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Abstract
German chamomile (Matricaria chamomilla) is a medicinal herb that promotes 
improved digestion and reduces insomnia. Although it is widely used worldwide, 
the mechanism of induction of drug-metabolizing enzymes is unknown. We found 
that German chamomile extracts induced cytochrome P450 expression at the tran-
scriptional stage. Cyp3a11 expression is decreased at night in wild-type mice, but 
German chamomile extract induced nocturnal Cyp3a11 and Cyp1a2 expression. 
German chamomile extract increased the nuclear protein expression of the clock 
gene BMAL1, which drives and abolishes the rhythm of Cyp3a11 expression. By 
contrast, German chamomile extract did not significantly alter clock gene expres-
sion in the suprachiasmatic nucleus (SCN). Similarly, it did not affect the mRNA 
expression of the clock genes in the kidneys. Because it did not induce the mRNA 
expression of ATP-binding cassette (ABC) transporters (Abcb1a, Abcc2, Abcc4, and 
Abcg2) in the kidney, German chamomile extract had no effect on the transcription 
of pharmacokinetics-related molecules other than CYPs. German chamomile extract 
promoted liver-selective nuclear transfer rhythm changes in clock genes and induced 
the expression of CYPs. This study may help to explain the mechanism of drug 
interactions associated with chronic German chamomile extract consumption.
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Introduction

Medicinal herbs are widely used folk remedies worldwide that are used to pro-
mote health, prevent disease, and ameliorate illness (Pan et  al. 2014). Many 
medicinal herbs are expected to have antioxidant, sleep-improving, and sedative 
effects, and the scientific evidence and safety of these herbs have been summa-
rized in a publication by the American Herbal Products Association (Academies 
2005; Andalib et al. 2011; Ravipati et al. 2012; Feizi et al. 2019). In addition, the 
consumption of medicinal herbs can affect the pharmacological actions and phar-
macokinetics of drugs (Rombolà et al. 2020; Surana et al. 2021). Habitual con-
sumption of medicinal herbs has been reported to affect the function of normal 
organs and to cause adverse events such as liver and kidney damage (Amadi and 
Orisakwe 2018; Xu et al. 2020). Therefore, it is necessary to analyze the effects 
of medicinal herbs on the physiological functions of normal tissues.

Medicinal herbal extracts can alter the gene expression levels of enzymes 
involved in detoxification and their enzymatic activities. St. John’s wort decreases 
the blood levels of its substrate drugs by increasing the gene expression of 
CYP3A4 and CYP2C19 (Piscitelli et  al. 2000; Wang et  al. 2004; Frye et  al. 
2004). Valerian extract inhibits the enzymatic activity of UGT1A1 (Alkharfy and 
Frye 2007). These changes in the function of hydroxyl detoxification enzymes 
affect the profile of substances in vivo in the liver. Although the specific mecha-
nism of herb-induced hepatitis is unknown, changes in the biomolecular profile 
may be a cause of hepatitis.

Clock genes have long been known to be associated with factors that alter the 
expression of CYPs. Cyp3a11 in the liver (corresponding to CYP3A4 in humans) 
is regulated by BMAL1 and forms a 24  h expression rhythm (Lin et  al. 2019). 
The expression rhythm of Cyp3a11 is abolished in Bmal1 knockout mice (Lin 
et  al. 2019). CYP1A2, which plays a central role in the metabolism of dioxin, 
has a significant circadian rhythm with a peak in the second half of the stated 
period (Lu et al. 2013). Cyp1a2 expression is regulated by the clock gene NPAS2, 
which forms a transcriptional rhythm through the time-dependent binding of the 
NPAS2–BMAL1 complex to the response sequence (He et al. 2022). This finding 
indicates that CYPs with the greatest influence on xenobiotics are under the con-
trol of BMAL1.

