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Abstract
Purpose of Review  We compare natural effects and separable effects under nonparametric structural equation models with 
independent errors, highlighting their similarities and differences. By examining their required properties and sufficient 
conditions for identification, we aim to provide deeper insights into mediation analysis.
Recent Findings  If certain assumptions about confounding, positivity, and consistency are met, we can identify natural direct 
and indirect effects under nonparametric structural equation models with independent errors. However, these effects have 
been criticized because they rely on a specific cross-world quantity, and the so-called cross-world independence assumption 
cannot be empirically verified. Furthermore, interventions on the mediator may sometimes be challenging to even conceive. 
As an alternative approach, separable effects have recently been proposed and applied in mediation analysis, often under 
finest fully randomized causally interpretable structured tree graph models. These effects are defined without relying on any 
cross-world quantities and are claimed to be identifiable under assumptions that are testable in principle, thereby addressing 
some of the challenges associated with natural direct and indirect effects.
Summary  To conduct meaningful mediation analysis, it is crucial to clearly define the research question of interest, and the 
choice of methods should align with the nature of the question and the assumptions researchers are willing to make. Examin-
ing the underlying philosophical perspectives on causation and manipulation can provide valuable insights.

Keywords  Causality · Counterfactuals · Cross-world independence assumption · Directed acyclic graphs · Mediation 
analysis · Nonparametric structural equation models with independent errors

Introduction

The assessment of mediation provides a valuable approach 
to gaining a deeper understanding of cause–effect relation-
ships by examining whether and how a mediator transmits 
the effect of an exposure or intervention to an outcome 
[1–7]. By defining and identifying direct and indirect effects, 

mediation analysis enables us to disentangle complex causal 
mechanisms, providing insights into underlying biological, 
behavioral, or social processes. To this end, causal media-
tion analysis within the counterfactual framework has gained 
increasing attention across various disciplines in recent years 
[8–10]. Additionally, the AGReMA statement (A Guideline 
for Reporting Mediation Analyses) was developed to provide 
consolidated recommendations for reporting mediation analy-
ses [11].

As is well appreciated in the literature on causal mediation, 
the total effect of the exposure on the outcome can be decom-
posed into natural direct and indirect effects [12, 13]. If certain 
assumptions about confounding, positivity, and consistency are 
met, the so-called mediation formula can be used to identify 
these effects in nonparametric structural equation models with 
independent errors (NPSEM-IE) [13, 14]. However, natural 
direct and indirect effects have been criticized because, as 
explained below, these rely on a specific cross-world quantity, 
and the so-called cross-world independence assumption—part 
of a set of sufficient, but not necessary, assumptions—is not 

 *	 Etsuji Suzuki 
	 etsuji-s@cc.okayama-u.ac.jp

1	 Department of Epidemiology, Graduate School of Medicine, 
Dentistry and Pharmaceutical Sciences, Okayama 
University, 2‑5‑1 Shikata‑cho, Kita‑ku, Okayama 700‑8558, 
Japan

2	 Interfaculty Initiative in Information Studies, the University 
of Tokyo, Tokyo, Japan

3	 Department of Biostatistics, School of Public Health, 
Graduate School of Medicine, the University of Tokyo, 
Tokyo, Japan

4	 Okayama University of Science, Okayama, Japan

http://orcid.org/0000-0002-1290-5793
http://orcid.org/0000-0003-3395-9691
http://crossmark.crossref.org/dialog/?doi=10.1007/s40471-025-00369-3&domain=pdf


	 Current Epidemiology Reports           (2025) 12:20    20   Page 2 of 19

empirically verifiable [15–18]. Furthermore, interventions on 
the mediator may sometimes be challenging to even conceive.

As an alternative approach, separable effects have 
recently been proposed and applied in mediation analysis 
[15–20], often in finest fully randomized causally interpret-
able structured tree graph (FFRCISTG) models [21]. Under 
this approach, the exposure is assumed to be separated into 
two (or more) components, one having a direct effect only 
on the mediator and the other having a direct effect only on 
the outcome. Furthermore, each separable component can 
be intervened separately in principle, and the total effect can 
be decomposed into separable direct and indirect effects. 
These effects are defined without relying on any cross-world 
quantities and are claimed to be identifiable under assump-
tions that are testable in principle [15], thereby addressing 
some of the challenges associated with natural direct and 
indirect effects [22].

In this article, we compare natural effects and sepa-
rable effects under NPSEM-IE, highlighting their simi-
larities and differences. Additionally, we illustrate these 
two approaches graphically using causal directed acyclic 
graphs (DAGs) [23, 24], incorporating potential outcomes 
determined by NPSEM-IE. By examining their required 
properties and sufficient conditions for identification, we 
aim to provide deeper insights into mediation analysis. 

Furthermore, to compare the two approaches, we examine 
their underlying philosophical perspectives on causation 
and manipulation. We then briefly review the controlled 
direct effect and interventional effects before concluding 
the article.

Natural Direct and Indirect Effects

Notations and Definitions

We let A denote an exposure of interest, Y an outcome of 
interest, and M a potential mediator of interest, as depicted 
in the causal DAG in Fig. 1a. For example, in the context 
of mediation analysis, Hernán and Robins [18] consid-
ered a randomized trial among cigarette smokers, letting A 
denote smoking cessation, M the presence of hypertension 
at 6 months, and Y the incidence of myocardial infarction 
within 1 year, assuming that no individuals experienced 
the outcome Y during the first 6 months. Similar examples 
were used in related literature [15, 16]. Throughout the 
present article, we assume that the set of baseline covari-
ates not affected by the exposure, denoted as C, is empty 
unless stated otherwise. However, a similar discussion 
applies, conditional on C = c, followed by marginalizing 

Fig. 1   a A causal directed acy-
clic graph (DAG) with exposure 
A, mediator M, and outcome Y. 
b A causal DAG incorporating 
the potential outcomes as well 
as error terms
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over the possible values of C. We presuppose that at least 
hypothetical interventions on A and M are conceivable.

