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Abstract

Purpose of Review We compare natural effects and separable effects under nonparametric structural equation models with
independent errors, highlighting their similarities and differences. By examining their required properties and sufficient
conditions for identification, we aim to provide deeper insights into mediation analysis.

Recent Findings If certain assumptions about confounding, positivity, and consistency are met, we can identify natural direct
and indirect effects under nonparametric structural equation models with independent errors. However, these effects have
been criticized because they rely on a specific cross-world quantity, and the so-called cross-world independence assumption
cannot be empirically verified. Furthermore, interventions on the mediator may sometimes be challenging to even conceive.
As an alternative approach, separable effects have recently been proposed and applied in mediation analysis, often under
finest fully randomized causally interpretable structured tree graph models. These effects are defined without relying on any
cross-world quantities and are claimed to be identifiable under assumptions that are testable in principle, thereby addressing
some of the challenges associated with natural direct and indirect effects.

Summary To conduct meaningful mediation analysis, it is crucial to clearly define the research question of interest, and the
choice of methods should align with the nature of the question and the assumptions researchers are willing to make. Examin-
ing the underlying philosophical perspectives on causation and manipulation can provide valuable insights.

Keywords Causality - Counterfactuals - Cross-world independence assumption - Directed acyclic graphs - Mediation
analysis - Nonparametric structural equation models with independent errors

Introduction mediation analysis enables us to disentangle complex causal

mechanisms, providing insights into underlying biological,

The assessment of mediation provides a valuable approach
to gaining a deeper understanding of cause—effect relation-
ships by examining whether and how a mediator transmits
the effect of an exposure or intervention to an outcome
[1-7]. By defining and identifying direct and indirect effects,
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behavioral, or social processes. To this end, causal media-
tion analysis within the counterfactual framework has gained
increasing attention across various disciplines in recent years
[8-10]. Additionally, the AGReMA statement (A Guideline
for Reporting Mediation Analyses) was developed to provide
consolidated recommendations for reporting mediation analy-
ses [11].

As is well appreciated in the literature on causal mediation,
the total effect of the exposure on the outcome can be decom-
posed into natural direct and indirect effects [12, 13]. If certain
assumptions about confounding, positivity, and consistency are
met, the so-called mediation formula can be used to identify
these effects in nonparametric structural equation models with
independent errors (NPSEM-IE) [13, 14]. However, natural
direct and indirect effects have been criticized because, as
explained below, these rely on a specific cross-world quantity,
and the so-called cross-world independence assumption—part
of a set of sufficient, but not necessary, assumptions—is not
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empirically verifiable [15-18]. Furthermore, interventions on
the mediator may sometimes be challenging to even conceive.

As an alternative approach, separable effects have
recently been proposed and applied in mediation analysis
[15-20], often in finest fully randomized causally interpret-
able structured tree graph (FFRCISTG) models [21]. Under
this approach, the exposure is assumed to be separated into
two (or more) components, one having a direct effect only
on the mediator and the other having a direct effect only on
the outcome. Furthermore, each separable component can
be intervened separately in principle, and the total effect can
be decomposed into separable direct and indirect effects.
These effects are defined without relying on any cross-world
quantities and are claimed to be identifiable under assump-
tions that are testable in principle [15], thereby addressing
some of the challenges associated with natural direct and
indirect effects [22].

In this article, we compare natural effects and sepa-
rable effects under NPSEM-IE, highlighting their simi-
larities and differences. Additionally, we illustrate these
two approaches graphically using causal directed acyclic
graphs (DAGs) [23, 24], incorporating potential outcomes
determined by NPSEM-IE. By examining their required
properties and sufficient conditions for identification, we
aim to provide deeper insights into mediation analysis.

Fig.1 a A causal directed acy- a)

clic graph (DAG) with exposure A
A, mediator M, and outcome Y.

b A causal DAG incorporating

the potential outcomes as well

as error terms

Furthermore, to compare the two approaches, we examine
their underlying philosophical perspectives on causation
and manipulation. We then briefly review the controlled
direct effect and interventional effects before concluding
the article.

