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Online Appendix A: Identification of natural direct and indirect effects 

Proposition 1 

If assumptions (1) to (4) hold, the natural direct effect is identified and given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎′))] − 𝐸[𝑌(𝑎′, 𝑀(𝑎′))] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚] − 𝐸[𝑌|𝐴 = 𝑎′,𝑀 = 𝑚])𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

, 

 

and the natural indirect effect is identified and given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎))] − 𝐸[𝑌(𝑎,𝑀(𝑎′))] =∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚](𝑃(𝑀 = 𝑚|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′))

𝑚

. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑎,𝑀(𝑎′))] =∑𝐸[𝑌(𝑎,𝑀(𝑎′))|𝑀(𝑎′) = 𝑚]𝑃(𝑀(𝑎′) = 𝑚)

𝑚

   (∵) law of total expectation 

=∑𝐸[𝑌(𝑎,𝑚)|𝑀(𝑎′) = 𝑚]𝑃(𝑀(𝑎′) = 𝑚)

𝑚

 

=∑𝐸[𝑌(𝑎,𝑚)]𝑃(𝑀(𝑎′) = 𝑚|𝐴 = 𝑎′)

𝑚

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎′),   𝑀(𝑎′) ⫫ 𝐴 

=∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝐴, consistency, positivity 

=∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎,𝑀(𝑎) = 𝑚]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎)|𝐴 = 𝑎 

=∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

.   (∵) consistency, positivity 

 

See Nguyen et al. [1] for an explanation of the positivity assumption. If we apply this result and replace 𝑎 with 𝑎′, we get 
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𝐸[𝑌(𝑎′, 𝑀(𝑎′))] =∑𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

. 

 

Thus, the natural direct effect is given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎′))] − 𝐸[𝑌(𝑎′, 𝑀(𝑎′))] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚] − 𝐸[𝑌|𝐴 = 𝑎′,𝑀 = 𝑚])𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

. 

 

If we apply the result and replace 𝑎′ with 𝑎, we get 

 

𝐸[𝑌(𝑎,𝑀(𝑎))] =∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚]𝑃(𝑀 = 𝑚|𝐴 = 𝑎)

𝑚

. 

 

Thus, the natural indirect effect is given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎))] − 𝐸[𝑌(𝑎,𝑀(𝑎′))] =∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚](𝑃(𝑀 = 𝑚|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′))

𝑚

.   ∎ 

 

The expression for the natural indirect effect is sometimes referred to as the “mediation formula” [2]. 
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Online Appendix B: Identification of the total effect 

Proposition 2 

If (𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐼(𝐴 = 𝑎) (∀𝑎,𝑚) holds, where 𝐼(𝐴 = 𝑎) is the Bernoulli indicator random variable, the total effect is identified and given by 

 

𝐸[𝑌(𝑎)] − 𝐸[𝑌(𝑎′)] = 𝐸[𝑌|𝐴 = 𝑎] − 𝐸[𝑌|𝐴 = 𝑎′]. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑎)] = 𝐸[𝑌(𝑎,𝑀(𝑎))]   (∵) composition 

=∑𝐸[𝑌(𝑎,𝑀(𝑎))|𝑀(𝑎) = 𝑚]𝑃(𝑀(𝑎) = 𝑚)

𝑚

   (∵) law of total expectation 

=∑𝐸[𝑌(𝑎,𝑚)|𝑀(𝑎) = 𝑚]𝑃(𝑀(𝑎) = 𝑚)

𝑚

 

=∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎,𝑀(𝑎) = 𝑚]𝑃(𝑀(𝑎) = 𝑚|𝐴 = 𝑎)

𝑚

   (∵) (𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐼(𝐴 = 𝑎) 

=∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚]𝑃(𝑀 = 𝑚|𝐴 = 𝑎)

𝑚

   (∵) consistency, positivity 

= 𝐸[𝑌|𝐴 = 𝑎],   (∵) law of total expectation 

 

where, in the fourth equation, the following equivalence relationship holds by the weak union and decomposition graphoid axioms (⇒) and the contraction graphoid 

axiom (⇐) [3]: 

  

(𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐼(𝐴 = 𝑎) ⇔ (𝑌(𝑎,𝑚) ⫫ 𝐼(𝐴 = 𝑎)|𝑀(𝑎)) ∧ (𝑀(𝑎) ⫫ 𝐼(𝐴 = 𝑎)). 

 

See Nguyen et al. [1] for an explanation of the positivity assumption. If we apply this result and replace 𝑎 with 𝑎′, we get 

 

𝐸[𝑌(𝑎′)] = 𝐸[𝑌|𝐴 = 𝑎′]. 
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Thus, the total effect is given by 

 

𝐸[𝑌(𝑎)] − 𝐸[𝑌(𝑎′)] = 𝐸[𝑌|𝐴 = 𝑎] − 𝐸[𝑌|𝐴 = 𝑎′].   ∎ 

 

Note that (𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐼(𝐴 = 𝑎) (∀𝑎,𝑚) is weaker than assumptions (1) to (4), as below: 

 

𝑃(𝑌(𝑎,𝑚) = 𝑦,𝑀(𝑎) = 𝑚|𝐴 = 𝑎) = 𝑃(𝑌(𝑎,𝑚) = 𝑦|𝐴 = 𝑎)𝑃(𝑀(𝑎) = 𝑚|𝐴 = 𝑎)   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎)|𝐴 = 𝑎 

= 𝑃(𝑌(𝑎,𝑚) = 𝑦)𝑃(𝑀(𝑎) = 𝑚)   (∵) 𝑌(𝑎,𝑚) ⫫ 𝐴,   𝑀(𝑎) ⫫ 𝐴 

= 𝑃(𝑌(𝑎,𝑚) = 𝑦,𝑀(𝑎) = 𝑚),   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎) 

 

where, in the third equation, 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎) is weaker than assumption (4). Thus, by definition, the expressions for 𝐸[𝑌(𝑎,𝑀(𝑎))] and 𝐸[𝑌(𝑎′, 𝑀(𝑎′))] in Online 

Appendix A reduce to 𝐸[𝑌|𝐴 = 𝑎] and  𝐸[𝑌|𝐴 = 𝑎′], respectively. In causal mediation analyses, it may be common to assume that the exposure A is (conditionally) 

randomized, such that (𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐴 (∀𝑎,𝑚)  holds, which is not generally weaker than assumptions (1) to (4). However, when A is a binary variable, 

(𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐴 (∀𝑎,𝑚) is equivalent to (𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐼(𝐴 = 𝑎) (∀𝑎,𝑚), which is (as shown above) weaker than assumptions (1) to (4).   

By the same logic, (𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐼(𝐴 = 𝑎)|𝐻 (∀𝑎,𝑚) is weaker than assumptions (5) to (8). If (𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐼(𝐴 = 𝑎)|𝐻 (∀𝑎,𝑚) holds, as in Figure 2b, 

the total effect is identified and given by 

 

𝐸[𝑌(𝑎)] − 𝐸[𝑌(𝑎′)] =∑(𝐸[𝑌|𝐴 = 𝑎,𝐻 = ℎ] − 𝐸[𝑌|𝐴 = 𝑎′, 𝐻 = ℎ])𝑃(𝐻 = ℎ)

ℎ

. 

 

However, note that (𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐼(𝐴 = 𝑎) (∀𝑎,𝑚)  also holds in Figure 2b; thus, the total effect is identified and given by 𝐸[𝑌|𝐴 = 𝑎] − 𝐸[𝑌|𝐴 = 𝑎′]  (see 

Proposition 2). Indeed, the expressions for 𝐸[𝑌(𝑎,𝑀(𝑎))] and 𝐸[𝑌(𝑎′,𝑀(𝑎′))] in Online Appendix C become ∑ 𝐸[𝑌|𝐴 = 𝑎,𝐻 = ℎ]𝑃(𝐻 = ℎ)ℎ  and ∑ 𝐸[𝑌|𝐴 =ℎ

𝑎′, 𝐻 = ℎ]𝑃(𝐻 = ℎ), respectively. Note that they reduce to 𝐸[𝑌|𝐴 = 𝑎] and 𝐸[𝑌|𝐴 = 𝑎′], respectively, because A and H are d-separated in Figure 2b, which implies 

𝑃(𝐻 = ℎ) = 𝑃(𝐻 = ℎ|𝐴 = 𝑎) = 𝑃(𝐻 = ℎ|𝐴 = 𝑎′) holds.  

