Chemical Geology 695 (2025) 123031

e 4

ELSEVIER

journal homepage: www.elsevier.com/locate/chemgeo

Contents lists available at ScienceDirect CHEMICAL
GEOLOGY

Chemical Geology

Research paper

o

Check for

Flash vaporization and migration of iodine in the oceanic plate iz

subduction zone

Noriyuki Suzuki ™", Jun Kameda ", Miki Amo ¢

2 Department of Earth and Planetary Sciences, Faculty of Science, Hokkaido University; Kita-ku, N10 W8, Sapporo 060-0810, Japan
b Institute for Planetary Materials, Okayama University; 827 Yamada, Misasa, Tottori 682-0193, Japan
¢ Geology and Geophysics Division, Technology Department, Japan Organization for Metals and Energy Security; 1-2-2 Hamada, Mihama-ku, Chiba 261-0025, Japan

ARTICLE INFO

Editor: Dr. Claudia Romano

Keywords:

Iodine circulation
Flash vaporization
Microbial methane
Thermogenic methane
Thermogenic hydrogen
Subducted sediments

ABSTRACT

Crustal fluids in subduction zones, such as subsurface aquifers, submarine seeps, and gas hydrate waters, are
often rich in iodine (Iz) and methane (CH,4). Large-scale aquifers in the Kanto subduction zone, where the Pacific
Plate (PAC) and the Philippine Sea Plate (PHS) are subducting, also exhibit high concentrations of I and CHs.
However, the origin and behavior of I in the subduction zone are unclear, and its coexistence with CH4 remains
unresolved. To investigate this, we compiled the I phase diagram under high-pressure and high-temperature
(P-T) conditions to predict its physicochemical properties in the subduction zone. We then applied the P-T
paths of subducted PAC and PHS sediments to the I phase diagram. Our findings reveal that I can exist as a
liquid in the young and hot PHS subduction zone. Transient decompressions during earthquake ruptures can
cause liquid iodine to flash-vaporize and be expelled from subducted sediments. Along with I, thermogenic CHy4
and hydrogen (Hz) generated in the subducted sediments are also released and transported upward, likely by
slab-dehydrated fluids. Additionally, Ho may enhance microbial CH4 production through hydrogenotrophic
methanogenesis. In subduction zones of young and hot oceanic plates such as the PHS, crustal fluids are enriched
in I and coexist with CH4 owing to the simultaneous expulsion of Iy, CH4, and Hy from the same subducted
sediments and their migration via deep fluids. Large subsurface aquifers can act as traps and reservoirs for
migrating I, and CHy, forming large-scale Iy and CH4 deposits.

1. Introduction

Iodine in marine sediments primarily originates from marine algae
and is deposited alongside algal remains (Tsunogai and Henmi, 1971;
Price and Calvert, 1977; Harvey, 1980). Owing to its strong affinity for
organic matter, iodine tends to accumulate in marine shales with high
total organic carbon (TOC) content (Cosgrove, 1970; Muramatsu and
Wedepohl, 1998; Morane et al., 1998). It is released along with petro-
leum from marine source rocks and migrates into reservoir rocks,
leading to brine water enriched in dissolved iodine (Tomaru et al., 2009;
Fehn, 2012). However, large-scale dissolved iodine deposits have also
formed in the non-petroliferous Kanto Basin, indicating that iodine
accumulation can occur independently of oil migration from marine
source rocks. The aquifers of the Kanto Basin contain highly concen-
trated dissolved iodine, accounting for approximately 20 % of the
world’s annual iodine production (Schnebele, 2024; JNGA (Japan Nat-
ural Gas Association), 2024). These aquifers are also rich in methane
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(CHy), forming the South Kanto natural gas fields (Sawaki et al., 2016).
Similar iodine enrichment has been observed in gas hydrate waters in
subduction zones, including the Nankai Trough (Fehn et al., 2003;
Tomaru et al., 2007), Cascadia Margin (Fehn et al., 2006), Peru Margin
(Fehn et al., 2007), and Costa Rica Margin (Fehn, 2012). Additionally,
crustal fluids such as CHy-rich submarine seeps in subduction zones are
often found to contain high concentrations of iodine (Muramatsu and
Wedepohl, 1998; Fehn, 2012). However, the origin and behavior of
iodine in the subduction zones and why it coexists with CH4 remain
unresolved.