In the counterfactual framework, we let Y(a) and M(a) 
denote the potential outcomes of Y and M, respectively, if, 
possibly contrary to fact, there had been interventions to 
set A to a. Additionally, we let Y(a,m) denote the potential 
outcomes of Y if, possibly contrary to fact, there had been 
interventions to set A to a and to set M to m. Throughout 
this article, we assume that positivity and consistency hold 
[25–28]; see Nguyen et al. [5] for an in-depth discussion 
about these assumptions in the context of mediation analysis. 
Furthermore, we make a generalized consistency or com-
position assumption, Y(a) = Y(a,M(a)) [29–31], where the 
nested counterfactual on the right-hand side is sometimes 
referred to as a compound potential outcome [32–34]. Note 
that the composition assumption is needed not for identifica-
tion but for interpretation of the natural effects [5].

Suppose that a and a′ are two values of the exposure 
we wish to compare, the latter of which is a reference 
condition; for example, for binary exposure, we may 
have a = 1 and a� = 0 . Similarly, m and m′ are two val-
ues of the mediator. Then, the total effect on Y of setting 
the exposure to A = a versus A = a� in the population of 
interest is defined as E[Y(a)] − E

[
Y
(
a�
)]

 , or equivalently 
E[Y(a,M(a))] − E

[
Y
(
a�,M

(
a�
))]

 under the composition 
assumption. As is well appreciated in the literature on causal 
mediation, even when there are interactions and nonlineari-
ties, the total effect of A on Y can be decomposed into the 
pure direct effect (PDE) and the total indirect effect (TIE), 
as follows [12, 13]:

Definition 1 

Alternatively, the total effect can be decomposed into the 
total direct effect (TDE) and the pure indirect effect (PIE), 
as follows:

Definition 2 

Note that Definitions 1 and 2 are based on the counterfac-
tual framework, which is completely general in terms of the 
models that it can accommodate. These two different decom-
positions essentially arise from different ways of accounting 
for an interaction between the exposure and the mediator; 
these become equivalent if there is no interaction. In this 
article, we use Definition 1, referring to the PDE and the 
TIE as the natural direct effect and natural indirect effect, 

PDE ≜ E
[
Y
(
a,M

(
a
�
))]

− E
[
Y
(
a
�
,M

(
a
�
))]

,

TIE ≜ E[Y(a,M(a))] − E
[
Y
(
a,M

(
a
�
))]

.

TDE ≜ E[Y(a,M(a))] − E
[
Y
(
a
�
,M(a)

)]
,

PIE ≜ E
[
Y
(
a
�
,M(a)

)]
− E

[
Y
(
a
�
,M

(
a
�
))]

.

respectively. Note that the counterfactual Y
(
a,M

(
a′
))

 where 
a ≠ a′ is referred to as a “cross-world” counterfactual [16] 
because two different levels of A are nested within the coun-
terfactual for Y. To assess the extent to which the total effect 
operates through the mediator, the “proportion mediated” 
is sometimes used, which is defined on the difference scale 
as the ratio of the natural indirect effect to the total effect (
E[Y(a,M(a))] − E

[
Y
(
a,M

(
a�
))])

∕
(
E[Y(a)] − E

[
Y
(
a�
)])

.
On a related issue, in the sufficient cause framework [35], 

Suzuki et al. [34] demonstrated that, under the assumption 
of sufficient cause positive monotonicity of the exposure and 
the mediator, although the PIE implies the presence of medi-
ating pathways, it does not necessarily imply their operation 
because a non-M-mediating path may operate to induce Y. 
However, this is not the case for TIE, and a non-zero TIE 
implies the operation—not simply the presence—of media-
tion. This also supports the use of Definition 1. For details, 
see the related literature [34, 36].

Nonparametric Structural Equations for Natural 
Effects

In this article, we assume that a causal DAG represents an 
NPSEM-IE [14], which means that (i) each variable is some 
arbitrary general function of the other variables with arrows 
to that variable and a random error term and that (ii) the 
random error terms are independent of one another. Thus, 
Fig. 1a implies the following nonparametric structural equa-
tions for the observable (or factual) variables, A, M, and Y 
[14]:

where �A , �M , and �Y are mutually independent. Note that 
fV (⋅) and gV (⋅) are arbitrary functions for generating a vari-
able V  , and the latter is used when all causal variables are 
error terms � . Because the error terms are exogeneous vari-
ables, gV (⋅) may be regarded as a “reduced form” in the 
econometrics literature. Each equation shows how an indi-
vidual response variable changes as its direct (parent) causal 
variables change and can thus be interpreted from a perspec-
tive of the potential-outcome model for that response. There-
fore, Fig. 1a implies the following nonparametric structural 
equations for the potential outcomes:

Note that we use g∗
M
(⋅) and g∗

Y
(⋅) because their functional 

forms may differ from gM(⋅) and gY (⋅) , respectively. Figure 1b 
shows a causal DAG incorporating the potential outcomes 

⎧⎪⎨⎪⎩

A = fA
�
�A

�
= gA

�
�A

�
,

M = fM
�
A, �M

�
= gM

�
�A, �M

�
,

Y = fY
�
A,M, �Y

�
= gY

�
�A, �M , �Y

�
,

{
M(a) = fM

(
a, �M

)
= g∗

M

(
a, �M

)
(∀a),

Y(a,m) = fY
(
a,m, �Y

)
= g∗

Y
(a,m, �Y ) (∀a,m).



	 Current Epidemiology Reports           (2025) 12:20    20   Page 4 of 19

of M and Y, as well as the error terms for A, M, and Y. Note 
that an arrow exerts from each potential outcome to the cor-
responding observed variable, such that each observed vari-
able has its direct causal variable(s) and the corresponding 
potential outcomes as parents. For example, the parents of 
Y are A, M, Y(a,m) , Y

(
a,m′

)
 , Y

(
a′,m

)
 , and Y

(
a′,m′

)
 . Note 

that �M and �Y are common causes of the potential outcomes 
of M and Y, respectively. The observed variables and their 
potential outcomes are endogenous variables, whereas the 
error terms are exogeneous variables in the system of struc-
tural equations.

Identification of Natural Effects

In NPSEM-IE, the natural direct and indirect effects can be 
identified if the following four assumptions hold [13, 37, 
38]:

Note that these are a set of sufficient independence condi-
tions, although weaker assumptions relevant to the natural 
direct and indirect effects are often sufficient [5]. See the 
Appendix for further discussion on assumption (2).