  Finally, In Figure 3b, (𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐼(𝐴 = 𝑎)|𝐿 (∀𝑎,𝑚) does not generally hold. However, (𝑌(𝑎,𝑚),𝑀(𝑎)) ⫫ 𝐼(𝐴 = 𝑎) (∀𝑎,𝑚) holds, and the total effect can 

be identified and given by 𝐸[𝑌|𝐴 = 𝑎] − 𝐸[𝑌|𝐴 = 𝑎′] (see Proposition 2).  
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Online Appendix C: Identification of natural direct and indirect effects when there is a mediator–outcome confounder H 

Proposition 3 

If assumptions (5) to (8) hold, the natural direct effect is identified and given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎′))] − 𝐸[𝑌(𝑎′, 𝑀(𝑎′))] =∑∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ] − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ])𝑃(𝑀 = 𝑚|𝐴 = 𝑎′, 𝐻 = ℎ)𝑃(𝐻 = ℎ)

𝑚ℎ

, 

 

and the natural indirect effect is identified and given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎))] − 𝐸[𝑌(𝑎,𝑀(𝑎′))] =∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ](𝑃(𝑀 = 𝑚|𝐴 = 𝑎,𝐻 = ℎ) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′, 𝐻 = ℎ))𝑃(𝐻 = ℎ)

𝑚ℎ

. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑎,𝑀(𝑎′))] =∑∑𝐸[𝑌(𝑎,𝑀(𝑎′))|𝑀(𝑎′) = 𝑚,𝐻 = ℎ]𝑃(𝑀(𝑎′) = 𝑚|𝐻 = ℎ)𝑃(𝐻 = ℎ)

𝑚ℎ

   (∵) law of total expectation 

=∑∑𝐸[𝑌(𝑎,𝑚)|𝑀(𝑎′) = 𝑚,𝐻 = ℎ]𝑃(𝑀(𝑎′) = 𝑚|𝐻 = ℎ)𝑃(𝐻 = ℎ)

𝑚ℎ

 

=∑∑𝐸[𝑌(𝑎,𝑚)|𝐻 = ℎ]𝑃(𝑀(𝑎′) = 𝑚|𝐴 = 𝑎′, 𝐻 = ℎ)𝑃(𝐻 = ℎ)

𝑚ℎ

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎′)|𝐻,   𝑀(𝑎′) ⫫ 𝐴|𝐻 

=∑∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎, 𝐻 = ℎ]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′, 𝐻 = ℎ)𝑃(𝐻 = ℎ)

𝑚ℎ

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝐴|𝐻, consistency, positivity 

=∑∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎,𝑀(𝑎) = 𝑚,𝐻 = ℎ]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′, 𝐻 = ℎ)𝑃(𝐻 = ℎ)

𝑚ℎ

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎)|(𝐴 = 𝑎,𝐻) 

=∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′, 𝐻 = ℎ)𝑃(𝐻 = ℎ)

𝑚

.

ℎ

   (∵) consistency, positivity 

 

See Nguyen et al. [1] for an explanation of the positivity assumption. If we apply this result and replace 𝑎 with 𝑎′, we get 
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𝐸[𝑌(𝑎′,𝑀(𝑎′))] =∑∑𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′, 𝐻 = ℎ)𝑃(𝐻 = ℎ)

𝑚ℎ

. 

 

Thus, the natural direct effect is given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎′))] − 𝐸[𝑌(𝑎′, 𝑀(𝑎′))] =∑∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ] − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ])𝑃(𝑀 = 𝑚|𝐴 = 𝑎′, 𝐻 = ℎ)𝑃(𝐻 = ℎ)

𝑚ℎ

. 

 

If we apply the result and replace 𝑎′ with 𝑎, we get 

 

𝐸[𝑌(𝑎,𝑀(𝑎))] =∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝑀 = 𝑚|𝐴 = 𝑎,𝐻 = ℎ)𝑃(𝐻 = ℎ)

𝑚ℎ

. 

 

Thus, the natural indirect effect is given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎))] − 𝐸[𝑌(𝑎,𝑀(𝑎′))] =∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ](𝑃(𝑀 = 𝑚|𝐴 = 𝑎,𝐻 = ℎ) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′, 𝐻 = ℎ))𝑃(𝐻 = ℎ)

𝑚ℎ

.   ∎ 

 

The expression for the natural indirect effect is sometimes referred to as the “mediation formula” [2].  
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Proposition 4  

If assumptions (1), (3), (4), and (6) hold, the natural direct effect is identified and given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎′))] − 𝐸[𝑌(𝑎′, 𝑀(𝑎′))] =∑∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎) − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎′))𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚ℎ

, 

 

and the natural indirect effect is identified and given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎))] − 𝐸[𝑌(𝑎,𝑀(𝑎′))] =∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎)(𝑃(𝑀 = 𝑚|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′))

𝑚ℎ

. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑎,𝑀(𝑎′))] =∑𝐸[𝑌(𝑎,𝑀(𝑎′))|𝑀(𝑎′) = 𝑚]𝑃(𝑀(𝑎′) = 𝑚)

𝑚

   (∵) law of total expectation 

=∑𝐸[𝑌(𝑎,𝑚)|𝑀(𝑎′) = 𝑚]𝑃(𝑀(𝑎′) = 𝑚)

𝑚

 

=∑𝐸[𝑌(𝑎,𝑚)]𝑃(𝑀(𝑎′) = 𝑚)

𝑚

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎′) 

=∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎]𝑃(𝑀(𝑎′) = 𝑚|𝐴 = 𝑎′)

𝑚

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝐴,   𝑀(𝑎′) ⫫ 𝐴 

=∑{∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎, 𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎)

ℎ

}𝑃(𝑀(𝑎′) = 𝑚|𝐴 = 𝑎′)

𝑚

   (∵) law of total expectation, positivity    

=∑∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎)𝑃(𝑀(𝑎′) = 𝑚|𝐴 = 𝑎′)

𝑚ℎ

 

=∑∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎,𝑀(𝑎) = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎)𝑃(𝑀(𝑎′) = 𝑚|𝐴 = 𝑎′)

𝑚ℎ

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎)|(𝐴 = 𝑎, 𝐻) 
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=∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎)𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚ℎ

.   (∵) consistency, positivity 

 

See Nguyen et al. [1] for an explanation of the positivity assumption. If we apply this result and replace 𝑎 with 𝑎′, we get 

 

𝐸[𝑌(𝑎′,𝑀(𝑎′))] =∑∑𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎′)𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚ℎ

. 

 

Thus, the natural direct effect is given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎′))] − 𝐸[𝑌(𝑎′, 𝑀(𝑎′))] =∑∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎) − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎′))𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚ℎ

. 

 

If we apply the result and replace 𝑎′ with 𝑎, we get 

 

𝐸[𝑌(𝑎,𝑀(𝑎))] =∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎)𝑃(𝑀 = 𝑚|𝐴 = 𝑎)

𝑚ℎ

. 

 

Thus, the natural indirect effect is given by 

 

𝐸[𝑌(𝑎,𝑀(𝑎))] − 𝐸[𝑌(𝑎,𝑀(𝑎′))] =∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎)(𝑃(𝑀 = 𝑚|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′))

𝑚ℎ

.   ∎ 

 

These are equivalent to the empirical formulae provided by VanderWeele [4]. In Figure 2b, although assumptions (1), (3), and (6) hold, assumption (4) does not generally 

hold. By contrast, assumptions (5) to (8) hold in Figure 2b. Therefore, in this context, the natural direct and indirect effects are readily identified using Proposition 3.  
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Online Appendix D: Isolation assumption and dismissible component condition 

For simplicity, we consider a binary exposure X and a binary outcome Y, and we do not consider a setting of mediation. We let Y(x) denote the potential outcomes of Y 

if, possibly contrary to fact, there had been interventions to set X to x. In this case, there are four response types, as shown in Table S1. Note that the following equations 

hold: 

 

𝑃(𝑌(1) = 1) = 𝑟1 + 𝑟2, 

𝑃(𝑌(0) = 1) = 𝑟1 + 𝑟3, 

𝑃(𝑌 = 1) = (𝑝1 + 𝑝2)𝜋 + (𝑞1 + 𝑞3)(1 − 𝜋) = 𝑟1 + 𝑝2𝜋 + 𝑞3(1 − 𝜋), 

 

where 𝜋 = 𝑃(𝑋 = 1) is the prevalence of the exposed group in the study population. These three quantities become identical if and only if 𝑟2 = 𝑟3 = 𝑝2𝜋 + 𝑞3(1 − 𝜋) 

holds. Here, we describe the following four conditions: 

 

1. Independence between X and Y (i.e., d-separation between X and Y in a causal DAG): 

 

𝑌 ⫫ 𝑋 

⇔ 𝑃(𝑌 = 1|𝑋 = 1) = 𝑃(𝑌 = 1|𝑋 = 0) 

⇔ 𝑝1 + 𝑝2 = 𝑞1 + 𝑞3. 

 

2. Exchangeability of Y(x) across X (i.e., no open backdoor paths from X to Y in a causal DAG): 

 

𝑌(𝑥) ⫫ 𝑋 (𝑥 = 0,1) 

⇔ (𝑃(𝑌(1) = 1|𝑋 = 1) = 𝑃(𝑌(1) = 1|𝑋 = 0)) ∧ (𝑃(𝑌(0) = 1|𝑋 = 1) = 𝑃(𝑌(0) = 1|𝑋 = 0))  

⇔ (𝑝1 + 𝑝2 = 𝑞1 + 𝑞2) ∧ (𝑝1 + 𝑝3 = 𝑞1 + 𝑞3). 

 

3. Dismissible component condition of X on Y(x): 

 

𝑃(𝑌(1) = 1) = 𝑃(𝑌(0) = 1) 

⇔ 𝑟2 = 𝑟3 

⇔ 𝑝2𝜋 + 𝑞2(1 − 𝜋) =  𝑝3𝜋 + 𝑞3(1 − 𝜋).  