The Kanto Basin is a key location for investigating iodine-related
processes in subduction zones because it hosts large-scale aquifers
where highly concentrated dissolved iodine and CH4 coexist. This region
is uniquely influenced by the subduction of both the old, cold Pacific
Plate (PAC) and the young, hot Philippine Sea Plate (PHS) (Fig. 1).
Comprising sedimentary rocks with generally low TOC content—typi-
cally less than 1 % (Koma et al., 1983; Yonetani et al., 1983)—the Kanto
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Fig. 1. Location of the South Kanto gas field with iodine deposits. (A) Location of the study area and selected sites along the PAC and PHS sections: (a) Sanriku, (b)
North Kanto, (¢) South Kanto, and (d) Shikoku. The sea bottom topographic map is provided by the Marine Information Research Center, Japan. (B) Location of the
South Kanto gas field with iodine deposits (Sawaki et al., 2016). The plate surface depths of the PAC and PHS, the PHS edge, the distribution of Quaternary volcanoes,
and the plate subduction rates are obtained from Wada and He (2017) and the Geological Survey of Japan, AIST (2023).

Basin is a Neogene forearc basin located near the triple junction of the
PAC, PHS, and North American Plate. The iodine-rich aquifers con-
taining CHy4 are located in the Late Pliocene to Pleistocene Kazusa
Group, at depths of 200-1000 m below the surface. 1291 dating of the
dissolved iodine suggests a geological age of approximately 50
Myr—considerably older than the sedimentary rocks of the Kanto Basin
and the PHS. This has led to the hypothesis that marine sediments
subducting with the PAC served as the source rocks for the iodine de-
posits (Muramatsu et al., 2001). However, the validity of 1291 dating is
currently under debate (Ohta et al., 2024). The mechanisms by which
iodine is expelled from organic-poor source rocks, migrates, and accu-
mulates in aquifers alongside CH4 remain unclear.

To better understand iodine behavior in subduction zones, we
focused on its physicochemical properties as a sublime substance. Using
the phase equilibrium diagram of iodine, we can predict its behavior
under high-pressure and high-temperature (P-T) conditions. However, a
phase diagram applicable to deep subsurface conditions in subduction
zones is not currently available. In this study, we compile an iodine
phase diagram for high P-T conditions in subduction zones by
combining published laboratory experimental data and empirical
equations. We apply the P-T paths of oceanic sediments subducting with
the PAC and PHS to the iodine phase diagram to predict iodine’s phys-
icochemical properties in the subduction zone.

The considerably higher plate subduction rate compared to that of
sedimentary basins leads to the generation and expulsion of substantial
amounts of thermogenic CH4 and hydrogen (Hj) from subducted sedi-
ments. This process contributes to seafloor CH4 emissions and the for-
mation of gas hydrates (Suzuki et al., 2024). Understanding the behavior
of iodine, thermogenic CHy, and H; in subduction zones can provide
valuable insights into the mechanisms behind the accumulation and
coexistence of iodine and CHy in the aquifers of the Kanto Basin, as well
as in gas hydrate waters and other crustal fluids in subduction zones. In
this study, we predict the physicochemical properties of iodine under
varying P-T conditions in subduction zones to examine its vaporization
and expulsion during rock ruptures caused by interplate earthquakes.
Additionally, we explore the activity and role of slab-dehydrated fluids
in the migration and accumulation of iodine, CHy4, and Hp in subduction
zones.

2. Methods
2.1. Phase diagram of iodine under high pressure and temperature

The melting, boiling, and triple points of molecular iodine (I) have
been determined with sufficient accuracy (Pavese, 2022). However, a
phase diagram for I, under high P-T conditions, which is essential for
predicting its behavior in subduction zones, is not currently available. In
this study, we compiled a phase diagram for Iy in P-T ranges of
0.01-3000 MPa and 0 °C-700 °C, using available data on its melting and
vapor pressure curves. The melting curves of I, in the pressure range of
0-250 MPa and 1500-4000 MPa have been obtained through laboratory
experiments (Babb Jr., 1969; Brazhkin et al., 1999) (Table S1). The
melting curve between 250 and 1500 MPa was estimated by extrapo-
lating the curves above 250 MPa and below 1500 MPa, using Simon’s
equation.

@]

where P is the pressure, T is the temperature (K), T, (=386.8 K) is the
melting point at P = 0, and A and C are fitting constants. The constants
for Simon’s equation in the pressure ranges below 250 MPa and between
1500 and 3000 MPa are A = 467 and C = 2.74, and A = 391 and C =
2.60, respectively (Babb Jr., 1969; Brazhkin et al., 1999). The melting
curves between 250 and 1500 MPa can be extrapolated from Simon’s
equation using these constants (Table S1). The melting curve between
250 and 1500 MPa can be drawn based on the extrapolated curves above
250 MPa and below 1500 MPa. By compiling these melting curves and
the triple point at 0.012 MPa and 113.3 °C, we can establish a complete
dataset and obtain the melting curve from 0.01 to 4000 MPa (Table S1).

The vapor pressure curve of I, was estimated using the Antoine
equation, considering the triple point and the critical point at 11.7 MPa
and 546 °C.

