start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1964 dt-pub=19641025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=表紙・目次 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Institute for Thermal Spring Research, Okayama University en-aut-sei=Institute for Thermal Spring Research, Okayama University en-aut-mei= kn-aut-name=岡山大学温泉研究所 kn-aut-sei=岡山大学温泉研究所 kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue= article-no= start-page=1 end-page=10 dt-received= dt-revised= dt-accepted= dt-pub-year=1964 dt-pub=19641025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Radioactive Anomaly in the Okutsu Kaoline Mine, Okayama Prefecture kn-title=岡山県奥津カオリン鉱床の放射能異常 en-subtitle= kn-subtitle= en-abstract=The Okutsu Kaolin Mine. producing about 450 tons of clay a month, is located 25 Km north of Tsuyama, northern Okayama Prefecture. The massive hydrothermal clay deposits, present in granodiorite, is vertical1y and horizontally zoned. A white clay core, hal10ysite and hydrated halloysite, is surrounded by a laumontite-quartz zone. A epidote-quartz zone comes next and the outermost is a slightly altered granodiorite associated with epidote. The epidote-quartz zone is usually of radioactivity which is due to minor amounts of a reddish brown amorphous mineral, containg thorium. However, Uranium has never been detected in materials from the radioactive zone. The other zones are normal or low radioactivity. During hydrothermal alteration, the granodiorite changed to clay deposits and all the original components except Al(2)O(3) and TiO(2) were leached out. The leached CaO and Fe(2)O(3) were repricipitated around the deposits forming the epidote-quartz zone. The leached thorium behaved similarly with the two elements and waS concentrated together with them. The concept of the concentration of thorium discussed in this paper may help in solving questions on the alteration of the basal granite and the origin of radioactive elements in the neighbouring Ningyo Toge Uranium Fields. kn-abstract=奥津カオリン鉱床は花崗緑岩中の熱水交代性の塊状粘土鉱床であって, 中心部に白色粘土鉱体, それをとりまいて石英沸石帯,更にその外側に緑簾石帯からなる変質の帯状分布が存在する. 放射能異常は外側変質帯の緑簾石帯に集中しており, そこにトリウムの濃集が認められる. 本鉱床の放射性元素の濃集は変質帯形成の機構と密接に関連するものとみられる. en-copyright= kn-copyright= en-aut-name=OkunoTakahara en-aut-sei=Okuno en-aut-mei=Takahara kn-aut-name=奥野孝晴 kn-aut-sei=奥野 kn-aut-mei=孝晴 aut-affil-num=1 ORCID= en-aut-name=WatanabeKoji en-aut-sei=Watanabe en-aut-mei=Koji kn-aut-name=渡辺晃二 kn-aut-sei=渡辺 kn-aut-mei=晃二 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学温泉研究所 affil-num=2 en-affil= kn-affil=岡山大学温泉研究所地質学部門 END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue= article-no= start-page=11 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=1964 dt-pub=19641025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Fluorescent X-ray Spectrometric Determination of Uranium,Zirconium, Yttrium and Strontium in Solution kn-title=溶液法蛍光X線分析によるウラン,ジルコニウム,イツトリウム,ストロンチウムの定量 en-subtitle= kn-subtitle= en-abstract= kn-abstract=ウラン鉱床の成因およびウラン鉱物の生成状況を解明するためには,ウラン含有量と同時に,ジルコニウム,イットリウム,ストロンチウムなどの含有量の多少を知ることが,人形峠周辺の鉱床の研究過程において重要となった.これら諸元素の定量をかなりの精度で微量の場合にまで迅速に行なうため,溶液法による蛍光X線分析法を検討した.試料は細粉としたのち,王水などの強酸で分解し,残りはロ過除去してのち,濃縮して一定容となし,その一部をあらたに試作した液体試料保持台(内容積1.8ml,液層の厚さ2.5mm)に入れて測定を行なう.タングステン管球を用い,45KV,22mAの条件で,理学電機製の装置(結晶はLiF)を用い,固定計数法によって各螢光X線(ULα,ZrKα,SrKα,YKα)の強度を計測する.各元素の標準溶液について,最適の角度,バックダウランド値,強度と濃度の関係を検討し,比較的低濃度(20μg/ml前後)まで,検量線の直線性によって,精度よく定量し得ること を知った.さらにこれら諸元素の混合溶液についても検討し,ZrKα に対するウランおよびストロンチウムの影響,さらに共存元素として含有量の多い鉄の影響をしらべ,蛍光X線法により定量した鉄の存在量による諸元素の測定値に対する補正を検討した.以上の諸検討にもとずいて,本法の迅速性を活用し,実際の各種試料について諸元素の定量を行ない,興味ある結果を得られることを知った. en-copyright= kn-copyright= en-aut-name=OkunoTakahara en-aut-sei=Okuno en-aut-mei=Takahara kn-aut-name=奥野孝晴 kn-aut-sei=奥野 kn-aut-mei=孝晴 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学温泉研究所 END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue= article-no= start-page=21 end-page=40 dt-received= dt-revised= dt-accepted= dt-pub-year=1964 dt-pub=19641025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Bed Rock and Wall Rock Alteration of the Uranium Deposits at the Togo Mine, Tottori Prefecture (1) Katamo and Asabatake Deposits kn-title=鳥取県東郷鉱山ウラン鉱床の基盤岩ならびに母岩の変質 (1)方面・麻畑鉱床 en-subtitle= kn-subtitle= en-abstract=The Katamo and Asabatake