10 

 

 

4. Isolation assumption of X on Y(x) (i.e., no direct arrow from X to Y in a causal DAG): 

 

𝑌(1) = 𝑌(0) for all individuals 

⇔ 𝑟2 = 𝑟3 = 0  

⇔ 𝑃(𝑌(1) = 1) = 𝑃(𝑌(0) = 1) = 𝑃(𝑌 = 1) = 𝑟1 

⇒ 𝑟2 = 𝑟3 = 𝑝2𝜋 + 𝑞3(1 − 𝜋) 

⇔ 𝑃(𝑌(1) = 1) = 𝑃(𝑌(0) = 1) = 𝑃(𝑌 = 1). 

 

Three points are worth mentioning. First, although the isolation assumption is an individual-level assumption, the dismissible component condition is a population-level 

assumption [5, 6]. Thus, the isolation assumption implies the dismissible component condition. Second, if both the exchangeability condition and the isolation assumption 

hold, independence between X and Y holds. Graphically, this can be explained as follows: if there are no backdoor path(s) from X to Y and no direct arrows from X to Y, 

we can say that X and Y are d-separated. Third, under the exchangeability condition, the dismissible component condition is equivalent to the independence between X 

and Y. We show its proof below. 

 

Proof: 

𝑃(𝑌(𝑥) = 𝑦) = 𝑃(𝑌(𝑥′) = 𝑦) 

⇔ 𝑃(𝑌(𝑥) = 𝑦|𝑋 = 𝑥) = 𝑃(𝑌(𝑥′) = 𝑦|𝑋 = 𝑥′)   (∵) 𝑌(𝑥) ⫫ 𝑋 

⇔ 𝑃(𝑌 = 𝑦|𝑋 = 𝑥) = 𝑃(𝑌 = 𝑦|𝑋 = 𝑥′)   (∵) consistency 

⇔ 𝑌 ⫫ 𝑋.   ∎ 
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Table S1 Response types when considering a binary exposure X and a binary outcome Y 

Response types  Potential outcomes 𝑌(𝑥)  Distributions in 

  𝑌(1) 𝑌(0)  Exposed group Unexposed group Total populationa 

Doomed  1 1  𝑝1 𝑞1 𝑟1 

Causal  1 0  𝑝2 𝑞2 𝑟2 

Preventive  0 1  𝑝3 𝑞3 𝑟3 

Immune  0 0  𝑝4 𝑞4 𝑟4 

Total     1 1 1 

aNote that 𝑟𝑖 can be calculated as 𝑝𝑖 × 𝑃(𝑋 = 1) + 𝑞𝑖 × 𝑃(𝑋 = 0)  (𝑖 = 1,2,3,4), where 𝑃(𝑋 = 𝑥) represents the prevalence of 𝑋 = 𝑥 in the study population. 
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Online Appendix E: Identification of separable direct and indirect effects 

Proposition 5 

If assumptions (13) to (15) hold, the separable direct effect is identified and given by 

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚] − 𝐸[𝑌|𝐴 = 𝑎′,𝑀 = 𝑚])𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

, 

 

and the separable indirect effect is identified and given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚](𝑃(𝑀 = 𝑚|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′))

𝑚

. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌(𝑛′, 𝑜)|𝑀(𝑛′, 𝑜) = 𝑚]𝑃(𝑀(𝑛′, 𝑜) = 𝑚)

𝑚

   (∵) law of total expectation 

=∑𝐸[𝑌(𝑛′, 𝑜)|𝑀(𝑛′, 𝑜) = 𝑚,𝑁 = 𝑛′, 𝑂 = 𝑜]𝑃(𝑀(𝑛′, 𝑜) = 𝑚|𝑁 = 𝑛′, 𝑂 = 𝑜)

𝑚

   (∵) (𝑌(𝑛′, 𝑜),𝑀(𝑛′, 𝑜)) ⫫ (𝑁, 𝑂) 

=∑𝐸[𝑌|𝑀 = 𝑚,𝑁 = 𝑛′, 𝑂 = 𝑜]𝑃(𝑀 = 𝑚|𝑁 = 𝑛′, 𝑂 = 𝑜)

𝑚

   (∵) consistency 

=∑𝐸[𝑌|𝑀 = 𝑚,𝑁 = 𝑛, 𝑂 = 𝑜]𝑃(𝑀 = 𝑚|𝑁 = 𝑛′, 𝑂 = 𝑜′)

𝑚

   (∵) 𝑌 ⫫ 𝑁|(𝑂,𝑀),𝑀 ⫫ 𝑂|𝑁 

=∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

,   (∵) determinism, positivity 

 

where, in the second equation, the following equivalence relationship holds by the weak union and decomposition graphoid axioms (⇒) and the contraction graphoid 

axiom (⇐) [3]: 
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(𝑌(𝑛′, 𝑜),𝑀(𝑛′, 𝑜)) ⫫ (𝑁,𝑂) ⇔ (𝑌(𝑛′, 𝑜) ⫫ (𝑁,𝑂)|𝑀(𝑛′, 𝑜)) ∧ (𝑀(𝑛′, 𝑜) ⫫ (𝑁,𝑂)). 

 

If we apply this result and replace 𝑜 with 𝑜′, we get 

 

𝐸[𝑌(𝑛′, 𝑜′)] =∑𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

= 𝐸[𝑌|𝐴 = 𝑎′]. 

 

Thus, the separable direct effect is given by 

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚] − 𝐸[𝑌|𝐴 = 𝑎′,𝑀 = 𝑚])𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

. 

 

If we apply the result and replace 𝑛′ with 𝑛, we get 

 

𝐸[𝑌(𝑛, 𝑜)] =∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚]𝑃(𝑀 = 𝑚|𝐴 = 𝑎)

𝑚

. 

 

Thus, the separable indirect effect is given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚](𝑃(𝑀 = 𝑚|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′))

𝑚

.   ∎ 
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Online Appendix F: Identification of separable direct and indirect effects with weaker assumptions 

Lemma 1 

For some 𝑥 ∈ {0,1} and 𝑥∗ = 1 − 𝑥, the following relationships hold: 

 

(

(𝑌(𝑎),𝑀(𝑎)) ⫫ 𝐴 (∀𝑎) (13∗)

𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 0) = 𝑚) = 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 1) = 𝑚) (14∗)

𝑃(𝑌(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑚) = 𝑃(𝑌(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑚) (15∗)

) 

⇐ (

(𝑌(𝑛, 𝑜),𝑀(𝑛, 𝑜)) ⫫ (𝑁, 𝑂) (∀𝑛, 𝑜)

𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 0) = 𝑚) = 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 1) = 𝑚)

𝑃(𝑌(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑚) = 𝑃(𝑌(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑚)

) 

⇔ (

(𝑌(𝑛, 𝑜),𝑀(𝑛, 𝑜)) ⫫ (𝑁,𝑂) (∀𝑛, 𝑜)

𝑀 ⫫ 𝑂|𝑁 = 𝑥

𝑌 ⫫ 𝑁|(𝑂 = 𝑥∗,𝑀)

) 

⇐ (

(𝑌(𝑛, 𝑜),𝑀(𝑛, 𝑜)) ⫫ (𝑁, 𝑂) (∀𝑛, 𝑜) (13)

𝑀 ⫫ 𝑂|𝑁 (14)

𝑌 ⫫ 𝑁|(𝑂,𝑀) (15)

). 

 

Proof: 

The relationship between the first and second sets of assumptions trivially holds from the deterministic relationship between A, N, and O. Additionally, the relationship 

between the third and fourth sets of assumptions also trivially holds. We here provide a proof for the equivalence relationship between the second and third sets of 

assumptions, using the following equivalence relationship, which holds by the weak union and decomposition graphoid axioms (⇒) and the contraction graphoid axiom 

(⇐) [3]: 

 

(𝑌(𝑛, 𝑜),𝑀(𝑛, 𝑜)) ⫫ (𝑁, 𝑂) (∀𝑛, 𝑜) ⇔ (𝑌(𝑛, 𝑜) ⫫ (𝑁,𝑂)|𝑀(𝑛, 𝑜)) (∀𝑛, 𝑜) ∧ (𝑀(𝑛, 𝑜) ⫫ (𝑁,𝑂)) (∀𝑛, 𝑜). 

 

𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 0) = 𝑚) = 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 1) = 𝑚) 

⇔ 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 0) = 𝑚|𝑁 = 𝑥, 𝑂 = 0) = 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 1) = 𝑚|𝑁 = 𝑥, 𝑂 = 1)    (∵) 𝑀(𝑛, 𝑜) ⫫ (𝑁,𝑂) 

⇔ 𝑃(𝑀 = 𝑚|𝑁 = 𝑥, 𝑂 = 0) = 𝑃(𝑀 = 𝑚|𝑁 = 𝑥,𝑂 = 1)   (∵) consistency 

⇔𝑀 ⫫ 𝑂|𝑁 = 𝑥. 
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𝑃(𝑌(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑚) = 𝑃(𝑌(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑚) 

⇔ 𝑃(𝑌(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑦 | 𝑀(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑚,𝑁 = 1,𝑂 = 𝑥∗) = 𝑃(𝑌(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑦 | 𝑀(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑚,𝑁 = 0,𝑂 = 𝑥∗)  

(∵) 𝑌(𝑛, 𝑜) ⫫ (𝑁, 𝑂)|𝑀(𝑛, 𝑜) 

⇔ 𝑃(𝑌 = 𝑦 |𝑀 = 𝑚,𝑁 = 1,𝑂 = 𝑥∗) = 𝑃(𝑌 = 𝑦 |𝑀 = 𝑚,𝑁 = 0,𝑂 = 𝑥∗)   (∵) consistency 

⇔ 𝑌 ⫫ 𝑁|(𝑂 = 𝑥∗, 𝑀).   ∎ 

 

Assumptions (14*) and (15*) are equivalent to Equations (38.14) and (38.15) in Robins et al. [7], respectively, which are sometimes referred to as dismissible 

component conditions [5, 6]; see Online Appendix D for a related discussion. 
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Lemma 2 

For some 𝑥 ∈ {0,1} and 𝑥∗ = 1 − 𝑥, If assumptions (13*) to (15*) in Lemma 1 hold, the following equation holds: 

 

𝑃(𝑌(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑦) =∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐴 = 𝑥∗)𝑃(𝑀 = 𝑚|𝐴 = 𝑥)

𝑚

. 