P=A

B
log,((P) =A — T1C 2

where P represents the pressure (mmHg = 133.322 Pa), T is the



N. Suzuki et al.

A

3000 e O 200 08 TR0
I : (1029
1000 [p----ssnnnsmmmmmmesbennnnannss o N R
o i ' (1]
= Solid b8
- i Eo
i : g =]
i S T S o g
E . ]
F E L
< T | 1M7MPa |
o [ :
= R (1| S—
o F
—
=
2 F
17, L
0]
S
o T
01y
E 113.7°C
r113.3°C
0.01}1s 1
0 100 200 300 400 500 600 700

Temperature (°C)

Chemical Geology 695 (2025) 123031

1 2 4 7
L | -
1000 £ —
E i ®
: Solid 8
C £ 5
r °5
100 £ S
g >
C n
A -
©
S B
= (M
() F 7 MPa
s F 546°C
2
(7)) L
)
S
o 1
L R e |
F 113.7°C
| 113.3°C
0.01IllIIIIIIII'IlII!IIII‘IIIII'IIIII'IIII
0 100 200 300 400 500 600 700

Temperature (°C)

Fig. 2. Phase diagram of iodine under high P-T conditions. (A) Extrapolated melting and vapor pressure curves of I». (B) The phase diagram of I,. The P-T conditions
of the triple point, normal melting and boiling points, and the supercritical fluid are obtained from Pavese (2022). The melting curve for I, below 250 MPa and above
1500 MPa is from Babb Jr. (1969) and Brazhkin et al. (1999), respectively. The melting curve between 250 and 1500 MPa is extrapolated using Simon’s equation
(Table S1). The vapor pressure (defining the boundary between liquid and gas) from 0.013 to 0.51 MPa (temperature range of 116 °C-263 °C) is from Sako et al.
(1979). The vapor pressure from 0.5 to 10 MPa was extrapolated from the Antoine equation (Table S2).

temperature (°C), and A, B, and C are fitting constants. Based on ex-
periments measuring the vapor pressure of liquid I, the constants A, B,
and C of the Antoine equation in the P-T range of 0.013-0.51 MPa and
116.2°C-263.2 °C were estimated to be 7.123438, 1694.23, and 214.83,
respectively (Sako et al., 1979). The vapor pressure curve from 300 °C to
546 °C (the critical point temperature) was extrapolated using the
constants from Sako et al. (1979) (Table S2).

2.2. Decompression by flash vaporization during earthquakes

Decompression in the earthquake rupture area was estimated using
the simple piston model (Weatherley and Henley, 2013), which relates
the volume change in the fault jog to the earthquake moment magni-
tude, M,,. By applying updated empirical scaling relations for small-
magnitude (M,, < 5) strike-slip earthquakes with epicenter depths
ranging from 3.5 to 45 km (Leonard, 2014; Sanchez-Alfaro et al., 2016),
the rupture length (L) can be expressed as:

M, +10.7 x 1.5 - 14.862
25

log; L = 3)

The down-dip width (W) of the rupture is calculated using estab-
lished empirical relationships: W = L for small-magnitude earthquakes
(M,, < 5); W=15.0 1?73 for moderate earthquakes (5 < M, < 6.5); and
W = 17 km, the average crustal seismogenic width, for large earth-
quakes (M, > 6.5) (Weatherley and Henley, 2013).

The average slip (s) and the relative volume change (4V) are calcu-
lated using the following equations (Weatherley and Henley, 2013):

log,,s = 0.833log,;,L — 3.84 4
Vf Vl + AV S

g — =142 5
v, V. +3 %)

AV = WDs (6
where the down-dip width is assumed to be equal to the vertical extent
of the jog. D represents the step-over distance (or jog length), and it is
assumed that D =~ 1 m for subsequent calculations. d denotes the initial
effective aperture thickness, where d ~ 100 ym. V; and Vyare the initial
and final volumes of the jog, respectively. Estimates for rupture length,
rupture width, average slip, and relative volume change for various
earthquake magnitudes are provided in Table S3. In this model, volume
expansion is considered isothermal at the scale of the jog and its sur-
rounding area (Weatherley and Henley, 2013). Under isothermal
expansion at a specified temperature, the relative pressure change is
given:

@)

where P; and Pyare the initial and final pressures of the jog, respectively.
3. Results and discussion
3.1. Iodine phase diagram for subducted sediments