It is worth noting that, unlike assumptions (1) to (3), 
assumption (4) is the so-called cross-world independence 
assumption [37] because it involves counterfactuals referring 
to two different “worlds” or scenarios. Specifically, assump-
tion (4) states that the counterfactual values of the outcome 
if A were set to a are independent of those of the mediator 
if A were set to a′ . The cross-world independence assump-
tion is assumed under an NPSEM-IE, which is sometimes 
referred to as a “multiple-worlds model” [37]. By contrast, 
the cross-world independence assumptions are not assumed 
under an FFRCISTG model [16], which is sometimes 
referred to as a “single-world model” [37]. Although the 
natural direct and indirect effects are ontologically defined 
under an FFRCISTG model, they are not point-identified; 
however, their sharp bounds can be obtained [15]. These 
differences reflect important epistemological distinctions 
between NPSEM-IE and FFRCISTG models [16]. To sum-
marize, as noted by Shpitser et al. [39] (p. 826), FFRCISTG 
models are “ontologically liberal, but epistemologically 
conservative.”

Incorporating potential outcomes and error terms into the 
causal DAG has the advantage of visually illustrating that 

(1)

(2)

(3)

(4)

assumptions (1) to (4) hold (Fig. 1b). For example, regard-
ing assumption (4), there are no open paths between Y(a,m) 
and M

(
a′
)
 and they are d-separated, which implies their 

independence under the rule of compatibility [40] or con-
nectivity [41]. Note that the same argument applies between 
Y
(
a,m′

)
 and M

(
a′
)
 , among others. Throughout the text, we 

focus on a specific set of nodes without loss of generality 
when discussing d-separation. If assumptions (1) to (4) hold, 
E
[
Y
(
a,M

(
a′
))]

 is identified by the following formula [14, 
42]:

which is a special case of the “mediational g-formula” for 
time-fixed exposure and mediator [43]. Consequently, the 
natural direct and indirect effects are identified and given 
by the empirical expressions (see Online Appendix A). Note 
that we use Y

(
a,M

(
a�
))

= Y(a,m) if M
(
a�
)
= m to identify 

these effects, which is specifically referred to as the “con-
sistency of the cross-world potential outcome” by Nguyen 
et al. [5]. See Online Appendix B for further discussion on 
identification of the total effect.

Next, let us consider a scenario in which there is a media-
tor–outcome confounder H that is not affected by the expo-
sure A (Fig. 2a). This implies the following nonparametric 
structural equations for the observable variables:

Accordingly, we can obtain the following nonparametric 
structural equations for the potential outcomes:

In Fig. 2b, we visually show the relationship by incor-
porating the potential outcomes and the error terms. As 
indicated in the nonparametric structural equations above, 
H is depicted as a common cause of M and its two poten-
tial outcomes, as well as Y and its four potential outcomes 
(Fig. 2b). In this case, unlike Fig. 1b, although assump-
tions (1) and (3) hold, assumptions (2) and (4) generally 
do not. This point is visually illustrated in Fig. 2b. First, 
assumption (2) does not generally hold because, among 
those with A = a , there is an open path between Y(a,m) 
and M(a)∶ Y(a,m) ← H → M(a) . Note that this is based on 
the rule of weak faithfulness [40]; under the assumption 
of faithfulness, which is the converse property of compat-
ibility [24], assumption (2) does not hold. However, there 
are no open paths between Y(a,m) and M(a) conditional on 
H among those with A = a;  

E
[
Y
(
a,M

(
a
�
))]

=
∑
m

E[Y|A = a,M = m]P
(
M = m|A = a

�
)
,

⎧⎪⎨⎪⎩

A = fA
�
�A

�
= gA

�
�A

�
,

H = fH
�
�H

�
= gH

�
�H

�
,

M = fM
�
A,H, �M

�
= gM

�
�A, �H , �M

�
,

Y = fY
�
A,M,H, �Y

�
= gY

�
�A, �M , �H , �Y

�
.

{
M(a) = fM

(
a,H, �M

)
= g∗

M

(
a, �H , �M

)
(∀a),

Y(a,m) = fY
(
a,m,H, �Y

)
= g∗

Y

(
a,m, �H , �Y

)
(∀a,m).
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holds. Similarly, regarding assumption (4), there is an open 
path between Y(a,m) and M

(
a′
)
 : Y(a,m) ← H → M

(
a�
)
 , and 

assumption (4) does not generally hold. However, condi-
tional on H, there are no open paths between Y(a,m) and 
M
(
a′
)
 ;  holds. This is the so-called 

conditional cross-world independence assumption. Addi-
tionally, because H is not a collider, conditioning on H 
does not open any path, neither between Y(a,m) and A , nor 
between M(a) and A . Indeed, the following four assump-
tions hold in Fig. 2b: Under assumptions (5) to (8), E

[
Y
(
a,M

(
a′
))]

 is identi-
fied as

(5)

(6)

(7)

(8)

E
[
Y
(
a,M

(
a
�
))]

=
∑
h

∑
m

E[Y|A = a,M = m,H = h]P
(
M = m|A = a

�
,H = h

)
P(H = h),

and the natural direct and indirect effects are identified and 
given by the empirical expressions (see Online Appendix C). 
See the Appendix for further discussion on assumption (6).

Finally, let us consider a situation in which there is an 
exposure-induced mediator–outcome confounder L (Fig. 3a). 
Sometimes, L is referred to as a “recanting witness” for A 

[44]. Figure 3a implies the following nonparametric struc-
tural equations for the observable variables:

⎧⎪⎨⎪⎩

A = fA
�
�A

�
= gA

�
�A

�
,

L = fL
�
A, �L

�
= gL

�
�A, �L

�
,

M = fM
�
A, L, �M

�
= gM

�
�A, �L, �M

�
,

Y = fY
�
A,M, L, �Y

�
= gY

�
�A, �M , �L, �Y

�
.

