Yoshikawa en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiangYong en-aut-sei=Liang en-aut-mei=Yong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamagishiYosuke en-aut-sei=Yamagishi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MizunoTamaki en-aut-sei=Mizuno en-aut-mei=Tamaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Vibrio cholerae kn-keyword=Vibrio cholerae en-keyword=Vibrio vulnificus kn-keyword=Vibrio vulnificus en-keyword=genotype kn-keyword=genotype en-keyword=LAMP kn-keyword=LAMP en-keyword=water temperature kn-keyword=water temperature END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=10 article-no= start-page=980 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Antimicrobial Photodynamic Therapy on the Tongue Dorsum on Reducing Halitosis and the Duration of the Effect: A Randomized Clinical Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Antimicrobial photodynamic therapy (PDT) is a treatment that is gaining popularity in modern clinical medicine. However, little is known about the effect of PDT alone on reducing oral halitosis and the duration of the effect. This trial examined the effect of PDT on the tongue dorsum on reducing oral halitosis and the duration of the effect. This study was approved by the Ethics Committee of Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, and Okayama University Hospital (CRB20-015), and it was registered in the Japan Registry of Clinical Trials (jRCTs061200060). Twenty-two participants were randomly assigned to two groups: an intervention group and control group. PDT was performed in the intervention group using red laser emission and methylene blue gel on the middle and posterior area of the tongue dorsum. The concentration of volatile sulfur compounds, bacterial count on the tongue dorsum, probing pocket depth, bleeding on probing, and simplified oral debris index score were determined before and 1 week after PDT. The Mann-Whitney U test was used to assess the significance of the differences in each parameter between the two groups. We found that the hydrogen sulfide concentration and bacterial count on the tongue dorsum were decreased in the intervention group, but there was no statistically significant difference between the two groups. These results indicated that performing only PDT on the tongue dorsum may not contribute to reducing halitosis. en-copyright= kn-copyright= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokoiAya en-aut-sei=Yokoi en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NagasakiJunichiro en-aut-sei=Nagasaki en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SawadaNanami en-aut-sei=Sawada en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Okayama University Dental School kn-affil= affil-num=5 en-affil=Department of Preventive Dentistry, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Oral Health Sciences, Takarazuka University of Medical and Health Care kn-affil= en-keyword=halitosis kn-keyword=halitosis en-keyword=antimicrobial photodynamic therapy kn-keyword=antimicrobial photodynamic therapy en-keyword=prevention kn-keyword=prevention en-keyword=randomized clinical trial kn-keyword=randomized clinical trial END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=5 article-no= start-page=294 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240515 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Application of Unidirectional Porous Hydroxyapatite to Bone Tumor Surgery and Other Orthopedic Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract=Unidirectional porous hydroxyapatite (UDPHAp) was developed as a remarkable scaffold characterized by a distinct structure with unidirectional pores oriented in the horizontal direction and connected through interposes. We evaluated the radiographic changes, clinical outcomes, and complications following UDPHAp implantation for the treatment of bone tumors. Excellent bone formation within and around the implant was observed in all patients treated with intralesional resection and UDPHAp implantation for benign bone tumors. The absorption of UDPHAp and remodeling of the bone marrow space was observed in 45% of the patients at a mean of 17 months postoperatively and was significantly more common in younger patients. Preoperative cortical thinning was completely regenerated in 84% of patients at a mean of 10 months postoperatively. No complications related to the implanted UDPHAp were observed. In a pediatric patient with bone sarcoma, when the defect after fibular resection was filled with UDPHAp implants, radiography showed complete resorption of the implant and clear formation of cortex and marrow in the resected part of the fibula. The patient could walk well without crutches and participate in sports activities. UDPHAp is a useful bone graft substitute for the treatment of benign bone tumors, and the use of this material has a low complication rate. We also review and discuss the potential of UDPHAp as a bone graft substitute in the clinical setting of orthopedic surgery. en-copyright= kn-copyright= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HataToshiaki en-aut-sei=Hata en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoKohei en-aut-sei=Sato en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatayamaHaruyoshi en-aut-sei=Katayama en-aut-mei=Haruyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KondoAyana en-aut-sei=Kondo en-aut-mei=Ayana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=hydroxyapatite kn-keyword=hydroxyapatite en-keyword=bone tumor kn-keyword=bone tumor en-keyword=orthopedic surgery kn-keyword=orthopedic surgery en-keyword=unidirectional porous hydroxyapatite kn-keyword=unidirectional porous hydroxyapatite en-keyword=bone graft kn-keyword=bone graft END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=10 article-no= start-page=e174618 