Natural Direct and Indirect Effects
Notations and Definitions

We let A denote an exposure of interest, ¥ an outcome of
interest, and M a potential mediator of interest, as depicted
in the causal DAG in Fig. l1a. For example, in the context
of mediation analysis, Herndn and Robins [18] consid-
ered a randomized trial among cigarette smokers, letting A
denote smoking cessation, M the presence of hypertension
at 6 months, and Y the incidence of myocardial infarction
within 1 year, assuming that no individuals experienced
the outcome Y during the first 6 months. Similar examples
were used in related literature [15, 16]. Throughout the
present article, we assume that the set of baseline covari-
ates not affected by the exposure, denoted as C, is empty
unless stated otherwise. However, a similar discussion
applies, conditional on C =c, followed by marginalizing

M
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over the possible values of C. We presuppose that at least
hypothetical interventions on A and M are conceivable.

In the counterfactual framework, we let Y(a) and M(a)
denote the potential outcomes of ¥ and M, respectively, if,
possibly contrary to fact, there had been interventions to
set A to a. Additionally, we let Y(a, m) denote the potential
outcomes of Y if, possibly contrary to fact, there had been
interventions to set A to a and to set M to m. Throughout
this article, we assume that positivity and consistency hold
[25-28]; see Nguyen et al. [5] for an in-depth discussion
about these assumptions in the context of mediation analysis.
Furthermore, we make a generalized consistency or com-
position assumption, Y(a) = Y(a, M(a)) [29-31], where the
nested counterfactual on the right-hand side is sometimes
referred to as a compound potential outcome [32-34]. Note
that the composition assumption is needed not for identifica-
tion but for interpretation of the natural effects [5].

Suppose that a and o’ are two values of the exposure
we wish to compare, the latter of which is a reference
condition; for example, for binary exposure, we may
have a = 1 and ¢ = 0. Similarly, m and m’ are two val-
ues of the mediator. Then, the total effect on Y of setting
the exposure to A = a versus A = ¢’ in the population of
interest is defined as E[Y(a)] — E[Y(d’)], or equivalently
E[Y(a,M(a))] - E[Y(a’,M(d’))| under the composition
assumption. As is well appreciated in the literature on causal
mediation, even when there are interactions and nonlineari-
ties, the total effect of A on Y can be decomposed into the
pure direct effect (PDE) and the total indirect effect (TIE),
as follows [12, 13]:

Definition 1
PDE £ E[Y(a,M(d"))] - E[Y(d',M(d"))].
TIE £ E[Y(a, M(a))] — E|Y(a,M(d"))].

Alternatively, the total effect can be decomposed into the
total direct effect (TDE) and the pure indirect effect (PIE),
as follows:

Definition 2

TDE £ E[Y(a,M(a))] - E[Y (d' . M(a))].
PIE 2 E[Y(d', M(a))] - E[Y(d,M(d))].

Note that Definitions 1 and 2 are based on the counterfac-
tual framework, which is completely general in terms of the
models that it can accommodate. These two different decom-
positions essentially arise from different ways of accounting
for an interaction between the exposure and the mediator;
these become equivalent if there is no interaction. In this
article, we use Definition 1, referring to the PDE and the
TIE as the natural direct effect and natural indirect effect,

respectively. Note that the counterfactual Y (a, M (a’ )) where
a # d' is referred to as a “cross-world” counterfactual [16]
because two different levels of A are nested within the coun-
terfactual for Y. To assess the extent to which the total effect
operates through the mediator, the “proportion mediated”
is sometimes used, which is defined on the difference scale
as the ratio of the natural indirect effect to the total effect
(E[Y(a,M(a)] - E[Y(a,M(d'))])/(E[Y(a)] — E|Y(a')]).

On a related issue, in the sufficient cause framework [35],
Suzuki et al. [34] demonstrated that, under the assumption
of sufficient cause positive monotonicity of the exposure and
the mediator, although the PIE implies the presence of medi-
ating pathways, it does not necessarily imply their operation
because a non-M-mediating path may operate to induce Y.
However, this is not the case for TIE, and a non-zero TIE
implies the operation—not simply the presence—of media-
tion. This also supports the use of Definition 1. For details,
see the related literature [34, 36].