 

Proof: 

We have 

 

𝑃(𝑌(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑦) =∑𝑃(𝑌(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑚)𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑚)

𝑚

   (∵) law of total probability 

=∑𝑃(𝑌(𝑛 = 𝑥∗, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 𝑥∗, 𝑜 = 𝑥∗) = 𝑚)𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 𝑥) = 𝑚)

𝑚

   (∵) (14∗), (15∗) 

=∑𝑃(𝑌(𝑎 = 𝑥∗) = 𝑦|𝑀(𝑎 = 𝑥∗) = 𝑚)𝑃(𝑀(𝑎 = 𝑥) = 𝑚)

𝑚

   (∵) determinism 

=∑𝑃(𝑌(𝑎 = 𝑥∗) = 𝑦|𝑀(𝑎 = 𝑥∗) = 𝑚, 𝐴 = 𝑥∗)𝑃(𝑀(𝑎 = 𝑥) = 𝑚|𝐴 = 𝑥)

𝑚

   (∵) (13∗) 

=∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚,𝐴 = 𝑥∗)𝑃(𝑀 = 𝑚|𝐴 = 𝑥)

𝑚

,   (∵) consistency, positivity 

 

where, in the fourth equation, the following equivalence relationship holds by the weak union and decomposition graphoid axioms (⇒) and the contraction graphoid 

axiom (⇐) [3]: 

 

(𝑌(𝑎),𝑀(𝑎)) ⫫ 𝐴 (∀𝑎) ⇔ (𝑌(𝑎) ⫫ 𝐴|𝑀(𝑎)) (∀𝑎) ∧ (𝑀(𝑎) ⫫ 𝐴) (∀𝑎).   ∎ 

 

For reference, see Proposition 38.1 in Robins et al. [7]. The second equation above is a summation over m of their Equation (38.16), which is shown below: 

 

𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑚,𝑌(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑦) = 𝑃(𝑌(𝑛 = 𝑥∗, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 𝑥∗, 𝑜 = 𝑥∗) = 𝑚)𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 𝑥) = 𝑚). 
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Proposition 6 

If assumptions (13*) to (15*) in Lemma 1 hold, the separable direct effect is identified and given by 

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚] − 𝐸[𝑌|𝐴 = 𝑎′,𝑀 = 𝑚])𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

, 

 

and the separable indirect effect is identified and given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚](𝑃(𝑀 = 𝑚|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′))

𝑚

. 

 

Proof: 

From Lemma 2, we have 

 

𝑃(𝑌(𝑛′, 𝑜) = 𝑦) =∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐴 = 𝑎)𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

. 

 

Thus, we have 

 

𝐸[𝑌(𝑛′, 𝑜)] =∑𝑦 ∙ 𝑃(𝑌(𝑛′, 𝑜) = 𝑦)

𝑦

 

=∑𝑦 ∙∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚,𝐴 = 𝑎)𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚𝑦

 

=∑{∑𝑦 ∙ 𝑃(𝑌 = 𝑦|𝑀 = 𝑚,𝐴 = 𝑎)

𝑦

}𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

 

=∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

. 
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If we apply this result and replace 𝑜 with 𝑜′, we get 

 

𝐸[𝑌(𝑛′, 𝑜′)] =∑𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚]𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

. 

 

Thus, the separable direct effect is given by 

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚] − 𝐸[𝑌|𝐴 = 𝑎′,𝑀 = 𝑚])𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚

. 

 

If we apply the result and replace 𝑛′ with 𝑛, we get 

 

𝐸[𝑌(𝑛, 𝑜)] =∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚]𝑃(𝑀 = 𝑚|𝐴 = 𝑎)

𝑚

. 

 

Thus, the separable indirect effect is given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚](𝑃(𝑀 = 𝑚|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′))

𝑚

.   ∎ 

 

Finally, it is worth noting that the separable direct and indirect effects cannot be identified under the following set of assumptions: 

 

(

(𝑌(𝑎),𝑀(𝑎)) ⫫ 𝐴 (∀𝑎) (13∗)

𝑀 ⫫ 𝑂|𝑁 (14)

𝑌 ⫫ 𝑁|(𝑂,𝑀) (15)

), 

 

which, although weaker than the set of assumptions (13) to (15), does not imply the set of assumptions (13*) to (15*). In longitudinal settings, Di Maria and Didelez [8] 

provided A0, A1, and A2 in their article as sufficient assumptions to identify the separable direct and indirect effects. Their assumptions can be written in the current 

setting as follows: 



19 

 

 

(

𝐸[𝑌(𝑎)] = 𝐸[𝑌|𝐴 = 𝑎] (∀𝑎) (13∗∗)
𝑀 ⫫ 𝑂|𝑁 (14)

𝑌 ⫫ 𝑁|(𝑂,𝑀) (15)
), 

 

which is even weaker than the set of assumptions (13*), (14), and (15). These discussions highlight the importance of carefully considering the assumptions for identifying 

separable direct and indirect effects.  
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Online Appendix G: Identification of separable direct and indirect effects when only N is a parent of L 

Proposition 7 

If assumptions (16) to (19) hold, the separable direct effect is identified and given by 

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎] − 𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′])𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

, 

 

and the separable indirect effect is identified and given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎](𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))

𝑚,𝑙

. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌(𝑛′, 𝑜)|𝑀(𝑛′, 𝑜) = 𝑚, 𝐿(𝑛′, 𝑜) = 𝑙]𝑃(𝑀(𝑛′, 𝑜) = 𝑚|𝐿(𝑛′, 𝑜) = 𝑙)𝑃(𝐿(𝑛′, 𝑜) = 𝑙)

𝑚,𝑙

   (∵) law of total expectation 

=∑𝐸[𝑌(𝑛′, 𝑜)|𝑀(𝑛′, 𝑜) = 𝑚, 𝐿(𝑛′, 𝑜) = 𝑙, 𝑁 = 𝑛′, 𝑂 = 𝑜]𝑃(𝑀(𝑛′, 𝑜) = 𝑚|𝐿(𝑛′, 𝑜) = 𝑙, 𝑁 = 𝑛′, 𝑂 = 𝑜)𝑃(𝐿(𝑛′, 𝑜) = 𝑙|𝑁 = 𝑛′, 𝑂 = 𝑜)

𝑚,𝑙

   (∵) (16) 

=∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝑁 = 𝑛′, 𝑂 = 𝑜]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝑁 = 𝑛′, 𝑂 = 𝑜)𝑃(𝐿 = 𝑙|𝑁 = 𝑛′, 𝑂 = 𝑜)

𝑚,𝑙

   (∵) consistency 

=∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝑁 = 𝑛,𝑂 = 𝑜]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝑁 = 𝑛′, 𝑂 = 𝑜′)𝑃(𝐿 = 𝑙|𝑁 = 𝑛′, 𝑂 = 𝑜′)

𝑚,𝑙

   (∵) (17), (18), (19)    

=∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

,   (∵) determinism, positivity 

 

where, in the second equation, the following equivalence relationship holds by the weak union and decomposition graphoid axioms (⇒) and the contraction graphoid 

axiom (⇐) [3]: 
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(𝑌(𝑛′, 𝑜), 𝐿(𝑛′, 𝑜),𝑀(𝑛′, 𝑜)) ⫫ (𝑁, 𝑂) ⇔ (𝑌(𝑛′, 𝑜) ⫫ (𝑁,𝑂)|(𝑀(𝑛′, 𝑜), 𝐿(𝑛′, 𝑜))) ∧ (𝑀(𝑛′, 𝑜) ⫫ (𝑁, 𝑂)|𝐿(𝑛′, 𝑜)) ∧ (𝐿(𝑛′, 𝑜) ⫫ (𝑁, 𝑂)). 

 

If we apply this result and replace 𝑜 with 𝑜′, we get 

 

𝐸[𝑌(𝑛′, 𝑜′)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

. 

 

Thus, the separable direct effect is given by 

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎] − 𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′])𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

. 

 

If we apply the result and replace 𝑛′ with 𝑛, we get 

 

𝐸[𝑌(𝑛, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝐿 = 𝑙|𝐴 = 𝑎)

𝑚,𝑙

. 