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240522 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Double-faced CX3CL1 enhances lymphangiogenesis-dependent metastasis in an aggressive subclone of oral squamous cell carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Because cancer cells have a genetically unstable nature, they give rise to genetically different variant subclones inside a single tumor. Understanding cancer heterogeneity and subclone characteristics is crucial for developing more efficacious therapies. Oral squamous cell carcinoma (OSCC) is characterized by high heterogeneity and plasticity. On the other hand, CX3C motif ligand 1 (CX3CL1) is a double-faced chemokine with anti- and pro -tumor functions. Our study reported that CX3CL1 functioned differently in tumors with different cancer phenotypes, both in vivo and in vitro. Mouse OSCC 1 (MOC1) and MOC2 cells responded similarly to CX3CL1 in vitro. However, in vivo, CX3CL1 increased keratinization in indolent MOC1 cancer, while CX3CL1 promoted cervical lymphatic metastasis in aggressive MOC2 cancer. These outcomes were due to double-faced CX3CL1 effects on different immune microenvironments indolent and aggressive cancer created. Furthermore, we established that CX3CL1 promoted cancer metastasis via the lymphatic pathway by stimulating lymphangiogenesis and transendothelial migration of lymph -circulating tumor cells. CX3CL1 enrichment in lymphatic metastasis tissues was observed in aggressive murine and human cell lines. OSCC patient samples with CX3CL1 enrichment exhibited a strong correlation with lower overall survival rates and higher recurrence and distant metastasis rates. In conclusion, CX3CL1 is a pivotal factor that stimulates the metastasis of aggressive cancer subclones within the heterogeneous tumors to metastasize, and our study demonstrates the prognostic value of CX3CL1 enrichment in long-term monitoring in OSCC. en-copyright= kn-copyright= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaMasaaki en-aut-sei=Nakayama en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukuharaYoko en-aut-sei=Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShanQuisheng en-aut-sei=Shan en-aut-mei=Quisheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OnoKisho en-aut-sei=Ono en-aut-mei=Kisho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MizukawaNobuyoshi en-aut-sei=Mizukawa en-aut-mei=Nobuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Universit kn-affil= affil-num=6 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=5 article-no= start-page=477 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240430 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Measurements of Thermodynamic Data of Water in Ca-Bentonite by Relative Humidity Method en-subtitle= kn-subtitle= en-abstract= kn-abstract=Buffer material (compacted bentonite), one of the engineered barrier elements in the geological disposal of a high-level radioactive waste, develops swelling stress due to groundwater penetration from the surrounding rock mass. Montmorillonite is the major clay mineral component of bentonite. Even previous studies provide few mechanical and thermodynamic data on Ca-montmorillonite. In this study, thermodynamic data on Ca-montmorillonite were obtained as a function of water content by measuring relative humidity (RH) and temperature. The activities of water and the relative partial molar Gibbs free energies of water were determined from the experimental results, and the swelling stress of Ca-bentonite was calculated using the thermodynamic model and compared with measured data. The activities of water and the relative partial molar Gibbs free energies obtained in the experiments decreased with decreasing water content in water contents lower than about 25%. This trend was similar to that of Na-montmorillonite. The swelling stress calculated based on the thermodynamic model was approximately 200 MPa at a montmorillonite partial density of 2.0 Mg/m3 and approximately 10 MPa at a montmorillonite partial density of 1.4 Mg/m3. The swelling stresses in the high-density region (around 2.0 Mg/m3) were higher than that of Na-montmorillonite and were similar levels in the low-density region (around 1.5 Mg/m3). Comparison with measured data showed the practicality of the thermodynamic model. en-copyright= kn-copyright= en-aut-name=IchikawaKosuke en-aut-sei=Ichikawa en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoHaruo en-aut-sei=Sato en-aut-mei=Haruo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=geological disposal kn-keyword=geological disposal en-keyword=buffer material kn-keyword=buffer material en-keyword=Ca-montmorillonite kn-keyword=Ca-montmorillonite en-keyword=bentonite kn-keyword=bentonite en-keyword=swelling stress kn-keyword=swelling stress END start-ver=1.4 cd-journal=joma no-vol=118 cd-vols= no-issue= article-no= start-page=109704 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The effectiveness of palliative middle meningeal artery embolization prior to craniotomy for large acute epidural hematoma: A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction and importance: Acute epidural hematoma is typically managed with craniotomy. However, there are a few reports on transcatheter arterial embolization (TAE) as an adjunctive therapy.
Case presentation: A 70-year-old female with no obvious history of trauma was transported to our hospital. Computed tomography scan revealed an epidural hematoma of approximately 80 ml with a midline shift of 5 mm. We decided to perform an emergency craniotomy. However, the operating room (OR) was already occupied by a scheduled surgery and it would take 30 min to an hour to prepare it. We opted to wait for our OR, considering that, even if the patient was transferred to another hospital, it would take time for the craniotomy to commence.