Nonparametric Structural Equations for Natural
Effects

In this article, we assume that a causal DAG represents an
NPSEM-IE [14], which means that (i) each variable is some
arbitrary general function of the other variables with arrows
to that variable and a random error term and that (ii) the
random error terms are independent of one another. Thus,
Fig. 1a implies the following nonparametric structural equa-
tions for the observable (or factual) variables, A, M, and Y
[14]:

A=fy(g4) = 84(£4).
M:fM(A’eM) :gM(EAssM)’
Y zfy(A’M’EY) :gy(fA’eM’eY)’

where €,, €),, and €, are mutually independent. Note that
fv(-) and gy (-) are arbitrary functions for generating a vari-
able V, and the latter is used when all causal variables are
error terms €. Because the error terms are exogeneous vari-
ables, gy (-) may be regarded as a “reduced form” in the
econometrics literature. Each equation shows how an indi-
vidual response variable changes as its direct (parent) causal
variables change and can thus be interpreted from a perspec-
tive of the potential-outcome model for that response. There-
fore, Fig. 1a implies the following nonparametric structural
equations for the potential outcomes:

{ M(a) =fM(a, EM) = g;‘;/[(a, EM) (Va),

Y(a,m) =fy(a,m,ey) = gy(a,m,ey) (Ya,m).

Note that we use gy, () and g}(-) because their functional
forms may differ from g,,(-) and gy (-), respectively. Figure 1b
shows a causal DAG incorporating the potential outcomes
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of M and Y, as well as the error terms for A, M, and Y. Note
that an arrow exerts from each potential outcome to the cor-
responding observed variable, such that each observed vari-
able has its direct causal variable(s) and the corresponding
potential outcomes as parents. For example, the parents of
Yare A, M,Y(a,m),Y(a,m'),Y(a’,m), and Y (d’,m"). Note
that £,, and £, are common causes of the potential outcomes
of M and Y, respectively. The observed variables and their
potential outcomes are endogenous variables, whereas the
error terms are exogeneous variables in the system of struc-
tural equations.

Identification of Natural Effects
In NPSEM-IE, the natural direct and indirect effects can be

identified if the following four assumptions hold [13, 37,
38]:

Y(a,m) L A (Va,m), (1)
Y(a,m) L M(a)|A = a (Va,m), )
M(a) L A (Va), 3)
Y(a,m) L M(a") (Va,a’,m). 4)

Note that these are a set of sufficient independence condi-
tions, although weaker assumptions relevant to the natural
direct and indirect effects are often sufficient [5]. See the
Appendix for further discussion on assumption (2).

It is worth noting that, unlike assumptions (1) to (3),
assumption (4) is the so-called cross-world independence
assumption [37] because it involves counterfactuals referring
to two different “worlds” or scenarios. Specifically, assump-
tion (4) states that the counterfactual values of the outcome
if A were set to a are independent of those of the mediator
if A were set to a’. The cross-world independence assump-
tion is assumed under an NPSEM-IE, which is sometimes
referred to as a “multiple-worlds model” [37]. By contrast,
the cross-world independence assumptions are not assumed
under an FFRCISTG model [16], which is sometimes
referred to as a “single-world model” [37]. Although the
natural direct and indirect effects are ontologically defined
under an FFRCISTG model, they are not point-identified;
however, their sharp bounds can be obtained [15]. These
differences reflect important epistemological distinctions
between NPSEM-IE and FFRCISTG models [16]. To sum-
marize, as noted by Shpitser et al. [39] (p. 826), FFRCISTG
models are “ontologically liberal, but epistemologically
conservative.”

Incorporating potential outcomes and error terms into the
causal DAG has the advantage of visually illustrating that
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assumptions (1) to (4) hold (Fig. 1b). For example, regard-
ing assumption (4), there are no open paths between Y (a, m)
and M(a’) and they are d-separated, which implies their
independence under the rule of compatibility [40] or con-
nectivity [41]. Note that the same argument applies between
Y(a,m')and M(a'), among others. Throughout the text, we
focus on a specific set of nodes without loss of generality
when discussing d-separation. If assumptions (1) to (4) hold,
E[Y(a, M(a’) )] is identified by the following formula [14,
42]:

E[Y(a.M(d'))] = Y EIY|A=a.M=mP(M=m|A=d),

which is a special case of the “mediational g-formula” for
time-fixed exposure and mediator [43]. Consequently, the
natural direct and indirect effects are identified and given
by the empirical expressions (see Online Appendix A). Note
that we use Y(a, M(a’)) = Y(a,m) ifM(a’) = m to identify
these effects, which is specifically referred to as the “con-
sistency of the cross-world potential outcome” by Nguyen
et al. [5]. See Online Appendix B for further discussion on
identification of the total effect.