Several small molecules in medicinal herbs have been reported to affect the 
expression of clock genes. Silybin A in Silybum marianum prolongs the function of 
clock genes by binding to CRY1 and CLOCK (Bian et al. 2022). Piperine in black 
pepper reverses the decreased expression of clock genes caused by fat deposition dis-
eases (Zhang et al. 2022). These studies indicate that medicinal herbs may increase 
the expression of clock genes and may also indirectly upregulate the expression of 
clock gene regulatory molecules. However, no medicinal herbs have been found to 
directly affect BMAL1 expression. Because of this, no studies have investigated the 
effects of medicinal herbs–clock gene expression changes–CYP expression rhythm 
changes.
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German chamomile is a medicinal herb used to improve gastrointestinal func-
tion and sleep disorders (Srivastava et al. 2010). Matricaria recutita, a member 
of the Asteraceae family, is an annual herb whose white flowers are the medicinal 
part (Zadeh et al. 2014). Extracts, teas, and essential oils extracted from the flow-
ers are distributed worldwide and are used as common folk remedies (Wilkin-
son et al. 1999; Anderson et al. 2000; Mazokopakis et al. 2005). Moreover, Ger-
man chamomile extract is a medicinal herb that may induce some CYPs, which 
may lead to drug interactions. However, the mechanism by which it induces CYP 
expression is unknown. We investigated whether drinking German chamomile 
alters the expression of CYPs, targeting the rhythm of CYP expression. We then 
observed the expression rhythms of clock genes in response to German chamo-
mile consumption, with the aim of demonstrating the relationship among “Ger-
man chamomile–changes in the expression of clock genes–expression rhythms of 
CYPs” and verifying this relationship.

Methods

Animals

Six-week-old male C57BL/6 J Ham Slc- + / + mice were purchased from Japan SLC 
Inc. (Shizuoka, Japan). Mice were housed in a light-controlled room at a tempera-
ture of 24 ± 1 ℃ and 60% ± 10% humidity, with food and water available ad libitum. 
In the light/dark cycle, the zeitgeber times (ZTs) of ZT0 and ZT12 were defined 
as the times for lights on and off, respectively. All mice were held for 2 weeks to 
acclimatize before the treatment. During the dark period, a dim red light was used 
to aid in animal treatment. All the experiments were conducted in accordance with 
a protocol approved by the internal committee for animal experimentation in Sanyo-
Onoda City University (ethical approval protocol IC: #A-2023–44-A).

Preparation of Extracts from German Chamomile

Dried flower heads of German chamomile (Matricaria chamomilla) were obtained 
from Herb Meister Center (Tokyo, Japan). German chamomile was harvested in 
March 2021 in Japan. The extract was prepared immediately after purchase (Septem-
ber 2021). Extracts of German chamomile were prepared by suspending the 5.0 g of 
finely cut dried flower heads in 150 mL of 99.5% ethanol and periodic sonication 
for 15  min at room temperature. The mixture was filtered through absorbent cot-
ton. The filtrate evaporated under reduced pressure (60–90 hPa) at 45 ℃ for 10 min 
using rotary evaporator. The residue was redissolved in 10 mL of 99.5% ethanol and 
filtered and stored at − 30 ℃ until further use. To assess the stability of the extract, 
HPLC analysis was conducted using the following three preparations: (i) freshly 
prepared extract, (ii) extract after concentration with rotary evaporation at 45 ℃, 
and (iii) extract after concentration followed by storage at − 30 ℃ for one week. We 
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checked that most of the major constituents were retained in the GC extract even 
after storage at – 30 ℃ (Supplementary Fig. 1).

Treatment of Mice with German Chamomile Extract via Drinking Water

After acclimation, 24 mice were randomly assigned to two groups (vehicle group 
(n = 12) and German chamomile extract (GC Ex.) group (n = 12)). Three mice were 
used at each time point; thus, 12 mice were needed per group. Drinking water con-
taining 2% (v/v) ethanol and 2% (v/v) ethanol dissolved with German chamomile 
extract at a final concentration of 0.05% (w/v) received oral administration into vehi-
cle group and GC Ex. group, respectively, during the period of 3  weeks. No dif-
ferences in water consumption and food intake changes were observed between the 
two groups at the 3-week mark (Supplementary Fig. 2). To facilitate understanding 
of the experimental design, a schematic illustration was created and is provided in 
Fig. 1.

Fig. 1   Schematic illustration of the animal experimental design. Mice were randomly assigned to the 
vehicle or German chamomile extract (GC Ex.) groups. Each group included 12 mice, and three mice 
were used at each time point. GC Ex. was administered in drinking water for 3 weeks, and tissue collec-
tion was performed at designated time points
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Tissue Isolation

Each mouse was placed in a chamber filled with isoflurane, and the whole brain 
and blood were collected under hyperanaesthesia. At four time points with an 
interval of 6 h starting at ZT0, the brain, liver, and kidney of each mouse were 
harvested. Isolated brains were sectioned into slices using a brain matrix (BS-Z  
2000 C; Muromachi Kikai Co. Ltd., Tokyo, Japan). The suprachiasmatic nucleus 
(SCN) was cut from the slice sections and used for RNA extraction experiments.