Uranium Deposits, Togo Mine, about 5 Km south east of the lake Togo, central Tottori prefecture, is investigated to understand the nature of the bed rock and wall rock alterations. These alterations are remarkable and characterized as follows. (1) Both the clay mineral species and their relative amounts are closely related to the "oxidation-reduction enviroment" of the deposits. (2) The degree of alteration depends on the nature of the mother rocks and differs from an area to another. The most remarkable alteration is realized in the secondary oxidation zone. (3) Although the secondary uranium minerals are confined in the oxidation zone, there is no apparent relationship between the total amounts of clay minerals and uranium contents of the deposits. But the amounts of montmorillonite seems to decrease as uranium content goes up within some limited areas. The principal clay mineral in the deposits is montmorillonite. Kaolinite is also present in a small amount. Sericite is found only in some of the veins as an accessory mineral. Hydrothermal solutions seems to have played an important role for the formation of montmorillonite, as it is found in a well crystallized form in altered acidic pyroclastic sediments. Kaolinite, on the other hand, has a tendency to increase in its amount in arkose sediments which are sandwiched in volcanic sediments. This seems to show that kaolinite is a weathered product of the bed rocks of this region. The results presented in this paper could be a help in considering the origin of the Uranium deposits in this area. kn-abstract=東郷鉱山,方面・麻畑ウラン鉱床の基盤岩および母岩は粘土化が著しく,その特徴として次のことが挙げられる. (a)粘土鉱物の種類,存在量は,鉱床の酸化帯・非酸化帯にはゞ規制されている.(b)粘土化の程度は原岩の種類により異なり,同一種数の岩石では酸化帯における変質が特に顕著である.(c)粘土量とウラン含有量との間には明確な相関は見出せないが,モンモリロナイトの量についてのみ観察すると,おおよそ負の相関がみられる.また,粘土化の主体をなすモンモリロナイトは,結晶度が良好で熱水変質が示唆きれる.化学分析の結果,SiO(2)の量が少ないので珪ばん比が異常に小さいが,ウラン鉱床近辺においてモンモリロナイト化に伴なう珪化帯が認められず,珪酸の逸脱が考えられる.鉱量的にみて,両鉱床の主体をなすウラン鉱物が燐顧塩鉱物であり,珪酸塩鉱物が少ないことなどから,モンモリロナイト化作用と鉱化作用との間には,直接関連がないものと考察される. en-copyright= kn-copyright= en-aut-name=WatanabeKoji en-aut-sei=Watanabe en-aut-mei=Koji kn-aut-name=渡辺晃二 kn-aut-sei=渡辺 kn-aut-mei=晃二 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学温泉研究所地質学部門 END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue= article-no= start-page=41 end-page=52 dt-received= dt-revised= dt-accepted= dt-pub-year=1964 dt-pub=19641025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Mineral Composition of Boring Core at Tottori Hot Spring kn-title=鳥取温泉におけるボーリング・コアの組成鉱物について en-subtitle= kn-subtitle= en-abstract=The boring coreS of Tottori Hot Spring, Tottori city were investigated by means of X-ray powder method and differential thermal analysis. Near this district, the Quarternary sediments are perceived until at a depth of 54 meters, and they show some striking differences from the Tertiary sediments which lies under-neath the former. In the Quarternary sediments, small amounts of chlorite coexist with ilIte. Kaolinite is found only in the top soil, and montmorillonite is present just above the unconformity with the Tertiary sediments. The clays from the Tertiary sediments contain abundant amounts of chlorite that exibits regional propylitization. The amounts of the rock forming minerals, quartz and feldspars, in these sediments regularly decrease with increasing amounts of clay minerals. The pH of the thermal water at the pit bottom ranges from 7 to 8, and the maximum water temperature, 57.2℃, is observed. The secondary minerals, montmorillonite and calcite, are thought to be the alteration products by the thermal water. kn-abstract=鳥取温泉の深度300mに及ぶ試錐のボーリング・コアを検討した結果,主成分鉱物として,石英,長石類(斜長石,加里長石,)と二次的生成鉱物としてモンモリロナイト,カオリナイト,イライト,緑泥石,黄鉄鉱などを認めた.このうち,イライトは堆積岩中に普遍的に存在し,更に緑泥石も全般的にしかも第三紀層で多量に認められている.モンモリロナイトは方解石と共に温泉による生成が考へられ,また,カオリナイトは表土層にのみ認める事ができる.一方,加里長石,黄鉄鉱,緑泥石の産出状態,及びコアが示す粒度,酸化状態からして第四紀層の堆積環境が推定され,25mを境として下部は数回の陸化を含む浅い堆積層であるのに対し,上部は比較的深い.