Next, let us consider a scenario in which there is a media-
tor—outcome confounder H that is not affected by the expo-
sure A (Fig. 2a). This implies the following nonparametric
structural equations for the observable variables:

A =fA(5A) = 8A(5A)s

Hsz(gH) = 8u\EH);

M :fM(A’H’EM) = gM(eA’eH’eM)’

Y =fY(A,M, H,ey) = gY(eA,eM,eH,EY).

Accordingly, we can obtain the following nonparametric
structural equations for the potential outcomes:

{ M(a) =fM(a,H, EM) = g;}(a, EH,EM) Va),
Y(a,m) =fy(a, m, H,ey) = g; (a, m, sy,ey) (Va, m).

In Fig. 2b, we visually show the relationship by incor-
porating the potential outcomes and the error terms. As
indicated in the nonparametric structural equations above,
H is depicted as a common cause of M and its two poten-
tial outcomes, as well as Y and its four potential outcomes
(Fig. 2b). In this case, unlike Fig. 1b, although assump-
tions (1) and (3) hold, assumptions (2) and (4) generally
do not. This point is visually illustrated in Fig. 2b. First,
assumption (2) does not generally hold because, among
those with A = a, there is an open path between Y(a, m)
and M(a): Y(a,m) « H — M(a). Note that this is based on
the rule of weak faithfulness [40]; under the assumption
of faithfulness, which is the converse property of compat-
ibility [24], assumption (2) does not hold. However, there
are no open paths between Y(a, m) and M(a) conditional on
H among those with A =a;Y(a,m) L M(a)|(A = a,H)
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Fig.2 a A causal directed acy- a)
clic graph (DAG) with exposure

A, mediator M, and outcome Y A
when there is a mediator—out-

come confounder H. b A causal

DAG incorporating the potential

outcomes as well as error terms

Em &y

M(£ M(a")
\ /)

holds. Similarly, regarding assumption (4), there is an open
path between Y (a, m)and M (a'): Y(a,m) < H - M(a'), and
assumption (4) does not generally hold. However, condi-
tional on H, there are no open paths between Y(a, m) and
M(d'); Y(a,m) L M(a")|H holds. This is the so-called
conditional cross-world independence assumption. Addi-
tionally, because H is not a collider, conditioning on H
does not open any path, neither between Y(a, m) and A, nor
between M(a) and A. Indeed, the following four assump-
tions hold in Fig. 2b:

Y(a,m) 1L A|H (Va,m), ()
Y(a,m) 1L M(a)|(A = a,H) (Va,m), )
M(a) L A|H (Va), )
Y(a,m) 1L M(a')|H (Va,a’,m). ®)

Under assumptions (5) to (8), E[Y(a,M(a’))] is identi-
fied as

E[Y(a,M(d'))| =) Y EIY|A=a,M=m,H=hP(M=m|A=d,H=h)P(H = h),

h

and the natural direct and indirect effects are identified and
given by the empirical expressions (see Online Appendix C).
See the Appendix for further discussion on assumption (6).

Finally, let us consider a situation in which there is an
exposure-induced mediator—outcome confounder L (Fig. 3a).
Sometimes, L is referred to as a “recanting witness” for A

[44]. Figure 3a implies the following nonparametric struc-
tural equations for the observable variables:

A=f(e4) = galea)

L =fL(A’ 51,) = gL(eA’gL >

M =fy (A Ley) =gy(eq.€1.€y)s

Y =f,(A.M,Ley) = gy(e5. €. 6. €y).