RNA Isolation and Quantitative Real‑Time Polymerase Chain Reaction (qRT‑PCR)

Total RNA was extracted from the mouse tissue using the PureLink® RNA Mini 
Kit (for SCN; Thermo Fisher Scientific, Waltham, MA, USA) and RNAzol RT 
reagent (for liver and kidney; Molecular Research Center, Inc., Cincinnati, OH, 
USA) according to the manufacturers’ instructions. Reverse transcription was 
performed with the PrimeScript™ RT reagent Kit (Takara Bio, Otsu, Japan). 
The cDNA equivalent of 5 ng of RNA was amplified by PCR using a StepOne-
Plus™ Real-Time PCR System (Life Technologies, Carlsbad, CA, USA) with TB 
Green® Premix Ex Taq™ Ⅱ (Takara Bio). The reaction was first incubated at 
95 ℃ for 30 s, followed by 40 cycles at 95 ℃ for 5 s and 60 ℃ for 30 s. All experi-
ments that used kits were performed according to the manufacturer’s instructions. 

Table 1   Primer sets for qPCR analysis of gene expression

Gene name Accession ID Primer Sequence

Arntl NM_007489 F ACG​ACA​TAG​GAC​ACC​TCG​CAGA​
R CGG​GTT​CAT​GAA​ACT​GAA​CCATC​

Clock NM_007715 F AAC​CGT​AGC​AGG​TTT​ATG​GGA​ATG​
R TTG​GTG​TCC​ACA​CAA​TAG​GCAAG​

Cry1 NM_007771 F GGA​TCC​ACC​ATT​TAG​CCA​GACAC​
R CAT​TTA​TGC​TCC​AAT​CTG​CAT​CAA​G

Dbp NM_016974 F AAG​CAT​TCC​AGG​CCA​TGA​GAC​
R TTC​TTG​TAC​CTC​CGG​CTC​CAG​

Per1 NM_011065 F GTC​TGG​TTC​AGG​ATC​CCA​CGA​
R TGC​TGC​CAA​AGT​ACT​TGC​TTG​TAT​G

Per2 NM_011066 F ATC​AGC​CAT​GTT​GCC​GTG​TC
R CGT​GCT​CAG​TGG​CTG​CTT​TC

Cyp1a2 NM_009993.3 F CGT​CAG​CAA​GCT​TCA​GAA​GG
R CGA​TGT​TCA​GCA​TCT​CCT​CG

Cyp3a11 NM_007818.3 F GCC​ATT​TTT​AGG​CAC​TGT​GCTGA​
R TGT​GAC​AGC​AAG​GAG​AGG​CGT​

Rn18s NR_003278.3 F CGG​CTA​CCA​CAT​CCA​AGG​AA
R GCT​GGA​ATT​ACC​GCG​GCT​
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The comparative Ct method was applied to calculate the relative mRNA expres-
sion levels. The data were normalized to the 18S ribosomal RNA gene (Rn18s) 
used as the internal control. The nucleotide sequences for the specific gene prim-
ers used in this study are listed in Table 1.

Nuclear Protein Extraction

Hepatic nuclear proteins were extracted from the mouse livers using the Fraction-
PREP™ cell fractionation kit (K270; Biovision, Mountain View, CA, USA) accord-
ing to the manufacturer’s instructions (Canesin et  al. 2021). Briefly, each tissue 
sample was minced using a scalpel and washed with ice-cold PBS twice (pH 7.4; 
Thermo Fisher Scientific). Samples were homogenized using a Potter–Elevhjem 
tissue grinder in 400 μL of cytosol extraction buffer with dithiothreitol (DTT) and 
protease inhibitor cocktail. The samples were then incubated on ice for 20 min with 
gentle tapping three to four times every 5 min after pipetting several times to mix 
well. The homogenate was centrifuged at 700 × g for 10 min at 4 ℃. Next, 400 μL 
of membrane extraction buffer with DTT and protease inhibitor cocktail was added 
to the pellet, the sample was mixed after adding 22 μL of membrane extraction 
buffer B, and then it was incubated on ice for 1 min. The solution was centrifuged 
at 1000 × g for 5 min at 4 ℃. Then, 200 µL of ice-cold nuclear extraction buffer Mix 
with DTT and protease inhibitor cocktail was added to the pellet, it was vortexed 
for 15 s, and then the sample was kept on ice for 40 min with constant vortexing for 
15 s every 10 min. The solution was centrifuged at 20,000 × g for 10 min at 4 ℃. The 
supernatant was used as the hepatic nuclear fraction.