Marine sediments are subducting deeply with the PAC and PHS along
the plate boundary beneath the megathrust (décollement) in the Kanto
subduction zone. These underthrust sediments consist of pelagic sedi-
ments deposited on the oceanic crust, as well as marine and terrestrial
sediments deposited in the trench. While the organic matter and li-
thologies of the underthrust sediments are diverse and not fully under-
stood, the average TOC concentration is estimated to be approximately
0.5 wt% (Raimbourg et al., 2017). Oil expulsion does not occur suffi-
ciently in organic-poor sedimentary rocks owing to the insufficient
development of the oil network due to limited oil generation (Ungerer,
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Fig. 3. Thermal structure of the Kanto subduction zone and the P-T paths of the PAC and PHS on the I, phase diagram. Surface temperatures and depths of the (A)
PAC and (B) PHS plates in the Kanto subduction zone (Wada and He, 2017). The edge of the PHS, the distribution of Quaternary volcanoes, and the plate subduction
rates are obtained from Wada and He (2017) and the Geological Survey of Japan, AIST (2023). (C) The P-T paths of the PAC and PHS surfaces in (a) Sanriku, (b)
North Kanto, (¢) South Kanto, and (d) Shikoku on the I, phase diagram. The locations of (a)-(d) are shown in Fig. 1A. The P-T paths for (a) and (d) are from Peacock
and Wang (1999), while those for (b) and (c) are obtained from sections b-b’ and c—c’ in A and B, respectively.

1990; Pepper, 1991). As a result, most iodine, which has an affinity for
organic matter, is retained in the underthrust sediments, where it un-
dergoes metagenesis and metamorphism.

Iodine in the pore water of sedimentary rocks under reducing con-
ditions exists as dissolved molecular iodine (I5), iodide (I7), and triio-
dide (I3) (Fuge and Johnson, 1986; Fuge, 2013). They are strong
nucleophiles (electron donors) and can form bonds with polar functional
groups containing heteroatoms, such as oxygen. However, because the
functional groups that react with iodine are no longer present in kerogen
by the dry gas generation stage (Tissot and Welte, 2013), organic iodine
is likely very poor in the metagenesis to metamorphism stages. Since the
ionic radius of iodine is large (220 pm), it is unlikely that any minerals
would readily accept iodine anions for element substitutions during
diagenesis and metamorphism (Fuge and Johnson, 1986). Authigenic
minerals containing iodine anions have been scarcely found in sedi-
mentary rocks that have undergone sediment diagenesis under reducing
conditions. Furthermore, I~ easily loses an electron to form I5, owing to
its weak electron affinity (Fuge and Johnson, 1986; Fuge, 2013). The
water content in the underthrust sediments decreases with increasing
subduction depth and overburden pressure. Most of the pore water and
bound water in hydrous minerals are expelled from the underthrust
sediments before reaching the interplate seismogenic zone (Saffer et al.,
2008; Kameda et al., 2011). Therefore, we assumed that a substantial
portion of iodine in the underthrust sediments at the metagenesis to
metamorphism stage is likely to exist as free molecular I,.

To predict the physicochemical state of I, in the subduction zone, we
compiled the phase diagram of Iy under P-T conditions ranging from
0.01 to 3000 MPa and from 0 °C to 700 °C, as shown in Fig. 2A and B,

using the available experimental data and empirical equations
(Table S1). The melting curve between 250 and 1500 MPa was drawn
based on the extrapolated curves obtained from laboratory experimental
data (Babb Jr., 1969; Brazhkin et al., 1999) and Simon’s equation,
assuming it lies between the extrapolated curves above 250 MPa and
below 1500 MPa (Fig. 2A). The experimental results in different labo-
ratories are roughly consistent. The accuracy of the extrapolated melting
curve is sufficient for the present study. The vapor pressure curve near
the critical point, extrapolated from the experimental dataset
(116.2 °C-263.2 °C) (Sako et al., 1979) and the Antoine equation
(Table S2), showed a slight misalignment in pressure (approximately
1.2 MPa) at 546 °C. Thus, the vapor pressure curve was slightly adjusted
to align with the critical point (Fig. 2A). The vapor pressure curve is
drawn based on the experimental dataset and the Antoine equation,
considering the triple and the critical points. As described later, the
present study focuses mainly on the temperature area below 350 °C in
the subduction zone. The accuracy of the vapor pressure curve in this
temperature range is sufficient for the present study. However, there is
still some uncertainty in this phase diagram, which requires improve-
ment with additional experimental data. The phase diagram (Fig. 2B)
reveals that I primarily exists as a solid below 113 °C. As the temper-
ature increases, the liquid phase of I appears depending on the pressure.
Owing to the partial pressure of I, some of it in the liquid phase may
behave as a gas.

3.2. P-T paths of the PAC and PHS on the I, phase diagram

The Sanriku region in the Japan Trench and the Shikoku region in the
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Fig. 4. Phase transitions of iodine owing to transient decompressions during earthquake ruptures. The transient decompressions from the P-T paths of (A) the PAC in
(b) North Kanto and (B) the PHS in (c) South Kanto. The locations of (b) and (c) are shown in Fig. 3A and B, respectively. These transient decompressions in the
subducted sediments were estimated using the piston model (Weatherley and Henley, 2013), which predicts the volume change in the fault jog caused by strike-slip

fault displacement.