 

Thus, the separable indirect effect is given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎](𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))

𝑚,𝑙

.   ∎ 
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Online Appendix H: Identification of separable direct and indirect effects when only N is a parent of L with weaker assumptions 

Lemma 3 

For some 𝑥 ∈ {0,1} and 𝑥∗ = 1 − 𝑥, the following relationships hold: 

 

(

 

(𝑌(𝑎),𝑀(𝑎), 𝐿(𝑎)) ⫫ 𝐴 (∀𝑎)

𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 0) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 0) = 𝑙) = 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 1) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 1) = 𝑙)
(16∗)
(17∗)

𝑃(𝑌(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑙) = 𝑃(𝑌(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑙)

𝑃(𝐿(𝑛 = 𝑥, 𝑜 = 0) = 𝑙) = 𝑃(𝐿(𝑛 = 𝑥, 𝑜 = 1) = 𝑙)

(18∗)
(19∗))

 

⇐

(

 
 

(𝑌(𝑛, 𝑜), 𝐿(𝑛, 𝑜),𝑀(𝑛, 𝑜)) ⫫ (𝑁, 𝑂) (∀𝑛, 𝑜)

𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 0) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 0) = 𝑙) = 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 1) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 1) = 𝑙)

𝑃(𝑌(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑙) = 𝑃(𝑌(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑙)

𝑃(𝐿(𝑛 = 𝑥, 𝑜 = 0) = 𝑙) = 𝑃(𝐿(𝑛 = 𝑥, 𝑜 = 1) = 𝑙) )

 
 

⇔

(

 
 
(𝑌(𝑛, 𝑜), 𝐿(𝑛, 𝑜),𝑀(𝑛, 𝑜)) ⫫ (𝑁,𝑂) (∀𝑛, 𝑜)

𝑀 ⫫ 𝑂|(𝐿,𝑁 = 𝑥)

𝑌 ⫫ 𝑁|(𝐿,𝑀, 𝑂 = 𝑥∗)
𝐿 ⫫ 𝑂|𝑁 = 𝑥 )

 
 

 

⇐

(

 
 
(𝑌(𝑛, 𝑜), 𝐿(𝑛, 𝑜),𝑀(𝑛, 𝑜)) ⫫ (𝑁, 𝑂) (∀𝑛, 𝑜)

𝑀 ⫫ 𝑂|(𝐿, 𝑁)

(16)
(17)

𝑌 ⫫ 𝑁|(𝐿,𝑀, 𝑂)
𝐿 ⫫ 𝑂|𝑁

(18)
(19)

)

 
 
. 

 

Proof: 

The relationship between the first and second sets of assumptions trivially holds from the deterministic relationship between A, N, and O. Additionally, the relationship 

between the third and fourth sets of assumptions also trivially holds. Here, we provide a proof for the equivalence relationship between the second and third sets of 

assumptions, using the following equivalence relationship, which holds by the weak union and decomposition graphoid axioms (⇒) and the contraction graphoid axiom 

(⇐) [3]: 

 

(𝑌(𝑛, 𝑜), 𝐿(𝑛, 𝑜),𝑀(𝑛, 𝑜)) ⫫ (𝑁, 𝑂) (∀𝑛, 𝑜) ⇔ (𝑌(𝑛, 𝑜) ⫫ (𝑁,𝑂)|(𝑀(𝑛, 𝑜), 𝐿(𝑛, 𝑜))) (∀𝑛, 𝑜) ∧ (𝑀(𝑛, 𝑜) ⫫ (𝑁, 𝑂)|𝐿(𝑛, 𝑜)) (∀𝑛, 𝑜) ∧ (𝐿(𝑛, 𝑜) ⫫ (𝑁,𝑂)) (∀𝑛, 𝑜). 
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𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 0) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 0) = 𝑙) = 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 1) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 1) = 𝑙) 

⇔ 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 0) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 0) = 𝑙, 𝑁 = 𝑥, 𝑂 = 0) = 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 1) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 1) = 𝑙,𝑁 = 𝑥,𝑂 = 1)   (∵) 𝑀(𝑛, 𝑜) ⫫ (𝑁, 𝑂)|𝐿(𝑛, 𝑜) 

⇔ 𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝑁 = 𝑥, 𝑂 = 0) = 𝑃(𝑀 = 𝑚|𝐿 = 𝑙,𝑁 = 𝑥, 𝑂 = 1)   (∵) consistency 

⇔𝑀 ⫫ 𝑂|(𝐿,𝑁 = 𝑥). 

 

𝑃(𝑌(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑙) = 𝑃(𝑌(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑙) 

⇔ 𝑃(𝑌(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑙, 𝑁 = 1,𝑂 = 𝑥∗)

= 𝑃(𝑌(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑙, 𝑁 = 0,𝑂 = 𝑥∗)   (∵) 𝑌(𝑛, 𝑜) ⫫ (𝑁,𝑂)|(𝑀(𝑛, 𝑜), 𝐿(𝑛, 𝑜)) 

⇔ 𝑃(𝑌 = 𝑦 |𝐿 = 𝑙,𝑀 = 𝑚,𝑁 = 1,𝑂 = 𝑥∗) = 𝑃(𝑌 = 𝑦 |𝐿 = 𝑙,𝑀 = 𝑚,𝑁 = 0,𝑂 = 𝑥∗)   (∵) consistency 

⇔ 𝑌 ⫫ 𝑁|(𝐿,𝑀, 𝑂 = 𝑥∗). 

 

𝑃(𝐿(𝑛 = 𝑥, 𝑜 = 0) = 𝑙) = 𝑃(𝐿(𝑛 = 𝑥, 𝑜 = 1) = 𝑙) 

⇔ 𝑃(𝐿(𝑛 = 𝑥, 𝑜 = 0) = 𝑙|𝑁 = 𝑥, 𝑂 = 0) = 𝑃(𝐿(𝑛 = 𝑥, 𝑜 = 1) = 𝑙|𝑁 = 𝑥,𝑂 = 1)   (∵) 𝐿(𝑛, 𝑜) ⫫ (𝑁,𝑂) 

⇔ 𝑃(𝐿 = 𝑙|𝑁 = 𝑥, 𝑂 = 0) = 𝑃(𝐿 = 𝑙|𝑁 = 𝑥,𝑂 = 1)   (∵) consistency 

⇔ 𝐿 ⫫ 𝑂|𝑁 = 𝑥.   ∎ 
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Lemma 4 

For some 𝑥 ∈ {0,1} and 𝑥∗ = 1 − 𝑥, if assumptions (16*) to (19*) in Lemma 3 hold, the following equation holds: 

 

𝑃(𝑌(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑦) =∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑥∗)𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑥)𝑃(𝐿 = 𝑙|𝐴 = 𝑥)

𝑚,𝑙

. 

 

Proof: 

We have 

 

𝑃(𝑌(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑦) 

=∑𝑃(𝑌(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑙)𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑙)𝑃(𝐿(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑙)

𝑚,𝑙

 

(∵) law of total probability 

=∑𝑃(𝑌(𝑛 = 𝑥∗, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 𝑥∗, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 𝑥∗, 𝑜 = 𝑥∗) = 𝑙)𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 𝑥) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 𝑥) = 𝑙)𝑃(𝐿(𝑛 = 𝑥, 𝑜 = 𝑥) = 𝑙)

𝑚,𝑙

    

(∵) (17∗), (18∗), (19∗) 

=∑𝑃(𝑌(𝑎 = 𝑥∗) = 𝑦|𝑀(𝑎 = 𝑥∗) = 𝑚, 𝐿(𝑎 = 𝑥∗) = 𝑙)𝑃(𝑀(𝑎 = 𝑥) = 𝑚|𝐿(𝑎 = 𝑥) = 𝑙)𝑃(𝐿(𝑎 = 𝑥) = 𝑙)

𝑚,𝑙

   (∵) determinism 

=∑𝑃(𝑌(𝑎 = 𝑥∗) = 𝑦|𝑀(𝑎 = 𝑥∗) = 𝑚, 𝐿(𝑎 = 𝑥∗) = 𝑙, 𝐴 = 𝑥∗)𝑃(𝑀(𝑎 = 𝑥) = 𝑚|𝐿(𝑎 = 𝑥) = 𝑙, 𝐴 = 𝑥)𝑃(𝐿(𝑎 = 𝑥) = 𝑙|𝐴 = 𝑥)

𝑚,𝑙

   (∵) (16∗) 

=∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑥∗)𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑥)𝑃(𝐿 = 𝑙|𝐴 = 𝑥)

𝑚,𝑙

,   (∵) consistency, positivity 

 

where, in the fourth equation, the following equivalence relationship holds by the weak union and decomposition graphoid axioms (⇒) and the contraction graphoid 

axiom (⇐) [3]: 

 

(𝑌(𝑎),𝑀(𝑎), 𝐿(𝑎)) ⫫ 𝐴 (∀𝑎) ⇔ (𝑌(𝑎) ⫫ 𝐴|(𝑀(𝑎), 𝐿(𝑎))) (∀𝑎) ∧ (𝑀(𝑎) ⫫ 𝐴|𝐿(𝑎)) (∀𝑎) ∧ (𝐿(𝑎) ⫫ 𝐴) (∀𝑎).   ∎ 

 

For reference, see Equation (38.17) in Robins et al. [7].  
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Proposition 8 

If assumptions (16*) to (19*) in Lemma 3 hold, the separable direct effect is identified and given by 

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎] − 𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′])𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

, 

 

and the separable indirect effect is identified and given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎](𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))

𝑚,𝑙

. 