Western Blots

Western blots were performed as previously described (Tsurudome et  al. 2022). 
Hepatic nuclear fractions were denatured at 95 ℃ for 3  min with 1% SDS and 
5% 2-mercaptoethanol. Denatured samples containing 10  µg of each protein frac-
tion were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis 
(SDS–PAGE) and transferred onto a polyvinylidene difluoride membrane. Separated 
proteins on a TGX stain-free SDS-gel (Bio-Rad, Hercules, CA, USA) were stained 
as a control for equal loading of the nuclear fraction proteins. The membranes were 
blocked with 1% skim milk (#9999; Cell Signaling Technology, Beverly, MA) in 
Tween 20–TBS at room temperature (20–25 ℃) for 1  h with constant agitation. 
The membranes were incubated with anti-Cyp3a11 (1:1000; 18227–1-AP; Protein-
tech, Tokyo, Japan), anti-Cyp1a2 (1:1000; 19936–1-AP; Proteintech), anti-BMAL1 
(1:1000; ab15602; Abcam, Cambridge, UK), anti-PER1, and anti-CRY1 primary 
antibodies diluted with Can Get Signal Solution 1 (Toyobo, Osaka, Japan). Specific 
antigen–antibody complexes were visualized using HRP-conjugated anti-rabbit IgG 
(1:10,000; sc-2032; Santa Cruz Biotechnology, Santa Cruz, CA) diluted with Can 
Get Signal Solution 2 (Toyobo) and ECL Western Blotting Substrates (Bio-Rad). 
Visualized images were scanned by a BIO-RAD ChemiDoc™ Touch Imaging Sys-
tem (Bio-Rad).
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Statistical Analyses

All data are expressed as the mean ± standard error of the mean (SEM). Statistical 
analyses were performed using GraphPad Prism software (ver. 8; GraphPad Soft-
ware, San Diego, CA, USA). Differences among the groups were analyzed by two-
way ANOVA, followed by Tukey’s post hoc tests. P < 0.05 was considered statisti-
cally significant (The results of the analysis are listed in Supplementary Table 1–6). 
Although no statistical methods were used to predetermine the sample size, the sam-
ple sizes used in the present study are similar to those reported in previous studies 
(Ravipati et al. 2012; Lin et al. 2019; Tsurudome et al. 2022). The experiments were 
not randomized.

Results

Cytochrome P450 mRNA Expression in Mouse Liver is Promoted by German 
Chamomile Extract

To determine whether cytochrome P450 expression was increased by German cham-
omile extract at the transcriptional level, we measured Cyp3a11 and Cyp1a2 mRNA 
expression in the mouse liver. The Cyp3a11 and Cyp1a2 mRNA expression levels 
were significantly higher in the German chamomile extract (GC Ex.) group than in 
the vehicle group (Fig. 2a, b). The Cyp3a11 and Cyp1a2 mRNA expression rhythms 
in the vehicle group showed a significant diurnal rhythm with higher expression in 
the light period than in the dark period, similar to the results in previous reports (Lin 
et al. 2019; Lu et al. 2013). In the GC Ex. group, the Cyp3a11 mRNA and Cyp3a11 
protein expression rhythm was flattened and high even in the dark period (Fig. 2a, 
c). These results indicate that the expression of CYPs is induced at the transcrip-
tional step by German chamomile extract and that this disrupts the rhythm of CYP 
expression.