Fig. 2   a A causal directed acy-
clic graph (DAG) with exposure 
A, mediator M, and outcome Y 
when there is a mediator–out-
come confounder H. b A causal 
DAG incorporating the potential 
outcomes as well as error terms
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Accordingly, the following nonparametric structural equa-
tions for the potential outcomes can be obtained:

where L(a) denotes the potential outcome of L if, possibly 
contrary to fact, there had been interventions to set A to 
a. In Fig. 3b, we visually show the relationship by incor-
porating the potential outcomes and the error terms. As 
indicated in the nonparametric structural equations for 
the potential outcomes, arrows exert from L(a) to M(a) , 
Y(a,m) , and Y

(
a,m′

)
 . Similarly, arrows exert from L

(
a′
)
 

to M
(
a′
)
 , Y

(
a′,m

)
 , and Y

(
a′,m′

)
 . As in Fig. 2b, although 

assumptions (1) and (3) hold in Fig. 3b, assumptions (2) 
and (4) generally do not. Assumption (2) does not generally 
hold because, among those with A = a , there is an open 
path between Y(a,m) and M(a) : Y(a,m) ← L(a) → M(a) . 
Similarly, assumption (4) does not generally hold 
because there is an open path between Y(a,m) and M

(
a′
)
 : 

Y(a,m) ← L(a) ← �L → L
(
a�
)
→ M

(
a�
)
 .  Next ,  g iven 

⎧⎪⎨⎪⎩

L(a) = fL
�
a, �L

�
= g∗

L

�
a, �L

�
(∀a),

M(a) = fM
�
a, L(a), �M

�
= g∗

M

�
a, �L, �M

�
(∀a),

Y(a,m) = fY
�
a,m,L(a), �Y

�
= g∗

Y
(a,m, �L, �Y ) (∀a,m),

that assumptions (5) to (8) hold in Fig. 2b, let us examine 
whether the following assumptions hold in Fig. 3b:

To state the conclusion first, only assumption (10) holds 
because there are no open paths between Y(a,m) and 
M(a) conditional on L(a) among those with A = a ; see 
the Appendix for further discussion on assumption (10). 
However, assumptions (9), (11), and (12) do not gener-
ally hold in Fig. 3b. Specifically, assumption (9) does not 
generally hold because, conditional on L, there is an open 
path between Y(a,m) and A : Y(a,m) ← L(a) → L ← A . 
Similarly, assumption (11) does not generally hold 
because, conditional on L, there is an open path between 

(9)

(10)

(11)

(12)

Fig. 3   a A causal directed acy-
clic graph (DAG) with exposure 
A, mediator M, and outcome 
Y when there is an exposure-
induced mediator–outcome 
confounder L. b A causal DAG 
incorporating the potential out-
comes as well as error terms
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M(a) and A : M(a) ← L(a) → L ← A . Finally, assump-
tion (12) does not generally hold because, conditional 
on L, there are two open paths between Y(a,m) and 
M
(
a′
)
 :  Y(a,m) ← L(a) ← �L → L

(
a�
)
→ M

(
a�
)
 a n d 

Y(a,m) ← L(a) → L ← L
(
a�
)
→ M

(
a�
)
 . Thus, if there is 

an exposure-induced mediator–outcome confounder L, the 
cross-world independence assumption does not generally 
hold, with or without conditioning on L [37].

To summarize, if there is an effect of the exposure that 
confounds the mediator–outcome relationship, as in Fig. 3a, 
the natural direct and indirect effects are not generally 
identified irrespective of whether data are available on L, 
except under strong assumptions [44], such as no interaction 
between the exposure and mediator at the individual level 
[45]. In other words, the absence of the exposure-induced 
mediator–outcome confounder L is a sufficient but not a 
necessary condition for identification of the natural direct 
and indirect effects. Even when an exposure-induced media-
tor–outcome confounder is present, the separable direct and 
indirect effects can still be identified from the data, provided 
certain assumptions hold. In the next section, we discuss 
these effects.

Separable Direct and Indirect Effects

Notations and Definitions

The basic idea underlying separable effects is that the expo-
sure A can be decomposed into two separable components N 
and O, where the separable component N directly affects M 
but not Y; by contrast, the separable component O directly 
affects Y but not M. In their example of a randomized trial 
examining the effect of smoking cessation on myocardial 
infarction, Hernán and Robins [18] considered that N rep-
resents nicotine exposure and O represents exposure to the 
other non-nicotine components of a cigarette. Similar exam-
ples have been used in the related literature [15, 16]. Figure 4a 
shows a causal DAG including N and O. The absence of an 
arrow from N to Y encodes an assumption that N does not have 
a direct effect on Y. Similarly, the absence of an arrow from O 
to M encodes an assumption that O does not have an effect on 
M. Note that the bold arrows from A to N and O indicate deter-
ministic relationships [15]. The two separable components 
N and O are not observed, and we observe only the value of 
A; in observed data, A ≡ N ≡ O holds. However, we assume 

Fig. 4   a A causal directed acy-
clic graph (DAG) with exposure 
A, mediator M, and outcome 
Y, where A is assumed to be 
decomposed into two separable 
components N and O. The bold 
arrows from A to N and O indi-
cate deterministic relationships. 
b A causal DAG incorporating 
the potential outcomes as well 
as error terms
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that a future trial could be designed in which interventions 
are applied separately to separable components N and O. The 
relationships between N and M and between O and Y are not 
deterministic.

When considering the separable effects in the context of 
mediation, we do not consider interventions on the media-
tor M itself; rather, we consider separate interventions on 
the separable components N and O. Like the exposure A, 
suppose that n and n′ are two values of the separable com-
ponent N we wish to compare, and similarly, o and o′ are 
two values of the separable component O. Then, let us 
consider a four-arm randomized controlled trial on the sep-
arable components N and O, comparing their two values: 
(N,O) = (n, o),

(
n, o�

)
,

(
n�, o

)
,

(
n�, o�

)
 . In the counterfactual 

framework, we let Y(n, o) denote the potential outcomes of 
Y if, possibly contrary to fact, there had been interventions 
to set N to n and to set O to o, where Y(n, o) = Y(a) and 
Y
(
n�, o�

)
= Y

(
a�
)
 hold based on the deterministic relation-

ships between A, N, and O. We also let M(n, o) denote the 
potential outcome of M if, possibly contrary to fact, there 
had been interventions to set N to n and to set O to o.