 

Proof: 

From Lemma 4, we have 

 

𝑃(𝑌(𝑛′, 𝑜) = 𝑦) =∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

. 

 

Thus, we have 

 

𝐸[𝑌(𝑛′, 𝑜)] =∑𝑦 ∙ 𝑃(𝑌(𝑛′, 𝑜) = 𝑦)

𝑦

 

=∑𝑦 ∙∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙𝑦

 

=∑{∑𝑦 ∙ 𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎)

𝑦

}𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

 

=∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

. 
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If we apply this result and replace 𝑜 with 𝑜′, we get 

 

𝐸[𝑌(𝑛′, 𝑜′)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

. 

 

Thus, the separable direct effect is given by 

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎] − 𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′])𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

. 

 

If we apply the result and replace 𝑛′ with 𝑛, we get 

 

𝐸[𝑌(𝑛, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝐿 = 𝑙|𝐴 = 𝑎)

𝑚,𝑙

. 

 

Thus, the separable indirect effect is identified and given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎](𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))

𝑚,𝑙

.   ∎ 
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Online Appendix I: Identification of separable direct and indirect effects when only O is a parent of L 

Proposition 9 

If assumptions (16) to (18) and (20) hold, the separable direct effect is identified and given by  

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′]𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)

𝑚,𝑙

, 

 

and the separable indirect effect is identified and given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝐿 = 𝑙|𝐴 = 𝑎)(𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′))

𝑚,𝑙

. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌(𝑛′, 𝑜)|𝑀(𝑛′, 𝑜) = 𝑚, 𝐿(𝑛′, 𝑜) = 𝑙]𝑃(𝑀(𝑛′, 𝑜) = 𝑚|𝐿(𝑛′, 𝑜) = 𝑙)𝑃(𝐿(𝑛′, 𝑜) = 𝑙)

𝑚,𝑙

   (∵) law of total expectation 

=∑𝐸[𝑌(𝑛′, 𝑜)|𝑀(𝑛′, 𝑜) = 𝑚, 𝐿(𝑛′, 𝑜) = 𝑙, 𝑁 = 𝑛′, 𝑂 = 𝑜]𝑃(𝑀(𝑛′, 𝑜) = 𝑚|𝐿(𝑛′, 𝑜) = 𝑙, 𝑁 = 𝑛′, 𝑂 = 𝑜)𝑃(𝐿(𝑛′, 𝑜) = 𝑙|𝑁 = 𝑛′, 𝑂 = 𝑜)

𝑚,𝑙

   (∵) (16) 

=∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝑁 = 𝑛′, 𝑂 = 𝑜]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝑁 = 𝑛′, 𝑂 = 𝑜)𝑃(𝐿 = 𝑙|𝑁 = 𝑛′, 𝑂 = 𝑜)

𝑚,𝑙

   (∵) consistency 

=∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝑁 = 𝑛,𝑂 = 𝑜]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝑁 = 𝑛′, 𝑂 = 𝑜′)𝑃(𝐿 = 𝑙|𝑁 = 𝑛, 𝑂 = 𝑜)

𝑚,𝑙

   (∵) (17), (18), (20) 

=∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎)

𝑚,𝑙

,   (∵) determinism, positivity 

 

where, in the second equation, the following equivalence relationship holds by the weak union and decomposition graphoid axioms (⇒) and the contraction graphoid 

axiom (⇐) [3]: 

 



28 

 

(𝑌(𝑛′, 𝑜), 𝐿(𝑛′, 𝑜),𝑀(𝑛′, 𝑜)) ⫫ (𝑁, 𝑂) ⇔ (𝑌(𝑛′, 𝑜) ⫫ (𝑁,𝑂)|(𝑀(𝑛′, 𝑜), 𝐿(𝑛′, 𝑜))) ∧ (𝑀(𝑛′, 𝑜) ⫫ (𝑁, 𝑂)|𝐿(𝑛′, 𝑜)) ∧ (𝐿(𝑛′, 𝑜) ⫫ (𝑁, 𝑂)). 

 

If we apply this result and replace 𝑜 with 𝑜′, we get 

 

𝐸[𝑌(𝑛′, 𝑜′)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

. 

 

Thus, the separable direct effect is given by 

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′]𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)

𝑚,𝑙

. 

 

If we apply the result and replace 𝑛′ with 𝑛, we get 

 

𝐸[𝑌(𝑛, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝐿 = 𝑙|𝐴 = 𝑎)

𝑚,𝑙

. 

 

Thus, the separable indirect effect is given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝐿 = 𝑙|𝐴 = 𝑎)(𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′))

𝑚,𝑙

.   ∎ 
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Online Appendix J: Identification of separable direct and indirect effects when only O is a parent of L with weaker assumptions 

Lemma 5 

For some 𝑥 ∈ {0,1} and 𝑥∗ = 1 − 𝑥, the following relationships hold: 

 

(

 

(𝑌(𝑎),𝑀(𝑎), 𝐿(𝑎)) ⫫ 𝐴 (∀𝑎)

𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 0) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 0) = 𝑙) = 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 1) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 1) = 𝑙)
(16∗)
(17∗)

𝑃(𝑌(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑙) = 𝑃(𝑌(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑙)

𝑃(𝐿(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑙) = 𝑃(𝐿(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑙)

(18∗)
(20∗))

  

⇐

(

 
 

(𝑌(𝑛, 𝑜), 𝐿(𝑛, 𝑜),𝑀(𝑛, 𝑜)) ⫫ (𝑁, 𝑂) (∀𝑛, 𝑜)

𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 0) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 0) = 𝑙) = 𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 1) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 1) = 𝑙)

𝑃(𝑌(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑙) = 𝑃(𝑌(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑙)

𝑃(𝐿(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑙) = 𝑃(𝐿(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑙) )

 
 

 

⇔

(

 
 
(𝑌(𝑛, 𝑜), 𝐿(𝑛, 𝑜),𝑀(𝑛, 𝑜)) ⫫ (𝑁,𝑂) (∀𝑛, 𝑜)

𝑀 ⫫ 𝑂|(𝐿,𝑁 = 𝑥)

𝑌 ⫫ 𝑁|(𝐿,𝑀, 𝑂 = 𝑥∗)

𝐿 ⫫ 𝑁|𝑂 = 𝑥∗ )

 
 

 

⇐

(

 
 
(𝑌(𝑛, 𝑜), 𝐿(𝑛, 𝑜),𝑀(𝑛, 𝑜)) ⫫ (𝑁, 𝑂) (∀𝑛, 𝑜)

𝑀 ⫫ 𝑂|(𝐿, 𝑁)

(16)
(17)

𝑌 ⫫ 𝑁|(𝐿,𝑀, 𝑂)
𝐿 ⫫ 𝑁|𝑂

(18)
(20)

)

 
 
. 

 

Proof: 

See the proof for Lemma 3 and the proof below. 

 

𝑃(𝐿(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑙) = 𝑃(𝐿(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑙) 

⇔ 𝑃(𝐿(𝑛 = 1, 𝑜 = 𝑥∗) = 𝑙|𝑁 = 1,𝑂 = 𝑥∗) = 𝑃(𝐿(𝑛 = 0, 𝑜 = 𝑥∗) = 𝑙|𝑁 = 0,𝑂 = 𝑥∗)   (∵) 𝐿(𝑛, 𝑜) ⫫ (𝑁,𝑂) 

⇔ 𝑃(𝐿 = 𝑙|𝑁 = 1,𝑂 = 𝑥∗) = 𝑃(𝐿 = 𝑙|𝑁 = 0,𝑂 = 𝑥∗)   (∵) consistency 

⇔ 𝐿 ⫫ 𝑁|𝑂 = 𝑥∗.   ∎ 
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Lemma 6 

For some 𝑥 ∈ {0,1} and 𝑥∗ = 1 − 𝑥, if assumptions (16*) to (18*) and (20*) in Lemma 5 hold, the following equation holds: 

 

𝑃(𝑌(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑦) =∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑥∗)𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑥)𝑃(𝐿 = 𝑙|𝐴 = 𝑥∗)

𝑚,𝑙

. 