Clinical discussion: We performed TAE for the middle meningeal artery (MMA) as a palliative measure to prevent hematoma enlargement. The MMA was selectively embolized with 20 % n-butyl-2-cyanoacrylate (NBCA), resulting in no hematoma enlargement or observed complications. The criteria for endovascular treatment of acute epidural hematoma are not yet well-established. This case demonstrates the potential role of endovascular treatment for large acute epidural hematomas in carefully selected patients.
Conclusion: If there is a time gap before craniotomy, TAE could be considered a viable option for large acute epidural hematomas as a palliative intervention before craniotomy. en-copyright= kn-copyright= en-aut-name=HirataYuichi en-aut-sei=Hirata en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiYu en-aut-sei=Takahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KuramotoSatoshi en-aut-sei=Kuramoto en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishihiroShingo en-aut-sei=Nishihiro en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OnoYasuhiro en-aut-sei=Ono en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchikawaTomotsugu en-aut-sei=Ichikawa en-aut-mei=Tomotsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Kagawa Prefectural Central Hospital kn-affil= en-keyword=Acute epidural hematoma kn-keyword=Acute epidural hematoma en-keyword=Middle meningeal artery embolization kn-keyword=Middle meningeal artery embolization en-keyword=Transcatheter arterial embolization kn-keyword=Transcatheter arterial embolization END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The optimum quantity of debt for an aging Japan: welfare and demographic dynamics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Japan’s government is heavily indebted, and the current net debt tends to increase. This paper uses an extended life-cycle general equilibrium model with endogenous fertility to investigate an optimal size of government debt from two viewpoints: individual welfare and future demographic dynamics. A simulation analysis finds that the level of net government debt, which maximizes per-capita utility, is negative at − 220% of Japan’s gross domestic product (GDP). The results also indicate that the net debt-to-GDP ratio of − 220% produces a considerable per-capita welfare gain; however, compared to the baseline simulation with a debt-to-GDP ratio of 150%, it substantially decreases the total population in the long run. en-copyright= kn-copyright= en-aut-name=OkamotoAkira en-aut-sei=Okamoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Faculty of Economics, Okayama University kn-affil= en-keyword=Government debt kn-keyword=Government debt en-keyword=Welfare kn-keyword=Welfare en-keyword=Demographic dynamics kn-keyword=Demographic dynamics en-keyword=Japanese economy kn-keyword=Japanese economy en-keyword=Simulation analysis kn-keyword=Simulation analysis en-keyword=H30 kn-keyword=H30 en-keyword=C68 kn-keyword=C68 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Attractive target for tax avoidance: trade liberalization and entry mode en-subtitle= kn-subtitle= en-abstract= kn-abstract=Growing foreign direct investments (FDIs) have been observed in parallel to the development of tax avoidance by multinational enterprises; however, empirical evidence indicates the asymmetric effects of trade costs on a firm’s entry decision. To give a new rationale and insights into the impacts of transfer pricing and trade liberalization on a firm’s global activities, this study incorporates transfer pricing and investigates a foreign firm’s entry decision: exports, greenfield FDI (GFDI), or cross-border mergers and acquisitions (CM&As). We show that CM&A is the equilibrium entry mode when transfer pricing regulation is loose, whereas the choice between exports and GFDI depends on the fixed costs of GFDI. Moreover, trade liberalization increases the likelihood of CM&A but decreases that of exports because a reduction in trade costs enhances tax-avoidance efficiency due to more intrafirm trade, implying that tax avoidance in the form of CM&A becomes crucial as globalization progresses. Our welfare analysis shows that regulating CM&A based on consumers’ benefits may result in welfare reduction because profit shifting is most effective under CM&A and a host country’s tax revenue from the foreign firm increases. The results imply the importance of considering the link between international tax and antitrust policies. en-copyright= kn-copyright= en-aut-name=OkoshiHirofumi en-aut-sei=Okoshi en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Faculty of Economics, Okayama University kn-affil= en-keyword=Transfer price kn-keyword=Transfer price en-keyword=Cross-border mergers and acquisitions kn-keyword=Cross-border mergers and acquisitions en-keyword=Entry mode kn-keyword=Entry mode en-keyword=Economic integration kn-keyword=Economic integration en-keyword=Antitrust policy kn-keyword=Antitrust policy en-keyword=F23 kn-keyword=F23 en-keyword=H26 kn-keyword=H26 en-keyword=L13 kn-keyword=L13 END