Accordingly, the total effect of A on Y of setting the 
exposure to A = a versus A = a� in the population of inter-
est can be expressed as E[Y(n, o)] − E

[
Y
(
n�, o�

)]
 in the 

four-arm randomized controlled trial. Using E
[
Y
(
n′, o

)]
 , 

the total effect can be decomposed into the separable direct 
effect (SDE) and the separable indirect effect (SIE). as 
follows:

Definition 3 

Note that E
[
Y
(
n′, o

)]
 is a hypothetical quantity because it 

cannot be observed even partly in the current data. Alter-
natively, the total effect can be also decomposed using 
E
[
Y
(
n, o′

)]
 , as below:

Definition 4 

Like Definitions 1 and 2, Definitions 3 and 4 are based on 
the counterfactual framework, which is completely gen-
eral in terms of the models that it can accommodate. In 
this article, we use Definition 3 for the separable direct 
and indirect effects, which corresponds to Definition 1 for 
the natural direct and indirect effects. Note that Y

(
n′, o

)
 

and Y
(
n, o′

)
 are (single-world) counterfactuals involving 

only N and O, not the mediator M; Robins et al. [16] (p. 
747) refer to them as “non-cross-world” counterfactuals. 

SDE
(
n
�
)
≜ E

[
Y
(
n
�
, o
)]

− E
[
Y
(
n
�
, o

�
)]
,

SIE(o) ≜ E[Y(n, o)] − E
[
Y
(
n
�
, o
)]
.

SDE(n) ≜ E[Y(n, o)] − E
[
Y
(
n, o

�
)]
,

SIE
(
o
�
)
≜ E

[
Y
(
n, o

�
)]

− E
[
Y
(
n
�
, o

�
)]
.

Unlike the natural direct and indirect effects and the con-
trolled direct effect (defined later), the separable direct 
and indirect effects do not require reference to counter-
factuals indexed by m (e.g., Y(a,m) ). Recent studies have 
also discussed separable effects in other contexts, such as 
competing events [46–49] and the generalized frontdoor 
formula [50].

Nonparametric Structural Equations for Separable 
Effects

Although separable effects are often explained using single-
world intervention graphs under the FFRCISTG models [39, 
51], we use NPSEM-IE and causal DAGs to highlight the 
differences and similarities between natural effects and sepa-
rable effects. Using the same reasoning as for natural direct 
and indirect effects, Fig. 4a implies the following nonpara-
metric structural equations for the observable (or factual) 
variables A, N, O, M, and Y:

Note that, because of the deterministic relationships 
between A, N, and O, we do not consider error terms �N 
or �O ; rather, the separable components N and O are gov-
erned by the error term �A via the exposure A, such that 
gN

(
�A

)
= gO

(
�A

)
= gA

(
�A

)
 , and hence, fN(A) = fO(A) = A 

in the observed data.
Following the same logic, the following nonparamet-

ric structural equations for the potential outcomes can be 
obtained:

where N(a) and O(a) denote the potential outcomes of N 
and O, respectively, if, possibly contrary to fact, there had 
been interventions to set A to a. Note that the first equation, 
N(a) = O(a) = a , indicates the deterministic relationships 
between A, N, and O [16]. Note also that, because we assume 
that O is not a cause of M for every individual, we can write 
M(n, o) as M(n) . This is an individual-level assumption, 
sometimes referred to as the “isolation assumption” (see 
Online Appendix D for further discussion) [46]. Figure 4b 
presents a causal diagram incorporating the potential out-
comes of M and Y, as well as the error terms for A, M, and 
Y. As mentioned above, there are no error terms �N or �O . As 
indicated in the nonparametric structural equations for the 

⎧⎪⎪⎨⎪⎪⎩

A = fA
�
�A

�
= gA

�
�A

�
,

N = fN(A) = gN
�
�A

�
,

O = fO(A) = gO
�
�A

�
,

M = fM
�
N, �M

�
= gM

�
�A, �M

�
,

Y = fY
�
O,M, �Y

�
= gY

�
�A, �M , �Y

�
.

⎧
⎪⎨⎪⎩

N(a) = O(a) = a (∀a),

M(n, o) = M(n) = fM
�
n, �M

�
= g∗

M

�
n, �M

�
(∀n, o),

Y(n, o) = fY
�
o,M(n, o), �Y

�
= g∗

Y

�
n, o, �M , �Y

�
(∀n, o),
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potential outcomes, arrows exert from M(n) to Y(n, o) and 
Y
(
n, o′

)
 . Similarly, arrows exert from M

(
n′
)
 to Y

(
n′, o

)
 and 

Y
(
n′, o′

)
 . These are the primary differences between Figs. 1b 

and 4b. However, there are also some similarities between 
them; a total of three arrows go to M and a total of six arrows 
go to Y. This point is related to the fact that, although we 
consider interventions on A and M in the natural direct and 
indirect effects, we consider interventions on N and O in the 
separable direct and indirect effects.

Finally, note that, if we implement interventions on N 
and O in a future (actual) trial, the nonparametric structural 
equations for the observable variables will become

which are completely different from the previous ones. How-
ever, the nonparametric structural equations for the potential 
outcomes become

which are identical to the nonparametric structural equations 
for the potential outcomes of M and Y in the current trial; 
this shows that a similar discussion applies in a future trial, 
where, unlike the current trial, (N,O) =

(
a, a�

)
 can be imple-

mented ( ∀a, a� ) [52]. In the following discussion, although 
we assume that a future trial could be designed to apply 
interventions separately to the separable components N and 
O, we only observe the value of A.

Identification of Separable Effects

Unlike natural direct and indirect effects, because sepa-
rable effects are defined without relying on any cross-
world quantities, they are claimed to be identifiable under 
assumptions that are testable in principle [15]. Regarding 
the identification condition for the separable direct and 
indirect effects, note that the following three assumptions 
hold in Fig. 4b:

⎧⎪⎨⎪⎩

N = f ∗
N

�
�N

�
= g∗

N

�
�N

�
,

O = f ∗
O

�
�O

�
= g∗

O

�
�O

�
,

M = fM
�
N, �M

�
= g∗∗

M

�
�N , �M

�
,

Y = fY
�
O,M, �Y

�
= g∗∗

Y

�
�N , �O, �M , �Y

�
,

{
M(n, o) = M(n) = fM

(
n, �M

)
= g∗

M

(
n, �M

)
(∀n, o),

Y(n, o) = fY
(
o,M(n, o), �Y

)
= g∗

Y

(
n, o, �M , �Y

)
(∀n, o),

(13)

Assumptions (14) and (15) trivially hold in the observed 
data because N = O . In a future trial where N  and O are 
separately intervened, assumptions (14) and (15) are test-
able [52]. The fact that these assumptions hold in both the 
observed data and future trial in the same population ensures 
that E

[
Y
(
n′, o

)]
 in the future trial is identifiable from the 

observed data. This is consistent with the discussion in the 
last paragraph of the previous section. Under assumptions 
(13) to (15), E

[
Y
(
n′, o

)]
 is identified as

which is identical to the identification formula for 
E
[
Y
(
a,M

(
a′
))]

 , and the separable direct and indirect effects 
are identified and given by the empirical expressions (see 
Online Appendix E). As explained in Online Appendix F, 
these effects are identified under weaker assumptions. The 
positivity assumption is addressed in footnote b of Table 1. 
When there is a common cause H of the mediator M and the 
outcome Y, the separable direct and indirect effects in the 
subgroup with H = h are similarly identified and given by the 
empirical expressions, and the separable direct and indirect 
effects in the total population are obtained by marginalizing 
them over H = h.