German Chamomile Extract Upregulates BMAL1 Expression in Mouse Liver Nuclei

The rhythm of Cyp3a11 expression is largely mediated by BMAL1 expression 
(Lin et al. 2019). To evaluate how the German chamomile extract affects the clock 
mechanism of the liver, we extracted nuclear fraction proteins from the liver and 
measured nuclear clock gene expression. A distinct circadian rhythm was observed 
for BMAL1 protein expression in the liver nuclei of the control group (Fig. 3a, b). 
By contrast, BMAL1 expression in the GC Ex. group did not show the same cir-
cadian rhythm as that in the control group. Moreover, nuclear BMAL1 expression 
was high at all time points. The expression of CRY1 and PER2, which are suppres-
sors of BMAL1, was also measured, although no significant changes were observed 
because of the large individual differences (Fig. 3c, d).
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Influence of German Chamomile Extract on the Transcription of Clock Genes 
in Mouse Liver

To evaluate how the German chamomile extract affects the clock mechanism of 

Fig. 2   German chamomile extract induces cytochrome P450 mRNA expression in the mouse liver. a, b 
Temporal expression profiles of Cyp3a11 (a) and Cyp1a2 (b) mRNA in in the liver of vehicle and GC 
Ex. groups. c, d Temporal expression profiles of Cyp3a11 (c) and Cyp1a2 (d) protein in in the liver of 
vehicle and GC Ex. groups. Stain-Free Gel image indicates the equal loading of proteins from the liver. 
Values are shown as the mean with S.E.M. (n = 3). The mean value of the vehicle group at the peak time 
was set as 1. †, P < 0.05, significantly different between the two groups; **, P < 0.01, significantly differ-
ent from vehicle group at the corresponding time point (two-way ANOVA with Tukey’s post hoc test)
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the liver, we measured the clock gene expression rhythm in the liver (Fig. 4). The 
cycle of Cry1 mRNA expression was shortened in the GC Ex. group compared with 
the control group (Fig. 4c, Supplementary Table 3). The results showed that Clock 
mRNA expression in the liver at ZT6 and ZT18 was decreased (Fig. 4e). In addi-
tion, the cycle of Clock mRNA was prolonged, and its expression was decreased 
compared with that in the control group. However, the changes in Bmal1 mRNA 
expression were not as significant as the increase in the nuclear protein expression of 
BMAL1. This result suggests that the German chamomile extract did not affect the 
transcription mechanism of the Clock systems; instead, it affected the post-transcrip-
tional modification process, causing the induction of liver BMAL1 expression.

German Chamomile Extract has no Effect on Clock Gene Expression in the Mouse 
SCN

The clock mechanism of the organism is synchronized by transmission from the 
master clock system in the SCN. To determine whether the German chamomile 
extract affects the clock system in the SCN, we measured the clock gene expres-
sion levels in the SCN. The results showed no significant changes in the rhythm and 
mRNA expression levels of Clock, Bmal1, Per1, and Cry1 (Fig. 5a–d). These results 

Fig. 3   Altered expression of clock gene proteins in the mouse hepatic nuclear region in the German 
chamomile extract group. a The upper panel shows Western blot images, and the lower panel shows 
a CBB stain image. Stain-Free Gel image indicates the equal loading of proteins from the liver. b–d 
Temporal expression profiles of BMAL1 (b), CRY1 (c) and PER2 (d) protein in the nuclear fraction of 
vehicle and GC Ex. groups. Values are shown as the mean with S.E.M. (n = 3). The mean value of the 
vehicle group at the peak time was set as 1. †, P < 0.05, significantly different between the two groups; 
*, P < 0.05, significantly different from vehicle group at the corresponding time point (two-way ANOVA 
with Tukey’s post hoc test).
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indicated that the German chamomile extract affects the peripheral clock mecha-
nism without affecting the central clock mechanism.

German Chamomile Extract has no Effect on the Kidney Clock Mechanism 
or the Rhythm of Expression of ATP-Binding Cassette (ABC) Transporters in the 
Mouse Kidney.

The German chamomile extract causes changes in the peripheral clock mecha-
nism, and therefore it is assumed that other organs would be affected. To analyze 
whether the German chamomile extract also affected the clock mechanism in other 
organs, the clock gene expression cycle in the kidney was evaluated. The results 
showed that there were no significant differences between the two groups, with no 
changes in the expression cycle of clock genes in the kidneys compared with that in 
the liver (Fig. 6a–f).

Some medicinal herbal extracts induce the expression of ABC transporters. 
Therefore, we measured the mRNA expression levels of the ABC transporters 
Abcb1a, Abcc2, Abcc4, and Abcg2, which are highly expressed in the kidney. The 
expression levels of these ABC transporters were not significantly different between 
the two groups (Fig. 7a–d). Thus, the effects of German chamomile extract on the 
peripheral clock mechanism are selective for the liver and have little effect on the 
kidneys.