 

Proof: 

We have 

 

𝑃(𝑌(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑦) 

=∑𝑃(𝑌(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑙)𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑙)𝑃(𝐿(𝑛 = 𝑥, 𝑜 = 𝑥∗) = 𝑙)

𝑚,𝑙

 

(∵) law of total probability 

=∑𝑃(𝑌(𝑛 = 𝑥∗, 𝑜 = 𝑥∗) = 𝑦|𝑀(𝑛 = 𝑥∗, 𝑜 = 𝑥∗) = 𝑚, 𝐿(𝑛 = 𝑥∗, 𝑜 = 𝑥∗) = 𝑙)𝑃(𝑀(𝑛 = 𝑥, 𝑜 = 𝑥) = 𝑚|𝐿(𝑛 = 𝑥, 𝑜 = 𝑥) = 𝑙)𝑃(𝐿(𝑛 = 𝑥∗, 𝑜 = 𝑥∗) = 𝑙)

𝑚,𝑙

    

(∵) (17∗), (18∗), (20∗) 

=∑𝑃(𝑌(𝑎 = 𝑥∗) = 𝑦|𝑀(𝑎 = 𝑥∗) = 𝑚, 𝐿(𝑎 = 𝑥∗) = 𝑙)𝑃(𝑀(𝑎 = 𝑥) = 𝑚|𝐿(𝑎 = 𝑥) = 𝑙)𝑃(𝐿(𝑎 = 𝑥∗) = 𝑙)

𝑚,𝑙

   (∵) determinism 

=∑𝑃(𝑌(𝑎 = 𝑥∗) = 𝑦|𝑀(𝑎 = 𝑥∗) = 𝑚, 𝐿(𝑎 = 𝑥∗) = 𝑙, 𝐴 = 𝑥∗)𝑃(𝑀(𝑎 = 𝑥) = 𝑚|𝐿(𝑎 = 𝑥) = 𝑙, 𝐴 = 𝑥)𝑃(𝐿(𝑎 = 𝑥∗) = 𝑙|𝐴 = 𝑥∗)

𝑚,𝑙

   (∵) (16∗) 

=∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑥∗)𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑥)𝑃(𝐿 = 𝑙|𝐴 = 𝑥∗)

𝑚,𝑙

,   (∵) consistency, positivity 

 

where, in the fourth equation, the following equivalence relationship holds by the weak union and decomposition graphoid axioms (⇒) and the contraction graphoid 

axiom (⇐) [3]: 

 

(𝑌(𝑎),𝑀(𝑎), 𝐿(𝑎)) ⫫ 𝐴 (∀𝑎) ⇔ (𝑌(𝑎) ⫫ 𝐴|(𝑀(𝑎), 𝐿(𝑎))) (∀𝑎) ∧ (𝑀(𝑎) ⫫ 𝐴|𝐿(𝑎)) (∀𝑎) ∧ (𝐿(𝑎) ⫫ 𝐴) (∀𝑎).   ∎ 

 

For reference, see Equation (38.18) in Robins et al. [7].  
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Proposition 10 

If assumptions (16*) to (18*) and (20*) in Lemma 5 hold, the separable direct effect is identified and given by 

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′]𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)

𝑚,𝑙

, 

 

and the separable indirect effect is identified and given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝐿 = 𝑙|𝐴 = 𝑎)(𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′))

𝑚,𝑙

. 

 

Proof: 

From Lemma 6, we have 

 

𝑃(𝑌(𝑛′, 𝑜) = 𝑦) =∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎)

𝑚,𝑙

. 

 

Thus, we have 

 

𝐸[𝑌(𝑛′, 𝑜)] =∑𝑦 ∙ 𝑃(𝑌(𝑛′, 𝑜) = 𝑦)

𝑦

 

=∑𝑦 ∙∑𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎)

𝑚,𝑙𝑦

 

=∑{∑𝑦 ∙ 𝑃(𝑌 = 𝑦|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎)

𝑦

}𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎)

𝑚,𝑙

 

=∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎)

𝑚,𝑙

. 
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If we apply this result and replace 𝑜 with 𝑜′, we get 

 

𝐸[𝑌(𝑛′, 𝑜′)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑚,𝑙

. 

 

Thus, the separable direct effect is given by 

 

𝐸[𝑌(𝑛′, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜′)] =∑(𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎′]𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′)

𝑚,𝑙

. 

 

If we apply the result and replace 𝑛′ with 𝑛, we get 

 

𝐸[𝑌(𝑛, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎)𝑃(𝐿 = 𝑙|𝐴 = 𝑎)

𝑚,𝑙

. 

 

Thus, the separable indirect effect is identified and given by 

 

𝐸[𝑌(𝑛, 𝑜)] − 𝐸[𝑌(𝑛′, 𝑜)] =∑𝐸[𝑌|𝑀 = 𝑚, 𝐿 = 𝑙, 𝐴 = 𝑎]𝑃(𝐿 = 𝑙|𝐴 = 𝑎)(𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐿 = 𝑙, 𝐴 = 𝑎′))

𝑚,𝑙

.   ∎ 
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Online Appendix K: Identification of controlled direct effect 

Proposition 11 

If assumptions (1) and (2) hold, the controlled direct effect (CDE) that sets the mediator M at m, or CDE(m) is identified and given by 

 

𝐸[𝑌(𝑎,𝑚)] − 𝐸[𝑌(𝑎′, 𝑚)] = 𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚] − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚]. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑎,𝑚)] = 𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎]   (∵) 𝑌(𝑎,𝑚) ⫫ 𝐴 

= 𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎,𝑀(𝑎) = 𝑚]   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎)|𝐴 = 𝑎 

= 𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚].   (∵) consistency, positivity 

 

See Nguyen et al. [1] for an explanation of the positivity assumption. If we apply this result and replace 𝑎 with 𝑎′, we get 

 

𝐸[𝑌(𝑎′,𝑚)] = 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚]. 

 

Thus, the CDE(m) is given by 

 

𝐸[𝑌(𝑎,𝑚)] − 𝐸[𝑌(𝑎′,𝑚)] = 𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚] − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚].   ∎ 
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Proposition 12 

If assumptions (1) and (6) hold, the CDE that sets the mediator M at m, or CDE(m) is identified and given by 

 

𝐸[𝑌(𝑎,𝑚)] − 𝐸[𝑌(𝑎′,𝑚)] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎) − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎′))

ℎ

. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑎,𝑚)] = 𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎]   (∵) 𝑌(𝑎,𝑚) ⫫ 𝐴 

=∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎, 𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎)

ℎ

   (∵) law of total expectation, positivity 

=∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎,𝑀(𝑎) = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎)

ℎ

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎)|(𝐴 = 𝑎,𝐻) 

=∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎)

ℎ

.   (∵) consistency, positivity 

 

See Nguyen et al. [1] for an explanation of the positivity assumption. If we apply this result and replace 𝑎 with 𝑎′, we get 

 

𝐸[𝑌(𝑎′, 𝑚)] =∑𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎′)

ℎ

. 

 

Thus, the CDE(m) is given by 

 

𝐸[𝑌(𝑎,𝑚)] − 𝐸[𝑌(𝑎′, 𝑚)] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎) − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ|𝐴 = 𝑎′))

ℎ

.   ∎ 
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Proposition 13 

If assumptions (5) and (6) hold, the CDE that sets the mediator M at m, or CDE(m), is identified and given by 

 

𝐸[𝑌(𝑎,𝑚)] − 𝐸[𝑌(𝑎′,𝑚)] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ] − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ])

ℎ

𝑃(𝐻 = ℎ). 

 

Proof: 

We have 

 

𝐸[𝑌(𝑎,𝑚)] =∑𝐸[𝑌(𝑎,𝑚)|𝐻 = ℎ]𝑃(𝐻 = ℎ)

ℎ

   (∵) law of total expectation 

=∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎,𝐻 = ℎ]𝑃(𝐻 = ℎ)

ℎ

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝐴|𝐻 

=∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎,𝑀(𝑎) = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ)

ℎ

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎)|(𝐴 = 𝑎, 𝐻) 

=∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ)

ℎ

.   (∵) consistency, positivity 

 

See Nguyen et al. [1] for an explanation of the positivity assumption. If we apply this result and replace 𝑎 with 𝑎′, we get 

 

𝐸[𝑌(𝑎′, 𝑚)] =∑𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ]𝑃(𝐻 = ℎ)

ℎ

. 

 

Thus, the CDE(m) is given by 

 

𝐸[𝑌(𝑎,𝑚)] − 𝐸[𝑌(𝑎′,𝑚)] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚,𝐻 = ℎ] − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚,𝐻 = ℎ])𝑃(𝐻 = ℎ)

ℎ

.   ∎ 

 

Note that this becomes identical to the formula in Proposition 12 if 𝐴 ⫫ 𝐻 holds, as in Figure 2b. 
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Proposition 14 

If assumptions (1) and (10) hold, the CDE that sets the mediator M at m, or CDE(m), is identified and given by 

 

𝐸[𝑌(𝑎,𝑚)] − 𝐸[𝑌(𝑎′,𝑚)] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))

𝑙

. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑎,𝑚)] = 𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎]   (∵) 𝑌(𝑎,𝑚) ⫫ 𝐴 

=∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎, 𝐿(𝑎) = 𝑙]𝑃(𝐿(𝑎) = 𝑙|𝐴 = 𝑎)

𝑙

   (∵) law of total expectation 

=∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎,𝑀(𝑎) = 𝑚, 𝐿(𝑎) = 𝑙]𝑃(𝐿(𝑎) = 𝑙|𝐴 = 𝑎)

𝑙

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎)|(𝐴 = 𝑎, 𝐿(𝑎)) 

=∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎)

𝑙

.   (∵) consistency, positivity 

 

See Nguyen et al. [1] for an explanation of the positivity assumption. If we apply this result and replace 𝑎 with 𝑎′, we get 

 

𝐸[𝑌(𝑎′,𝑚)] =∑𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)

𝑙

. 