@ Springer
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Fig.3 a A causal directed acy- a)
clic graph (DAG) with exposure
A, mediator M, and outcome

Y when there is an exposure- A M «— L
induced mediator—outcome
confounder L. b A causal DAG
incorporating the potential out-
comes as well as error terms
Y
b)
€a &M €L
M@ M@) L@
A M

Accordingly, the following nonparametric structural equa-
tions for the potential outcomes can be obtained:

L) =fi(a. &) = g} (a.€,) (Va),
M(a) :fM(a, L(a),sM) = g;‘/[(a, £, eM) Va),
Y(a,m) =fy (a, m, L(a), £Y) = g’;(a, m,g;,ey) (Va, m),

where L(a) denotes the potential outcome of L if, possibly
contrary to fact, there had been interventions to set A to
a. In Fig. 3b, we visually show the relationship by incor-
porating the potential outcomes and the error terms. As
indicated in the nonparametric structural equations for
the potential outcomes, arrows exert from L(a) to M(a),
Y(a,m), and Y (a,m’). Similarly, arrows exert from L(a')
to M(d'),Y(a',m), and Y(a',m’). As in Fig. 2b, although
assumptions (1) and (3) hold in Fig. 3b, assumptions (2)
and (4) generally do not. Assumption (2) does not generally
hold because, among those with A = a, there is an open
path between Y(a,m) and M(a): Y(a,m) < L(a) —» M(a).
Similarly, assumption (4) does not generally hold
because there is an open path between Y(a,m) and M (d'):
Y(a.m) « L(a) < &, — L(a') > M(d’). Next, given

@ Springer
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that assumptions (5) to (8) hold in Fig. 2b, let us examine
whether the following assumptions hold in Fig. 3b:

Y(a,m) L AL (Va,m), ©)
Y(a,m) L M(a)|(A = a,L(a)) (Va,m), (10)
M(a) L AlL (Va), (11)
Y(a,m) L M(a")|L (Va,a',m). (12)

To state the conclusion first, only assumption (10) holds
because there are no open paths between Y(a,m) and
M(a) conditional on L(a) among those with A = a; see
the Appendix for further discussion on assumption (10).
However, assumptions (9), (11), and (12) do not gener-
ally hold in Fig. 3b. Specifically, assumption (9) does not
generally hold because, conditional on L, there is an open
path between Y(a,m) and A: Y(a,m) <« L(a) > L < A.
Similarly, assumption (11) does not generally hold
because, conditional on L, there is an open path between
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M(a) and A: M(a) « L(a) > L < A. Finally, assump-
tion (12) does not generally hold because, conditional
on L, there are two open paths between Y(a,m) and
M(a’) i Y(a,m) « L(a) < ¢, — L(a’) - M(a’) and
Y(a,m) « L(a) - L « L(a’) - M(a’). Thus, if there is
an exposure-induced mediator—outcome confounder L, the
cross-world independence assumption does not generally
hold, with or without conditioning on L [37].

To summarize, if there is an effect of the exposure that
confounds the mediator—outcome relationship, as in Fig. 3a,
the natural direct and indirect effects are not generally
identified irrespective of whether data are available on L,
except under strong assumptions [44], such as no interaction
between the exposure and mediator at the individual level
[45]. In other words, the absence of the exposure-induced
mediator—outcome confounder L is a sufficient but not a
necessary condition for identification of the natural direct
and indirect effects. Even when an exposure-induced media-
tor—outcome confounder is present, the separable direct and
indirect effects can still be identified from the data, provided
certain assumptions hold. In the next section, we discuss
these effects.

Fig.4 a A causal directed acy- a)
clic graph (DAG) with exposure
A, mediator M, and outcome

Separable Direct and Indirect Effects
Notations and Definitions

The basic idea underlying separable effects is that the expo-
sure A can be decomposed into two separable components N
and O, where the separable component N directly affects M
but not Y; by contrast, the separable component O directly
affects Y but not M. In their example of a randomized trial
examining the effect of smoking cessation on myocardial
infarction, Hernan and Robins [18] considered that N rep-
resents nicotine exposure and O represents exposure to the
other non-nicotine components of a cigarette. Similar exam-
ples have been used in the related literature [15, 16]. Figure 4a
shows a causal DAG including N and O. The absence of an
arrow from N to Y encodes an assumption that N does not have
a direct effect on Y. Similarly, the absence of an arrow from O
to M encodes an assumption that O does not have an effect on
M. Note that the bold arrows from A to N and O indicate deter-
ministic relationships [15]. The two separable components
N and O are not observed, and we observe only the value of
A; in observed data, A = N = O holds. However, we assume

2
v

Y, where A is assumed to be
decomposed into two separable
components N and O. The bold
arrows from A to N and O indi-
cate deterministic relationships.
b A causal DAG incorporating
the potential outcomes as well
as error terms

A —> N

/™

M) M(n)
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that a future trial could be designed in which interventions
are applied separately to separable components N and O. The
relationships between N and M and between O and Y are not
deterministic.