Nankai Trough are typical subduction zones for the PAC and PHS,
respectively (Fig. 1). The P-T conditions at the surface of these oceanic
plates in the Sanriku and Shikoku regions have been extensively studied
(Peacock and Wang, 1999; Peacock, 2009). In the Kanto region, which
contains I, deposits, the PHS subducts along the Sagami Trough, while
the PAC subducts along the Japan Trench beneath the PHS slab (Fig. 1).
Although the plate tectonic structure in the Kanto region is complex, 2D
and 3D thermal modeling has been performed to clarify the thermal
structure of the area (Yoshioka et al., 2015; Ji et al., 2017; Wada and He,
2017). In this study, we adopted the 3D thermal model of the Kanto
region (Fig. 3A and B), which accounts for the effects of frictional
heating and mantle wedge flows (Wada and He, 2017). This model, with
a maximum decoupling depth of 75 km and an effective coefficient of
friction of 0.03, aligns well with the observed distributions of heat flow
and active volcanoes in and around the Kanto region. In this model, the
down-dip limit of interplate seismicity on the PAC and PHS occurs
around the 350 °C contour, which corresponds to the temperature at
which the rheological transition from brittle to ductile behavior of the
overlying crustal material controls seismicity (Hyndman and Wang,
1993; Wada and He, 2017).

The P-T paths at the surfaces of the PAC and PHS, as shown on the I
phase diagram, reveal a distinct difference (Fig. 3C). The younger PHS is
comparatively warmer and has a smaller subduction angle than the
older PAC (Peacock and Wang, 1999). Thus, the underthrust sediments
subducting with the PHS experience higher temperatures and lower
pressures than those associated with the PAC (Fig. 3C). The surface of
the PHS in the (c) South Kanto region is at a higher temperature under
the same pressure compared to the PHS in (d) Shikoku region owing to
its proximity to the volcanic front (Figs. 1A and 3B). The surface of the
PAC in the (b) North Kanto region is under higher temperature and
lower pressure conditions than the PAC in the (a) Sanriku region

(Fig. 3C), likely owing to the thermal interaction between the PAC and
PHS in the Kanto region (Wada and He, 2017) (Fig. 3A). The P-T path of
the underthrust sediments subducting with the PAC remains entirely in
the solid region of I (Fig. 3C). In contrast, when the temperature at the
surface of the PHS exceeds approximately 160 °C, the P-T path enters
the liquid region (Fig. 3C).

3.3. Flash vaporization of iodine in the subducted sediments

The subduction zone of the oceanic plate is an earthquake-prone
region, where earthquake-induced rock destruction can expel gaseous
substances such as thermogenic CH4 and H; (Suzuki et al., 2024). Flash
vaporization in earthquake rupture zones can also lead to the vapor-
ization and expulsion of volatile substances, as well as the deposition of
refractory materials (Weatherley and Henley, 2013). The extent of flash
vaporization and expulsion of volatile substances during an earthquake
rupture depends on the earthquake’s moment magnitude (M,,). A simple
piston model has been proposed to predict transient decompressions in
fault jogs caused by the displacement of strike-slip faults during earth-
quakes (Weatherley and Henley, 2013). However, this model may not
directly apply to predicting transient decompression in the rupture
zones of interplate subduction earthquakes. However, it provides insight
into the approximate relationship between M,, and transient decom-
pression during earthquake rupture. Because interplate subduction
earthquakes occur at shallower depths than the down-dip limit of seis-
micity, the earthquake rupture zones in the PAC and PHS are located ina
temperature range below 350 °C. The relationships between M,, and
transient decompression in this temperature range, based on the P-T
paths of the PAC and PHS, are shown on the I, phase diagram (Fig. 4,
Tables S3 and S4). As shown in Fig. 4A, when M,, exceeds approximately
4, the I, phase transition from liquid to gas occurs during earthquake
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rupture under the P-T conditions of the PAC in the (b) North Kanto
region. Under the P-T conditions of the PHS in the (c) South Kanto re-
gion, when M, exceeds approximately 3, the liquid I, enters the gas-
phase region (Fig. 4B). As a result, Iy in the underthrust sediments of
the PHS behaves as a vaporizable liquid from the outset, with vapor-
ization occurring even at smaller M, compared to the PAC. Additionally,
because the earthquake rupture zone in the PHS is at a shallower depth
and lower pressure than in the PAC, the expulsion and subsequent sec-
ondary migration of I in the PHS are more favorable than in the PAC. In
subduction zones, the regional stress field may change throughout
subduction earthquake cycles (Wang and Hu, 2006), and the above-
mentioned argument could apply to normal-slip or strike-slip earth-
quakes, which commonly occur in the extensional stress field after a
great earthquake (Lin et al., 2013). However, understanding the rela-
tionship between M, and transient decompression in the rupture zone
during interplate subduction earthquakes remains a topic for future
research.