Fig. 4   German chamomile extract affect the clock gene expression in the mouse Liver. a–f Temporal 
expression profiles of Per1 (a), Per2 (b), Cry1 (c), Bmal1 (d), Clock (e), and Dbp (f) mRNA in the liver 
of the vehicle and GC Ex. groups. Values are shown as the mean with S.E.M. (n = 3). The mean value 
of the vehicle group at the peak time was set as 1. †, P < 0.05, significantly different between the two 
groups; *, P < 0.05, significantly different from vehicle group at the corresponding time point (two-way 
ANOVA with Tukey’s post hoc test)
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Discussion

The mechanism by which German chamomile induces cytochrome P450 expression 
has not been clarified. The results of this study indicate that German chamomile 
extract induces the transcription of Cyp3a11 gene in the mouse liver. The induction 
of Cyp3a11 transcription was attributed to increased BMAL1 protein expression in 
the liver nucleus. German chamomile extract affected the expression cycle of clock 
genes in the liver. In contrast, it did not significantly alter the clock gene expression 
cycles in other organs such as the kidney and SCN. These results indicate that the 

Fig. 5   German chamomile extract does not affect the clock gene mechanism in the mouse SCN. a–d 
Temporal expression profiles of Bmal1 (a), Clock (b), Per1 (c), and Cry1 (d) mRNA in the SCN of the 
vehicle and GC Ex. groups. Values are shown as the mean with S.E.M. (n = 3). The mean value of the 
vehicle group at the peak time was set as 1. There was no significant difference between the two groups 
(two-way ANOVA with Tukey’s post hoc test)
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effect of German chamomile extract on clock gene expression cycle is liver-selec-
tive, which induces CYP expression.

The induction of drug-metabolizing enzyme  expression by medicinal herbs 
affects pharmacokinetics (Rombolà et al. 2020; Fasinu et al. 2012). St. John’s wort 
causes the induction of CYP3A4 expression and decreases blood levels of tacroli-
mus and digoxin (Johne et al. 1999; Obach et al. 2004). The mechanism of increased 
CYP3A4 expression is mainly due to increased transcriptional activity via nuclear 
receptors (e.g., PXR and CAR) (Moore et al. 2000; Masi et al. 2009). German cham-
omile contains high amounts of flavonoids such as apigenin; however, these main 
components do not activate the PXR pathway (Dong et al. 2010). The increase in 
Cyp3a11 expression induced by German chamomile extract observed in this study 
weakly implicates the widely known PXR pathway.

German chamomile extract and apigenin intake have a significant effect on the 
lipid metabolism mechanism in the liver. Apigenin accelerates fat uptake, promotes 
lipid metabolism, and increases NAD + levels (Escande et  al. 2013; Jung et  al. 
2016). Although these physiological effects of apigenin are known, the mechanism 
is unknown. BMAL1 accelerates lipid uptake in the liver (Gu et al. 2024). Further-
more, NAD + synthase is also regulated by BMAL1 (Nakahata et al. 2009). On the 
basis of the above information, it is assumed that the previously unknown changes 
in various physiological activities by apigenin are accompanied by an increase in the 
nuclear protein BMAL1.

Fig. 6   German chamomile extract does not affect the clock gene mechanism in the mouse kidney. a–f 
Temporal expression profiles of Per1 (a), Per2 (b), Cry1 (c), Bmal1 (d), Clock (e), and Dbp (f) mRNA 
in the kidney of the vehicle and GC Ex. groups. Values are shown as the mean with S.E.M. (n = 3). 
The mean value of the vehicle group at the peak time was set as 1. There was no significant difference 
between the two groups (two-way ANOVA with Tukey’s post hoc test)
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From a pharmacokinetic standpoint, there are no reports indicating clinical con-
cerns related to the increased expression of Cyp3a11 associated with the concurrent 
use of German chamomile. Conversely, Cyp3a11 has physiological roles beyond 
drug metabolism, including the hydroxylation of steroid hormones and bile acids. 
Specifically, testosterone and cortisol undergo hydroxylation at the 6β-position by 
Cyp3a11 (Ghosh et al. 1995; Meyer et al. 2009). According to pervious report on 
patients with polycystic ovarian syndrome who were given German chamomile 
extract in their drinking water, a decrease in plasma testosterone concentration was 
observed (Afiat et  al. 2022). Furthermore, the activity of Cyp3a11 is vital for the 
regulation of bile acid composition through the hydroxylation of bile acids and 