Next, we consider situations in which there is an expo-
sure-induced mediator–outcome confounder L. Following 
Robins et al. [16], we consider three scenarios. First, we 
consider a scenario in which N is a parent of L, but O is not, 
as described in Fig. 5a. In this case, we obtain the follow-
ing nonparametric structural equations for the observable 
variables:

Accordingly, the following nonparametric structural equa-
tions for the potential outcomes can be obtained:

(14)

(15)

E
[
Y
(
n�, o

)]
=
∑
m

E[Y|A = a,M = m]P
(
M = m|A = a�

)
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A = fA
�
�A

�
= gA

�
�A

�
,

N = fN(A) = gN
�
�A

�
,

O = fO(A) = gO
�
�A

�
,

M = fM
�
N, L, �M

�
= gM

�
�A, �L, �M

�
,

L = fL
�
N, �L

�
= gL

�
�A, �L

�
,

Y = fY
�
O,M, L, �Y

�
= gY

�
�A, �M , �L, �Y

�
.

⎧⎪⎨⎪⎩

N(a) = O(a) = a (∀a),

M(n, o) = M(n) = fM
�
n, L(n), �M

�
= g∗

M

�
n, �L, �M

�
(∀n, o),

L(n, o) = L(n) = fL
�
n, �L

�
= g∗

L

�
n, �L

�
(∀n, o),

Y(n, o) = fY
�
o,M(n, o), L(n, o), �Y

�
= g∗

Y

�
n, o, �M , �L, �Y

�
(∀n, o),
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where L(n, o) denotes the potential outcome of L if, possibly 
contrary to fact, there had been interventions to set N to n 
and to set O to o. Because we assume that O is not a cause of 
L for every individual in this setting, we can write L(n, o) as 
L(n) . Figure 5b shows these relationships visually, in which 
the following assumptions hold:

(16) Under assumptions (16) to (19), E
[
Y
(
n′, o

)]
 is identified as

(17)

(18)

(19)

E
[
Y
(
n�, o

)]
=
∑
m,l

E[Y|M = m,L = l,A = a]P
(
M = m|L = l,A = a�

)
P
(
L = l|A = a�

)
,

and the separable direct and indirect effects are identified 
and given by the empirical expressions (see Online Appen-
dix G). As explained in Online Appendix H, these effects are 
identified under weaker assumptions.

Next, we consider a scenario in which O is a parent of L, 
but N is not, as described in Fig. 6a. In this case, we obtain 
the following nonparametric structural equations for the 
observable variables:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A = fA
�
�A

�
= gA

�
�A

�
,

N = fN(A) = gN
�
�A

�
,

O = fO(A) = gO
�
�A

�
,

M = fM
�
N, L, �M

�
= gM

�
�A, �L, �M

�
,

L = fL
�
O, �L

�
= gL

�
�A, �L

�
,

Y = fY
�
O,M, L, �Y

�
= gY

�
�A, �M , �L, �Y

�
.

Fig. 5   a A causal directed acy-
clic graph (DAG) with exposure 
A, mediator M, and outcome 
Y, where A is assumed to be 
decomposed into two separable 
components N and O, and an 
exposure-induced mediator–out-
come confounder L is present. 
We consider a scenario in which 
N is a parent of L, but O is not. 
The bold arrows from A to N 
and O indicate deterministic 
relationships. b A causal DAG 
incorporating the potential out-
comes as well as error terms
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Accordingly, the following nonparametric structural equa-
tions for the potential outcomes can be obtained:

Because we assume that N is not a cause of L for every indi-
vidual in this setting, we can write L(n, o) as L(o) . Figure 6b 
shows these relationships visually; this figure is slightly 
more complicated than Fig. 5b because M is influenced by 
both N and O (via L), and we draw four potential outcomes 
of M. In Fig. 6b, the following assumptions hold:

⎧⎪⎨⎪⎩

N(a) = O(a) = a (∀a),

M(n, o) = fM
�
n, L(n, o), �M

�
= g∗

M

�
n, o, �L, �M

�
(∀n, o),

L(n, o) = L(o) = fL
�
o, �L

�
= g∗

L

�
o, �L

�
(∀n, o),

Y(n, o) = fY
�
o,M(n, o), L(n, o), �Y

�
= g∗

Y

�
n, o, �M , �L, �Y

�
(∀n, o).

(16) Under assumptions (16), (17), (18), and (20), E
[
Y
(
n′, o

)]
 is 

identified as

(17)

(18)

(20)

E
[
Y
(
n�, o

)]
=
∑
m,l

E[Y|M = m,L = l,A = a]P
(
M = m|L = l,A = a�

)
P(L = l|A = a),

Fig. 6   a A causal directed acy-
clic graph (DAG) with exposure 
A, mediator M, and outcome 
Y, where A is assumed to be 
decomposed into two separable 
components N and O, and an 
exposure-induced mediator–out-
come confounder L is present. 
We consider a scenario in which 
O is a parent of L, but N is not. 
The bold arrows from A to N 
and O indicate deterministic 
relationships. b A causal DAG 
incorporating the potential out-
comes as well as error terms



	 Current Epidemiology Reports           (2025) 12:20    20   Page 12 of 19

and the separable direct and indirect effects are identified 
and given by the empirical expressions (see Online Appen-
dix I). As explained in Online Appendix J, these effects are 
identified under weaker assumptions.