The pore water in the subducted sediments at the interplate seis-
mogenic zone is minimal (Saffer et al., 2008; Kameda et al., 2011). Even
if some water is present, any dissolved I and anions in the water are
likely to flash-vaporize along with the water and free molecular I,. The
amount of iodine that flash-vaporizes from a single earthquake rupture
may be limited. However, the interplate earthquakes occur highly
frequently in the subduction zone. The frequency of earthquakes in-
creases exponentially with a decrease in earthquake magnitude. In the
Kanto subduction zone, the annual cumulative frequencies of earth-
quakes, by magnitude (M) based on seismograph readings from 1926 to
2010, are 1950 times (M > 2), 216 times (M > 3), 24 times (M > 4), and
3 times (M > 5), respectively (Nanjo et al., 2013). Frequent earthquakes
can lead to a significant expulsion (primary migration) of iodine from
the underthrust sediments.

3.4. Migration of iodine in the subduction zone

According to solubility thermodynamics (Ramette and Sandford Jr,
1965; Palmer et al., 1985), the relative abundance of dissolved iodine
(I, 17, and I3) in water generally increases with temperature, suggesting
that their secondary migration may be facilitated by deep fluids. Slab-
dehydrated fluids are actively migrating through the décollement
megathrust and splay faults in the Nankai Trough subduction zone
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Fig. 5. Thermogenic CH4 and H, generation zone of the underthrust sediments
in the Kanto subduction zone. The temperatures of the thermogenic CH4 and H,
generation zones were estimated based on their maturity levels (Suzuki et al.,
2024) and the heating rates of the underthrust sediments subducting with the

PAC and PHS. The distribution of the PAC beneath the PHS is not shown.
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(Saffer and Tobin, 2011; Wiersberg et al., 2018; Tsang et al., 2020;
Tomonaga et al., 2020). These active deep fluids from the PHS can
dissolve I, potentially promoting its upward migration. In contrast, in
the subduction zone of the PAC, the migration of deep fluids appears to
be less active because slab-dehydrated fluids are directed toward deep
high-temperature zones, contributing to magma generation (Iwamori,
2000; Katayama, 2016). The volcanic front near the Kanto region is
located along the PAC subduction zone (Fig. 1). However, the distri-
bution of active volcanoes along the PHS subduction zone in the Kanto
region is not distinct (Fig. 1), suggesting that the upward migration of
slab-dehydrated fluids is active, similar to the Nankai Trough subduc-
tion zone. The more active upward migration of deep fluids in the PHS
subduction zone compared to the PAC is likely attributed to slab dehy-
dration occurring at lower pressures (shallower depths) and the slower
subduction rate of the young, hot PHS (Katayama, 2016). The active
upward migration of slab-dehydrated fluids from the PHS likely plays a
crucial role in the long-distance transport of dissolved iodine. As dis-
cussed earlier, I is more easily expelled from the subducted sediments of
the PHS than those of the PAC. I from the PHS likely plays a greater role
in the formation of I deposits in the South Kanto region. Hot springs and
submarine seeps containing slab-dehydrated fluids in subduction zones
are often rich in dissolved iodine (Muramatsu et al., 2001; Togo et al.,
2020), supporting the idea that dissolved iodine is transported by deep
fluids. However, because transporting dissolved iodine by deep fluids
requires a large volume of fluid, gas-phase migration to aquifers is more
efficient. I has a high vapor pressure and readily sublimes. I, precipi-
tated from deep fluids owing to a temperature drop during upward
migration, could vaporize and migrate in the gas phase. However, our
understanding of the migration of I remains limited. Understanding the
transportation of I, in the deep subsurface requires further study.

Muramatsu et al. (2001) concluded that the highly concentrated
dissolved iodine in the aquifers of the South Kanto region primarily
originated from sediments subducting with the PAC, based on the iso-
topic ages (40-50 Myr) of the dissolved iodine. This conclusion was
made under the assumption that the mean geologic age of the PHS
sediments around the Sagami Trough was 15 Myr. However, the
geologic age of the PHS oceanic crust increases from the youngest part
(~15 Myr) of the fossil spreading ridge near the Kii Peninsula to the
South Kanto region, reaching approximately 50 Myr around the Sagami
Trough (Hua et al., 2018). Furthermore, in previous iodine isotopic
dating studies (Morane et al., 1998; Fehn et al., 2000; Muramatsu et al.,
2001), the initial 12°1/1%’] ratio was assumed to be 1.5 x 107'2, a value
now under debate. Recent research on I dating (Ohta et al., 2024;
Matsuzaki, 2024) suggests smaller initial 12°I/*?"I ratios, which could
considerably reduce the previously estimated iodine isotopic ages. These
studies support the idea that the oceanic sediments subducting with the
PHS are likely the primary source rocks for I, deposits in the South Kanto
region.