Fig. 7   Renal ABC transporters are not induced by German chamomile extract. a–d Temporal expres-
sion profiles of Abcb1a (a), Abcc2 (b), Abcc4 (c), and Abcg2 (d) mRNA in the kidney of the vehicle 
and GC Ex. groups. Values are shown as the mean with S.E.M. (n = 3). The mean value of the vehicle 
group at the peak time was set as 1. There was no significant difference between the two groups (two-
way ANOVA with Tukey’s post hoc test)
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chenodeoxycholic acid (Gardès et al. 2013; Chiang and Ferrell 2020). Therefore, the 
intake of German chamomile extract may promote the metabolism of low molecular 
weight compounds with a steroid skeleton by increasing the expression of Cyp3a11.

Xenobiotic factor expression induced by German chamomile extract appeared to 
be limited to the liver rather than the kidney. The liver is an organ that undergoes 
first-passage effects in the body and is prone to fat-soluble substance deposition. Fla-
vonoid components in German chamomile are more likely to accumulate in the liver 
(Wilkinson et al. 1999). In contrast, in the kidney, most water-soluble substances are 
filtered by the glomerulus and transferred to the ureter and may not be taken up by 
renal tubular cells. Therefore, it is likely that BMAL1 nuclear protein expression in 
the kidney was not affected, and as a result, no effect on clock gene or ABC trans-
porter expression was observed.

There was no positive control group in this study using extracts previously 
reported to alter clock gene expression. Although previous studies have shown that 
certain natural products, such as black pepper constituents and Silybum marianum 
extracts, can modulate clock gene expression (Bian et al. 2022; Zhang et al. 2022), 
these effects were observed only at very high doses that are not physiologically rel-
evant to human consumption. Moreover, those compounds appeared to act across 
multiple organs, whereas our findings indicate that German chamomile extract 
exerts a more liver-selective influence (Figs. 3, 4, 5, 6 and 7). Therefore, we did not 
include a positive control in the present study. Future studies incorporating appro-
priate pharmacological agents or natural compounds with physiologically relevant 
effects on circadian gene expression will help validate our experimental system.

Another limitation of this study is that we did not perform a comprehensive 
chemical characterization of the German chamomile extract. While major flavonoids 
such as apigenin and luteolin are known constituents (Dong et  al. 2010; Escande 
et al. 2013; Ishizaki et al. 2024), we did not conduct a detailed analysis to identify 
and quantify all active components. This decision was made because the primary 
aim of the present study was to investigate the overall effect of the extract on clock 
gene expression, rather than to dissect the contribution of individual compounds. 
Future studies should include a thorough phytochemical analysis to clarify which 
specific constituents are responsible for the observed liver-selective effects on circa-
dian gene expression.

The results of this study uncover the mechanism of action of medicinal herbs 
in terms of changes in clock gene function. We found that German chamomile 
extract caused an increase in the amount of BMAL1 nuclear protein in the liver and 
increased the expression of Cyp3a11. In addition to CYP expression, BMAL1 is 
located upstream of genes that exert many nutrient-induced physiological effects, 
such as fatty acid metabolism, lipid uptake, and glycogen degradation (Gu et  al. 
2024; Udoh et  al. 2018). Elevated nuclear BMAL1 protein levels may be one of 
the mechanisms by which medicinal herbs alter drug metabolism and physiological 
functions. Further analysis along the lines of this study will lead to a more detailed 
understanding of the mechanisms of action of medicinal herbal extracts and promote 
the appropriate use of medicinal herbs.
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Conclusion

This study demonstrates that German chamomile extract exerts tissue-specific 
effects on circadian regulation of drug-metabolizing enzymes. The liver-selective 
disruption of BMAL1-mediated circadian rhythms suggests that German chamo-
mile’s therapeutic benefits are achieved through precise hepatic modulation without 
globally disrupting the body’s master circadian clock. These findings explain poten-
tial drug interactions in patients chronically consuming German chamomile. This 
contributes to understanding how herbal remedies work at the molecular level.
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