Finally, we consider a scenario in which both N and O 
are parents of L, as described in Fig. 7a. In this case, we 
obtain the following nonparametric structural equations for 
the observable variables:

Accordingly, the following nonparametric structural equa-
tions for the potential outcomes can be obtained:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

A = fA
�
�A

�
= gA

�
�A

�
,

N = fN(A) = gN
�
�A

�
,

O = fO(A) = gO
�
�A

�
,

M = fM
�
N, L, �M

�
= gM

�
�A, �L, �M

�
,

L = fL
�
N,O, �L

�
= gL

�
�A, �L

�
,

Y = fY
�
O,M, L, �Y

�
= gY

�
�A, �M , �L, �Y

�
.

⎧
⎪⎨⎪⎩

N(a) = O(a) = a (∀a),

M(n, o) = fM
�
n, L(n, o), �M

�
= g∗

M

�
n, o, �L, �M

�
(∀n, o),

L(n, o) = fL
�
n, o, �L

�
= g∗

L

�
n, o, �L

�
(∀n, o),

Y(n, o) = fY
�
o,M(n, o), L(n, o), �Y

�
= g∗

Y

�
n, o, �M , �L, �Y

�
(∀n, o).

Figure 7b shows these relationships visually; this figure is 
even more complicated than Fig. 6b because L is influenced 
by both N and O, and we draw four potential outcomes of L. 
In Fig. 7b, the following three assumptions hold:

(16)

(17)

Fig. 7   a A causal directed acy-
clic graph (DAG) with exposure 
A, mediator M, and outcome 
Y, where A is assumed to be 
decomposed into two separable 
components N and O, and an 
exposure-induced mediator–out-
come confounder L is present. 
We consider a scenario in which 
both N and O are parents of L. 
The bold arrows from A to N 
and O indicate deterministic 
relationships. b A causal DAG 
incorporating the potential out-
comes as well as error terms
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However, because there are direct paths N → L and O → L 
in Fig. 7b, the following assumptions do not generally hold:

Therefore, when L has both N and O as parents, E
[
Y
(
n′, o

)]
 

is not generally identified from the observed data, and the 

(18)

(19)

(20)

separable direct and indirect effects cannot generally be 
identified.

Philosophical Contrasts: Causation 
and Manipulation

We have contrasted natural effects and separable effects in 
the context of mediation, each of which has its own advan-
tages and important considerations (Table 1). Despite some 
similarities, the two approaches differ fundamentally, with 
these differences likely rooted in contrasting philosophical 

Table 1   Comparison of natural effects and separable effects

DAG: directed acyclic graph, FFRCISTG: finest fully randomized causally interpretable structured tree graph, NDE: natural direct effect, NIE: 
natural indirect effect, NPSEM-IE: nonparametric structural equation models with independent errors, SDE: separable direct effect, SIE: separa-
ble indirect effect
a We consider an exposure A, a mediator M, and an outcome Y. We also consider that the exposure A can be decomposed into two separable com-
ponents N and O, where the separable component N directly affects M but not Y; by contrast, the separable component O directly affects Y but 
not M. See Definitions 1 and 3 and the main text for details. Note that NDE and NIE here correspond to PDE and TIE, respectively, in the main 
text. SDE and SIE here correspond to SDE(n′ ) and SIE(o), respectively, in the main text
b In the observed data where A ≡ N ≡ O , no individual has data (N,O) =

(
n
�
, o
)
 , and positivity for (N,O) =

(
n
�
, o
)
 does not hold. However, the 

mediational g-formula is a function of the observed data distribution only because N = n
� if and only if A = a

� and O = o if and only if A = a . 
See Technical Point 23.2 of Hernán and Robins[18]
c Pearl [70] argues that consistency is a theorem in the logic of counterfactuals, whereas Robins and Richardson [15] explain that the FFRCISTG 
model satisfies the consistency assumption
d Composition is needed not for identification but for interpretation
e Assumption (2) is equivalent to  under the consistency assumption. Regarding assumption (13), the follow-
ing equivalence relationship holds by the weak union and decomposition graphoid axioms ( ⇒ ) and the contraction graphoid axiom ( ⇐ ) [14]: 
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perspectives on causation and manipulation. One key dis-
tinction lies in the role of experimental intervention in estab-
lishing causal relationships. Recall that experiment is one of 
the nine Bradford Hill viewpoints [53].

Some researchers may argue that genuine causal infer-
ences are only possible if certain variables can be carefully 
manipulated, asserting an ontological primacy of manipula-
tion relative to causation. This perspective is often encap-
sulated by the dictum “no causation without manipulation” 
[54], emphasizing that causation should be understood 
through experimental control and intervention. From this 
standpoint, the separable effects are particularly valuable 
because they align with the principle that mediation should 
be empirically testable in future trials. In this context, the 
target trial framework has been proposed as a way to formal-
ize causal inference by structuring observational analyses 
around the design principles of a hypothetical randomized 
experiment [55]. This approach reinforces the idea that 
causal questions should be framed in a way that facilitates 
empirical validation through intervention-based studies. 
When the counterfactual outcomes are not sufficiently well 
defined, observational data may still be quite useful for non-
causal prediction [18, 56].

Others may argue that whereas manipulation and experi-
ments play a crucial role in scientific inquiry, cause–effect 
relationships are ultimately governed by natural laws, 
many—if not most—of which extend beyond human con-
trol, asserting an ontological primacy of causation relative 
to manipulation. From this perspective, scientific progress 
has often been driven by uncovering these natural laws 
through careful observation, logical reasoning, and statisti-
cal inference, even in the absence of direct experimental 
manipulation. This perspective may be summarized by the 
dictum “causation first, manipulation second” [14] (p. 43), 
suggesting that the existence of causal relationships does not 
necessarily depend on our ability to manipulate variables 
experimentally. Within this framework, natural effects may 
provide valuable insights into causal mechanisms, even if we 
must consider the cross-world independence assumptions. 
In this context, the “ladder of causation” was introduced as 
a conceptual framework that categorizes causal reasoning 
into three hierarchical levels: associational, interventional, 
and counterfactual [57]. This hierarchy underscores the idea 
that causality extends beyond experimental manipulation, 
supporting the use of natural effects as a means of explor-
ing mediation and causal pathways within complex systems.