3.5. Accumulation and coexistence of Iz and CHy

Microbial CH4 produced by hydrogenotrophic methanogens is dis-
solved in the aquifers of the I, deposits (Kaneko et al., 2002; Mochimaru
etal., 2007; Katayama et al., 2015), which requires a sufficient supply of
Hjy. In the subduction zone, thermogenic Hy generated by the thermal
decomposition of organic matter, mechanochemical Hy from silicate
rock fracturing, and Hy derived from the serpentinization of ultramafic
rocks can contribute to microbial CH4 production (Suzuki et al., 2024).
Both thermogenic and mechanochemical Hy can be expelled alongside I
from the underthrust sediments during earthquake ruptures. Seismic
attenuation analysis suggests the presence of a serpentinized mantle in
the eastern PHS, near the boundary with the PAC (Nakajima, 2014).
However, this serpentinization occurred before the subduction of the
PHS in the Sagami Trough (Kamimura et al., 2002). Additional ser-
pentinization of the PHS mantle after subduction may occur owing to
slab-dehydrated fluids from the PAC (Nakajima, 2014), suggesting a
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Fig. 6. Iodine expulsion, migration, and accumulation in the young and hot oceanic plate subduction zone. Various forms of iodine in the underthrust sediments
subduct deep with the oceanic plate, remaining as molecular iodine (I,) and undergoing metagenesis and metamorphism. In young, hot oceanic plates such as the
PHS, I, in the underthrust sediments can behave as a liquid and undergo flash vaporization, being expelled owing to transient decompression caused by earthquake
ruptures. Active slab-dehydrated fluids in the subduction zone of young, hot oceanic plates likely play a key role in transporting dissolved iodine (I, I", and I3) to
shallow subsurface aquifers. Because I, easily sublimes, some may migrate in the gas phase. The aquifer then acts as a trap and reservoir for migrating dissolved
iodine. Thermogenic CH,4 and Hj are also expelled from the underthrust sediments in the earthquake rupture zone and transported upward. H, that reaches the
subsurface biosphere, particularly around shallow aquifers, contributes to microbial CH4 production by hydrogenotrophic methanogens. The continuous supply of I,
and H, from the subducted sediments to shallow aquifers in the subsurface biosphere leads to the formation of large-scale I, deposits alongside microbial CH4. The
aquifers may also contain a certain amount of thermogenic CH4 from the underthrust sediments. The enrichment of I, and its coexistence with CHy in fluids, such as
those in hot springs, submarine seeps, and gas hydrate water, is a result of the expulsion, migration, and accumulation of I, CH4, and H, derived from the same

underthrust sediments in the young and hot oceanic plate subduction zone.

potential Hy supply near the boundary between the PAC and PHS.
However, the upward migration of fluids from the PAC appears to be
inactive (Iwamori, 2000; Katayama, 2016). Thermogenic CHy is also
generated in the underthrust sediments at a maturity level close to the
thermogenic Hy generation stage (Li et al., 2017; Suzuki et al., 2017,
2024), which may contribute to the dissolved CHy in the aquifers of the
I, deposits. We further investigated the spatial relationship between I
deposits and the thermogenic CH4 and Hy generation zones in the Kanto
subduction zone.

The maturity levels of the thermogenic CH4 and H; generation zones
in organic-poor sediments correspond to vitrinite reflectance (VR)
values of 1.5 %-4.5 % and > 2.5 %, respectively (Suzuki et al., 2024).
The temperatures of these generation zones can be estimated using the
kinetic model of VR, Easy%RoV (Burnham, 2019), considering the
heating rate of subducted sediments. The heating rates for the PAC and
PHS, estimated from their subduction rates and thermal structures,
range from 50° to 200 °C Myr ™! (Fig. 3A and B). The temperature ranges
corresponding to VR values for the thermogenic CH4 and Hy generation
zones at a heating rate of 50 °C Myr ™! are 197 °C-272 °C and > 226 °C,
respectively, while at 200 °C Myr !, they are 207 °C-283 °C and >
237 °C (Fig. S1, Table S5). Taking into account the difference in heating
rate, the thermogenic CH4 and Hj generation zones in the PAC and PHS
are estimated as shown in Fig. 5, with the generation zones in the PHS
positioned almost directly beneath the I, deposits containing CHy. The
PAC subducting beneath the PHS likely plays an insufficient role in
supplying I, thermogenic CHy, and Hj to the shallow aquifers, owing to
the much deeper gas expulsion depth and the inactive upward migration
of deep fluids. The thermogenic CH4 and Hj generation zone lies in the
earthquake rupture area, suggesting that I, is expelled along with
thermogenic CH4 and Hy. These substances can be transported upward
to the aquifers either by active deep fluids or through potential gas-
phase migration.

