氏 名 梦露(Menglu HUANG) 黄 授与した学位 博 士 専攻分野の名称 工 学 学位授与番号 博甲第 7 3 9 7 뭉 学位授与の日付 2025年 9月 25日 学位授与の要件 環境生命科学研究科 環境科学専攻 (学位規則第4条第1項該当) Application of machine learning methods to geotechnical designs based on data-driven probabilistic framework 学位論文の題目 (データ駆動型確率論的フレームワークに基づく地盤工学設計への機械学習手法の応 用)

学位論文内容の要旨

西村 伸一

准教授

工藤

亮治

教授

This dissertation develops a comprehensive machine learning-enhanced framework transforming geotechnical design from deterministic analysis toward probabilistic evaluation supporting risk-informed decision-making. Traditional geotechnical investigations sample only a tiny fraction of investigation domains, creating substantial knowledge gaps that limit design reliability across foundation systems, retaining structures, tunnels, and slope stability applications.

Research Methodology and Innovations

准教授 柴田 俊文

The framework integrates four interconnected innovations. Tucker decomposition-Bayesian compressive sensing (TD-BCS) revolutionizes three-dimensional spatial reconstruction through tensor-based sparse representation preserving anisotropic geological patterns while providing uncertainty quantification. Multivariate Gaussian process trend kriging enhances spatial characterization by integrating heterogeneous measurement types through cross-correlations between geotechnical and geophysical data. The data-fusion framework transforms enhanced spatial predictions into reliable design parameters through laboratory-calibrated transformation relationships and Monte Carlobased analysis. PCLA-Net, a hybrid deep learning architecture, processes spatial material variability and temporal environmental loading for real-time probabilistic hazard assessment.

Key Research Findings

論文審査委員

Extensive validation demonstrates superior performance compared to conventional approaches. TD-BCS achieves significant accuracy improvements with substantially reduced computational costs. Multivariate data fusion provides notable uncertainty reduction compared to individual parameter methods. The probabilistic framework delivers enhanced reliability with improved factor of safety distributions compared to conventional approaches. PCLA-Net enables real-time assessment with reduced training data requirements while maintaining accuracy comparable to computationally expensive Monte Carlo simulation.

Academic Contributions and Practical Significance

The research establishes theoretical foundations for probabilistic geotechnical analysis, advancing tensor-based spatial reconstruction and multivariate modeling frameworks. The comprehensive uncertainty propagation methodology provides systematic reliability assessment acknowledging all uncertainty sources. The practical significance lies in transforming geotechnical assessment toward objective, risk-informed evaluation optimizing safety and economic considerations while enabling dynamic risk management adaptable to changing environmental conditions. This work bridges theoretical developments with practical applications, establishing foundations for probabilistic geotechnical analysis and digital twins for geotechnical systems.

論文審査結果の要旨

学位申請者の研究は、機械学習法を地盤工学の設計問題へ適用しようとするものである。博士論文では、主に、4つの手法が提案法されている。4つの手法は、①Tucker Decomposition-Bayesian Compressive Sensing (TD-BCS)、②Multivariate Gaussian Process Trend Kriging、③Comprehensive Data-Fusion Framework between Sounding Laboratory Tests、④PCLA-Net Deep Learning Architectureである。①の手法は、軟弱地盤の3次元強度分布のモデル化に使用されている。申請者は、他の手法と比較し、提案法が、計算効率の点で優れていることを示した。②は、物理探査(表面波探査)とサウンディング(CPT)のデータフュージョンによる地盤強度の3次元モデル化を行っている。③は、②で開発した手法を、斜面安定解析において、強度の空間分布のモデル化および安定解析に適用したものである。④は、時系列事象と空間事象の確率場を同時に扱える解析手法を開発したものである。申請者は、この手法によって、時系列に従って変化する降雨事象と地盤強度の空間分布を同時にモデル化し、斜面安全率の時系列変化を求めている。①と④の成果は既に、国際ジャーナルに掲載されている。機械学手法は、今後設計問題で重要な位置を占めることは明白で、申請者の成果は、今後の地盤工学設計に大きく貢献できることが予見できるものである。

審査会では、これらの成果が過不足無く発表されており、質疑応答も適切になされた。これらの点からから、審査会委員会は、申請者を博士の学位に相応しいと判断した。