Memoirs of the Faculty of Engineering, Okayama University 37巻 2号
2003-03 発行
Imajo, Shuya
Division of Electronic and Information System Engineering Graduate School of Natural Science and Technology Okayama University
Konishi, Masami
Dept. of Electrical and Electronic Engineering Okayama University
Imai, Jun
Dept. of Electrical and Electronic Engineering Okayama University
Kaken ID
researchmap
Nishi, Tatsushi
Dept. of Electrical and Electronic Engineering Okayama University
In hot strip rolling mills, the looper control system is automated. However, the looper's behavior tends to be unstable in threading. Therefore, human expert always intervenes and stabilizes the looper's behavior by tuning PID gains and interposing manipulation variable of looper control system. In this paper, we propose a method based on the recurrent neural network to express PID gains tuning action by human. Furthermore, we propose two methods to update the model by learning. To check the effectiveness of the proposed learning methods, numerical simulation applied to the looper height control is carried out.