The Kazusa Group, which intercalates large-scale aquifers, was
formed 3-0.5 Myr ago by filling a trough-like basin (Kazusa Trough)
created by tectonic activity around the triple plate junction, accompa-
nied by a change in the PHS motion from north to northwest (Takahashi,
2006). The basin aquifers in the South Kanto region are primarily found

in turbidite sandstones, and I accumulation in these aquifers appears to
have continued to the present (Kunisue et al., 2002; Mita et al., 2003).
The I>-concentrated aquifers have temperatures ranging from 23 °C to
40 °C (Kamei, 2001). Microbial CH4 production likely occurs in or near
these aquifers, where hydrogenotrophic methanogens can be highly
active (Mochimaru et al., 2007; Katayama et al., 2015; Urai et al., 2021).
I, and H; are expelled in a similar manner from the underthrust sedi-
ments subducting with the PHS and are continuously supplied to the
aquifers, likely resulting in the coexistence of I, and microbial CHy4. The
carbon isotope composition (6'3C value) of CH4 from the South Kanto
gas field ranges from —68 %o to —60 %o (Igari and Sakata, 1989; Kaneko
et al., 2002; Katayama et al., 2015). These values are relatively high for
primary microbial CH4 produced by hydrogenotrophic methanogens,
suggesting a mix of thermogenic and microbial CH4 (Whiticar, 1999;
Milkov and Etiope, 2018). Natural gas emitted from the fault zone in the
South Kanto region contains '3C-rich thermogenic CHy4 (5*3C = —36.3
%o) (Nakata et al., 2012), supporting the contribution of thermogenic
CHy4 to the aquifers of I deposits. Compared to the sedimentary rocks in
the Kanto Basin, the underthrust sediments of the PHS are subducting at
a considerably higher rate along with the oceanic plate, having moved
approximately 100 km through the interplate seismogenic zone since the
deposition of the Kazusa Group 3 Myr ago. Substantial amounts of I,
CH4, and Hj have likely been expelled from the underthrust sediments
subducting with the young and hot PHS, contributing to the formation of
large-scale I, deposits alongside microbial and thermogenic CHy.

The high concentrations of iodine, ranging from 0.5 to 2 mM, have
been found in CHy4 gas hydrate waters from the oceanic plate subduction
zones in the Nankai Trough, Cascadia Margin, Peru Margin, and Costa
Rica Margin (Fehn et al., 2007; Fehn, 2012). In these earthquake-prone
subduction zones, young oceanic plates, the PHS, the Juan de Fuca Plate,
the Nazca Plate, and the Cocos Plate, that formed during and after the
Paleogene, are currently subducting, respectively (Wilson, 1988; Von
Huene and Lallemand, 1990; Lonsdale, 2005; Seton et al., 2020). The
P-T conditions of the interplate seismogenic zone in these subduction
zones appear to be lower pressure and higher temperature compared to
the old PAC, similar to the PHS (Hyndman and Wang, 1993; Harris and
Wang, 2002; Leite Neto et al., 2024). Coexistence and enrichment of I,
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and CHy4 in fluids in these subduction zones of young and hot oceanic
plates also suggest that the P-T conditions of the oceanic plate signifi-
cantly influence the expulsion and migration of I and CHy4 in the forearc
areas.

4. Conclusion

The behavior of I3 in the subduction zone of a young and hot oceanic
plate is summarized in Fig. 6. In this subduction system, the sediments
subducting with the oceanic plate experience lower pressure and higher
temperature conditions, while slab-dehydrated fluids remain active. The
I, in the subducted sediments can exist as a liquid, leading to its flash
vaporization during earthquake ruptures, even with a small moment
magnitude. The expelled I, likely along with thermogenic CH4 and Hy
from the subducted sediments, can then migrate upward with the active
slab-dehydrated fluids, contributing to the formation of I deposits
containing CHy4 in the aquifers. The high concentrations of I; and CHy
found in hot springs, submarine seeps, and gas hydrate waters in the
subduction zone of the PHS can be explained similarly (Fig. 6). In the
Kanto subduction zone, tectonic activity around the triple plate junc-
tion, along with a change in the direction of PHS motion, led to the
formation of the Kazusa Group. This Group intercalates a vast aquifer
that has served as a trap and reservoir for dissolved iodine and CH4 ever
since. The development of large-scale I deposits with CHy in the South
Kanto region is attributed to the geological formation of this extensive
aquifer directly above the expulsion zone of I, CH4, and Hy in the un-
derthrust sediments subducting with the young and hot PHS. Coexis-
tence and enrichment of I, and CHy in crustal fluids at other subduction
zones may be explained similarly, as due to the expulsion and migration
of I, CHy, and Hy from the oceanic sediments subducting with the young
and hot oceanic plates.
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