Additional Remarks on Other Effects

Before concluding this review article, it is worth 
briefly highlighting two types of effect, which can be 
identified even in the presence of an exposure-induced 

mediator–outcome confounder. The first is the controlled 
direct effect. Although natural direct and indirect effects 
may be of greater interest in evaluating the action of vari-
ous mechanisms and the importance of different pathways 
as well as for effect decomposition, the controlled direct 
effect is often of greater interest in policy evaluation. 
The controlled direct effect (CDE) of A on Y, setting the 
mediator M at a specific level m, is defined as follows 
[12, 13]:

Definition 5 

which may vary across different levels of m. Note that 
indirect effects cannot be defined in a similar manner, and 
the difference between the total effect and the controlled 
direct effect cannot generally be interpreted as an indirect 
effect [29, 58]. The controlled direct effect is identifiable 
in the settings depicted in Figs. 1, 2, and 3. Specifically, 
this effect can be identified under assumptions (1) and (2) 
in Fig. 1b, assumptions (1) and (5) in Fig. 2b, and assump-
tions (1) and (10) in Fig. 3b (see Online Appendix K). Note 
that the natural direct effect and the controlled direct effect 
coincide when there is no interaction between the exposure 
and mediator. On a related issue, the proportion eliminated 
has also been proposed as a policy-relevant proportion for 
direct effects [59], which is defined on the difference scale 
as 

((
E[Y(a)] − E

[
Y
(
a
�
)])

−
(
E[Y(a,m)] − E

[
Y
(
a
�
,m

)]))
∕(

E[Y(a)] − E
[
Y
(
a
�
)])

 . Further discussion on the controlled 
direct effect and the proportion eliminated can be found in 
the related literature [59–61].

As for the second effect, when there is an exposure-
induced mediator–outcome confounder, an alternative 
approach is to consider randomized interventional analogs 
of the natural direct and indirect effects [38, 62, 63]. Appar-
ently, these effects first appeared in Didelez et al. [64], and 
they are often denoted interventional direct and indirect 
effects, although some authors also use the label stochastic 
effects, which is short for stochastic interventional effects 
[65]. The interventional direct and indirect effects (IDE and 
IIE, respectively) are defined as follows:

Definition 6 

where G(a) denotes a random draw from the distribution of 
the mediator among those with exposure status a. Alterna-
tively, the interventional direct and indirect effects can be 
also defined as follows:

CDE(m) ≜ E[Y(a,m)] − E
[
Y
(
a�,m

)]
,

IDE

(
a
�
)
≜ E

[
Y
(
a,G

(
a
�
))]

− E
[
Y
(
a
�
,G

(
a
�
))]

,

IIE(a) ≜ E[Y(a,G(a))] − E
[
Y
(
a,G

(
a
�
))]

,
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Definition 7 

Note that the interventional direct and indirect effects 
decompose not the total effect but the overall effect (i.e., 
E[Y(a,G(a))] − E

[
Y
(
a�,G

(
a�
))]

 ) [62]. The interventional 
direct and indirect effects are analogs arising not from fix-
ing the mediator for each individual to the level it would 
have been under a particular exposure but rather from fix-
ing it to a level that is randomly chosen from the distribu-
tion of the mediator among all those with a particular expo-
sure [62]. In other words, unlike natural direct and indirect 
effects, interventional direct and indirect effects are contrasts 
of interventions that set the exposure to a specific value and 
the mediator distribution to a specific distribution; thus, it is 
not meaningful to talk about interventional direct and indi-
rect effects for the individual [4]. Even in the presence of an 
exposure-induced mediator–outcome confounder L, inter-
ventional direct and indirect effects are identifiable from the 
data if—in addition to assumptions (1) and (10)—assump-
tion (3) holds, as in Fig. 3b [38] (see Online Appendix L). 
Furthermore, even in the presence of an exposure-induced 
mediator–outcome confounder L, if assumption (4) holds in 
addition to assumptions (1), (3), and (10), the interventional 
direct and indirect effects are identified and become iden-
tical to the natural direct and indirect effects, respectively; 
the overall effect also becomes identical to the total effect. 
However, recall that assumption (4) does not generally hold 
in Fig. 3b, and when an exposure-induced mediator–outcome 
confounder L is present, it becomes challenging to consider 
specific causal structures that satisfy assumptions (1), (3), 
(4), and (10); see Online Appendix L for further discussion. 
Nguyen et al. [4] emphasized the importance of defining 
interventional effects more broadly to better align with the 
scientific research question, noting that the controlled direct 
effect belongs to the broader class of interventional effects; 
for further details, see Nguyen et al. [4].

Conclusions

To conduct meaningful mediation analysis, it is crucial 
to clearly define the research question of interest, and the 
choice of methods should align with the nature of the ques-
tion and the assumptions researchers are willing to make 
[66, 67]. For example, although separable effects are defined 
without relying on any cross-world quantities and are 
claimed to be identifiable under assumptions that are testable 
in principle [15], researchers may still find it challenging 
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to envision such a future trial in certain research settings. 
Indeed, as admitted by Robins et al. [16] and Hernán and 
Robins [18], although rare, cross-world counterfactuals can 
at least be conceptually observed in situations where a valid 
crossover trial is feasible. Regardless of whether one consid-
ers natural or separable effects, the estimated causal effect 
may well be interpreted as the effect of an intervention that 
has not actually been implemented in the observed data. In 
this regard, examining the underlying philosophical perspec-
tives on causation and manipulation can provide valuable 
insights.

Ultimately, mediation is inherently a causal concept, and 
its validity relies on a well-defined causal structure and the 
justification of assumptions for identification. Comparing 
and contrasting natural effects and separable effects provides 
valuable insights into the foundations of mediation analysis, 
deepening our understanding of both its theoretical basis and 
practical implications.
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Appendix

Regarding assumption (2), some researchers have provided 
the following alternative assumption [1, 29, 62, 68, 69]:

which is stronger than assumption (2). To understand this, 
note that the following equivalence relationship holds:

On the right-hand side, the former condition, assumption 
(2), is based on “single-world” independence whereas the 
latter represents “cross-world” independence; like assump-
tion (2), this holds in Fig. 1b because we use NPSEM-IE. 
This discussion demonstrates that assumption (2*) entails 
“cross-world” independence.

In the main text, we use assumption (2) to emphasize 
that assumptions (1) to (3) pertain to “single-world” inde-
pendence whereas assumption (4) represents “cross-world” 
independence. A similar discussion applies to assumptions 
(6) and (10).
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