背後供給地から離れた海成層を示唆する. en-copyright= kn-copyright= en-aut-name=WatanabeKoji en-aut-sei=Watanabe en-aut-mei=Koji kn-aut-name=渡辺晃二 kn-aut-sei=渡辺 kn-aut-mei=晃二 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学温泉研究所地質学部門 END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue= article-no= start-page=53 end-page=62 dt-received= dt-revised= dt-accepted= dt-pub-year=1964 dt-pub=19641025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Determination of Dissolved Gases in the Ground Water at Mt. Daisen kn-title=大山の地下水の溶存ガスの定量 en-subtitle= kn-subtitle= en-abstract=The contents of the dissolved gases in the ground waters at the north west of the piedmont district of Daisen volcano, Tottori prefecture, are determined as follows. Ar: 0.34~0.40 (cc/l) 1.48~1.64 (%) O(2) : 6.69~9.08 (cc/l) 27.92~35.30 (%) N(2) : 15.16~17.23 (cc/l) 63.22~67.92 (%) The calculated degree of saturation of these ground waters with O(2) and N ranges as shown below : O(2) : 87.8~113.9 (%) N(2) : 110.5~123.2 (%) In this district, the ground water is generally of a shallow type. The degree of oxygen consumption of the water has a tendency to decrease as its pass under the ground is shorter. From the results obtained here, it is concluded that these ground water have intermediate properties of the surface and general ground water. kn-abstract=鳥取県大山火山の西北麓の地下水中に潜存するガス成分比は Ar : 0.34~0.40 (cc/l) 1.48~1.64 (%) O(2) : 6.69~9.08 (cc/l) 27.92~35.30 (%) N(2) : 15.16~17.23 (cc/l) 63.22~67.92 (%) の範囲内で定量できる.また,飽和度は次の如くである. O(2) : 87.8~113.9 (%) N(2) : 110.5~123.2 (%) この結果を地表水と比較して,O(2)の飽和度は小さいが,量的な差異はあまりみられず,地表水と地下水の中間的な性質を示している.地質構造,地形が溶存ガス成分比に及ぼす影響は,地下水の流通経路が長距離とみなされる場合に若干のO(2)の消費が認められ,短距離で湧出したと思われるものにはO(2)の飽和度が大きい傾向がある.また,水理地質的にみて,地質と湧出量には密接な関連を見出せるが,ガス成分には影響を与へてはいない. en-copyright= kn-copyright= en-aut-name=WatanabeKoji en-aut-sei=Watanabe en-aut-mei=Koji kn-aut-name=渡辺晃二 kn-aut-sei=渡辺 kn-aut-mei=晃二 aut-affil-num=1 ORCID= en-aut-name=OkunoTakaharu en-aut-sei=Okuno en-aut-mei=Takaharu kn-aut-name=奥野孝晴 kn-aut-sei=奥野 kn-aut-mei=孝晴 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学温泉研究所地質学部門 affil-num=2 en-affil= kn-affil=岡山大学温泉研究所 END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue= article-no= start-page=63 end-page=94 dt-received= dt-revised= dt-accepted= dt-pub-year=1964 dt-pub=19641025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Skarns in the Kamioka mine en-subtitle= kn-subtitle= en-abstract= kn-abstract=The Kamioka mine, Gifu prefecture, working the largest lead and zinc deposit in Japan, lies in the eastern corner of the Hida gneiss complex. The skarn minerals in this mining district are genetically divided into the following three groups. Skarn A : Recrystallized skarn, formed by a regional metamorphism of impure limestone beds. The creation of skarn A is same in age to the formation of the Hida metamorphic complex. Skarn B : Zoned skarn along the contact between limestone and Inishi syenitic rock, having a same origination to Shimonomoto granite. The formation of skarn B is closely related to the intrusion of Shimonomoto granite. Skarn C : Pyrometasomatic skarn, formed by pyrometasomatic replacement of limestone probably after the deposition of the Mesozoic Tetori formation. The ore deposits of the Kamioka mine are composed of the pyrometasomatic skarn (skarn C) called "Mokuji" and the hydrothermal deposits called "Shiroji". Skarn A and skarn B have no genetical relation to the ore deposits. But skarn A acts the valuable role for the stratigrahical classification of ore deposits and limestone beds. en-copyright= kn-copyright= en-aut-name=OkunoTakaharu en-aut-sei=Okuno en-aut-mei=Takaharu kn-aut-name=奥野孝晴 kn-aut-sei=奥野 kn-aut-mei=孝晴 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Institute for Thermal Spring Research, Okayama University END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1964 dt-pub=19641025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=奥付 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Institute for Thermal Spring Research, Okayama University en-aut-sei=Institute for Thermal Spring Research, Okayama University en-aut-mei= kn-aut-name=岡山大学温泉研究所 kn-aut-sei=岡山大学温泉研究所 kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1964 dt-pub=19641025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=裏表紙・英文目次 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Institute for Thermal Spring Research, Okayama University en-aut-sei=Institute for Thermal Spring Research, Okayama University en-aut-mei= kn-aut-name=岡山大学温泉研究所 kn-aut-sei=岡山大学温泉研究所 kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END