 

Thus, the CDE(m) is given by 

 

𝐸[𝑌(𝑎,𝑚)] − 𝐸[𝑌(𝑎′, 𝑚)] =∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))

𝑙

.   ∎ 
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Online Appendix L: Identification of interventional direct and indirect effects 

Proposition 15 

If assumptions (1), (3), and (10) hold, the interventional direct effect (in Definition 6) is identified and given by 

 

𝐸[𝑌(𝑎, 𝐺(𝑎′))] − 𝐸[𝑌(𝑎′, 𝐺(𝑎′))] =∑∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚𝑙

, 

 

and the interventional indirect effect (in Definition 6) is identified and given by 

 

𝐸[𝑌(𝑎, 𝐺(𝑎))] − 𝐸[𝑌(𝑎, 𝐺(𝑎′))] =∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎)(𝑃(𝑀 = 𝑚|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′))

𝑚𝑙

. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑎, 𝐺(𝑎′))] =∑𝐸[𝑌(𝑎, 𝐺(𝑎′))|𝐺(𝑎′) = 𝑚]𝑃(𝐺(𝑎′) = 𝑚)

𝑚

   (∵) law of total expectation 

=∑𝐸[𝑌(𝑎,𝑚)|𝐺(𝑎′) = 𝑚]𝑃(𝐺(𝑎′) = 𝑚)

𝑚

 

=∑𝐸[𝑌(𝑎,𝑚)|𝐺(𝑎′) = 𝑚]𝑃(𝑀(𝑎′) = 𝑚)

𝑚

   (∵) 𝐺(𝑎′) ∼ 𝑀(𝑎′) identically distributed 

=∑𝐸[𝑌(𝑎,𝑚)]𝑃(𝑀(𝑎′) = 𝑚)

𝑚

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝐺(𝑎′)  independent random samples 

=∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎]𝑃(𝑀(𝑎′) = 𝑚|𝐴 = 𝑎′)

𝑚

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝐴,   𝑀(𝑎′) ⫫ 𝐴 

=∑∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎, 𝐿(𝑎) = 𝑙]𝑃(𝐿(𝑎) = 𝑙|𝐴 = 𝑎)𝑃(𝑀(𝑎′) = 𝑚|𝐴 = 𝑎′)

𝑚𝑙

   (∵) law of total expectation 

=∑∑𝐸[𝑌(𝑎,𝑚)|𝐴 = 𝑎,𝑀(𝑎) = 𝑚, 𝐿(𝑎) = 𝑙]𝑃(𝐿(𝑎) = 𝑙|𝐴 = 𝑎)𝑃(𝑀(𝑎′) = 𝑚|𝐴 = 𝑎′)

𝑚𝑙

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎)|(𝐴 = 𝑎, 𝐿(𝑎)) 
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=∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎)𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚𝑙

.   (∵) consistency, positivity 

 

See Nguyen et al. [1] for an explanation of the positivity assumption. If we apply this result and replace 𝑎 with 𝑎′, we get 

 

𝐸[𝑌(𝑎′, 𝐺(𝑎′))] =∑∑𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎′)𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚𝑙

. 

 

Thus, the interventional direct effect is given by 

 

𝐸[𝑌(𝑎, 𝐺(𝑎′))] − 𝐸[𝑌(𝑎′, 𝐺(𝑎′))] =∑∑(𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎) − 𝐸[𝑌|𝐴 = 𝑎′, 𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎′))𝑃(𝑀 = 𝑚|𝐴 = 𝑎′)

𝑚𝑙

. 

 

If we apply the result and replace 𝑎′ with 𝑎, we get 

 

𝐸[𝑌(𝑎, 𝐺(𝑎))] =∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎)𝑃(𝑀 = 𝑚|𝐴 = 𝑎)

𝑚𝑙

. 

 

Thus, the interventional indirect effect is given by 

 

𝐸[𝑌(𝑎, 𝐺(𝑎))] − 𝐸[𝑌(𝑎, 𝐺(𝑎′))] =∑∑𝐸[𝑌|𝐴 = 𝑎,𝑀 = 𝑚, 𝐿 = 𝑙]𝑃(𝐿 = 𝑙|𝐴 = 𝑎)(𝑃(𝑀 = 𝑚|𝐴 = 𝑎) − 𝑃(𝑀 = 𝑚|𝐴 = 𝑎′))

𝑚𝑙

.   ∎ 
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Proposition 16 

If assumption (4) holds, the interventional direct effect (in Definition 6) becomes identical to the natural direct effect (in Definition 1), such that 

 

𝐸[𝑌(𝑎, 𝐺(𝑎′))] − 𝐸[𝑌(𝑎′, 𝐺(𝑎′))] = 𝐸[𝑌(𝑎,𝑀(𝑎′))] − 𝐸[𝑌(𝑎′, 𝑀(𝑎′))], 

 

and the interventional indirect effect (in Definition 6) becomes identical to the natural indirect effect (in Definition 1), such that 

 

𝐸[𝑌(𝑎, 𝐺(𝑎))] − 𝐸[𝑌(𝑎, 𝐺(𝑎′))] = 𝐸[𝑌(𝑎,𝑀(𝑎))] − 𝐸[𝑌(𝑎,𝑀(𝑎′))]. 

 

Proof: 

We have 

 

𝐸[𝑌(𝑎, 𝐺(𝑎′))] =∑𝐸[𝑌(𝑎, 𝐺(𝑎′))|𝐺(𝑎′) = 𝑚]𝑃(𝐺(𝑎′) = 𝑚)

𝑚

   (∵) law of total expectation 

=∑𝐸[𝑌(𝑎,𝑚)|𝐺(𝑎′) = 𝑚]𝑃(𝐺(𝑎′) = 𝑚)

𝑚

 

=∑𝐸[𝑌(𝑎,𝑚)|𝐺(𝑎′) = 𝑚]𝑃(𝑀(𝑎′) = 𝑚)

𝑚

   (∵) 𝐺(𝑎′) ∼ 𝑀(𝑎′) identically distributed 

=∑𝐸[𝑌(𝑎,𝑚)]𝑃(𝑀(𝑎′) = 𝑚)

𝑚

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝐺(𝑎′)  independent random samples 

=∑𝐸[𝑌(𝑎,𝑚)|𝑀(𝑎′) = 𝑚]𝑃(𝑀(𝑎′) = 𝑚)

𝑚

   (∵) 𝑌(𝑎,𝑚) ⫫ 𝑀(𝑎′) 

=∑𝐸[𝑌(𝑎,𝑀(𝑎′))|𝑀(𝑎′) = 𝑚]𝑃(𝑀(𝑎′) = 𝑚)

𝑚

 

= 𝐸[𝑌(𝑎,𝑀(𝑎′))]. 

 

If we apply this result and replace 𝑎 with 𝑎′, we get 

 

𝐸[𝑌(𝑎′, 𝐺(𝑎′))] = 𝐸[𝑌(𝑎′, 𝑀(𝑎′))]. 
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Thus, the interventional direct effect (in Definition 6) becomes identical to the natural direct effect (in Definition 1), such that  

 

𝐸[𝑌(𝑎, 𝐺(𝑎′))] − 𝐸[𝑌(𝑎′, 𝐺(𝑎′))] = 𝐸[𝑌(𝑎,𝑀(𝑎′))] − 𝐸[𝑌(𝑎′, 𝑀(𝑎′))]. 

 

If we apply the result and replace 𝑎′ with 𝑎, we get 

 

𝐸[𝑌(𝑎, 𝐺(𝑎))] = 𝐸[𝑌(𝑎,𝑀(𝑎))]. 

 

Thus, the interventional indirect effect (in Definition 6) becomes identical to the natural indirect effect (in Definition 1), such that 

 

𝐸[𝑌(𝑎, 𝐺(𝑎))] − 𝐸[𝑌(𝑎, 𝐺(𝑎′))] = 𝐸[𝑌(𝑎,𝑀(𝑎))] − 𝐸[𝑌(𝑎,𝑀(𝑎′))].   ∎ 

 

Therefore, even in the presence of an exposure-induced mediator–outcome confounder L, if—in addition to assumptions (1), (3), and (10)—assumption (4) holds, the 

interventional direct and indirect effects are identified and given by the formulae in Proposition 15, which become identical to the natural direct and indirect effects, 

respectively. Additionally, the overall effect becomes identical to the total effect. However, recall that assumption (4) does not generally hold in Figure 3b. When an 

exposure-induced mediator–outcome confounder L is present, it becomes challenging to consider specific causal structures that satisfy assumptions (1), (3), (4), and (10). 

Indeed, scenarios in which assumptions (1) to (4) do not hold, yet assumptions (1), (3), (4), and (10) are satisfied, may be unrealistic. 

A similar discussion applies when considering a mediator–outcome confounder that is not affected by the exposure. If assumptions (1), (3), and (6) hold, as in Figure 

2b, the interventional direct and indirect effects are identified. If assumption (4) holds in addition to assumptions (1), (3), and (6), the interventional direct and indirect 

effects are identified, which become identical to the natural direct and indirect effects, respectively. Recall that, as shown in Proposition 4, assumptions (1), (3), (4), and 

(6) are sufficient conditions to identify the natural direct and indirect effects. However, assumption (4) does not generally hold in Figure 2b. As shown in Proposition 3, 

we may identify the natural direct and indirect effects under assumptions (5) to (8) instead, all of which hold in Figure 2b. These findings underscore a significant 

distinction between scenarios where the mediator–outcome confounder is affected by the exposure and those where it is not.  
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