When considering the separable effects in the context of
mediation, we do not consider interventions on the media-
tor M itself; rather, we consider separate interventions on
the separable components N and O. Like the exposure A,
suppose that n and n’ are two values of the separable com-
ponent N we wish to compare, and similarly, o and o’ are
two values of the separable component O. Then, let us
consider a four-arm randomized controlled trial on the sep-
arable components N and O, comparing their two values:
(N,0) = (n,0), (n,0'), (n',0), (n', o). In the counterfactual
framework, we let Y(n, 0) denote the potential outcomes of
Y if, possibly contrary to fact, there had been interventions
to set N to n and to set O to o, where Y(n,0) = Y(a) and
Y(n',0') = Y(d’) hold based on the deterministic relation-
ships between A, N, and O. We also let M(n, 0) denote the
potential outcome of M if, possibly contrary to fact, there
had been interventions to set N to n and to set O to o.

Accordingly, the total effect of A on Y of setting the
exposure to A = a versus A = @’ in the population of inter-
est can be expressed as E[Y(n,0)] — E[Y(n',0')] in the
four-arm randomized controlled trial. Using E[Y (', 0)],
the total effect can be decomposed into the separable direct
effect (SDE) and the separable indirect effect (SIE). as
follows:

Definition 3
SDE(n') £ E[Y(n',0)] = E[Y(r,0)].
SIE(0) £ E[Y(n,0)] — E[Y(n',0)].

Note that E[Y(n’,0)| is a hypothetical quantity because it
cannot be observed even partly in the current data. Alter-
natively, the total effect can be also decomposed using
E[Y(n,0')], as below:

Definition 4

SDE(n) £ E[Y(n,0)] - E[Y (n,0')].
SIE(0') 2 E[Y(n,0")] = E[Y(n',0')].

Like Definitions 1 and 2, Definitions 3 and 4 are based on
the counterfactual framework, which is completely gen-
eral in terms of the models that it can accommodate. In
this article, we use Definition 3 for the separable direct
and indirect effects, which corresponds to Definition 1 for
the natural direct and indirect effects. Note that Y (n’, 0)
and Y (n, o) are (single-world) counterfactuals involving
only N and O, not the mediator M; Robins et al. [16] (p.
747) refer to them as “non-cross-world” counterfactuals.

@ Springer

Unlike the natural direct and indirect effects and the con-
trolled direct effect (defined later), the separable direct
and indirect effects do not require reference to counter-
factuals indexed by m (e.g., Y(a, m)). Recent studies have
also discussed separable effects in other contexts, such as
competing events [46—49] and the generalized frontdoor
formula [50].

Nonparametric Structural Equations for Separable
Effects

Although separable effects are often explained using single-
world intervention graphs under the FFRCISTG models [39,
51], we use NPSEM-IE and causal DAGs to highlight the
differences and similarities between natural effects and sepa-
rable effects. Using the same reasoning as for natural direct
and indirect effects, Fig. 4a implies the following nonpara-
metric structural equations for the observable (or factual)
variables A, N, O, M, and Y:

A =fA(£A) = gA('SA)’

N =fy(A) = gy(e4)

0 =fo(A4) = go(£4).

M sz(N’ 5M) = gM(EA"EM)’

Y =fY(0,M,eY) = gY(eA,eM,ey).

Note that, because of the deterministic relationships
between A, N, and O, we do not consider error terms €y,
or g,; rather, the separable components N and O are gov-
erned by the error term &, via the exposure A, such that
gn(€a) = 80(€a) = ga4(€4), and hence, fy(A) = fp(A) = A
in the observed data.

Following the same logic, the following nonparamet-
ric structural equations for the potential outcomes can be
obtained:

N(a) = O(a) = a (Va),
M(n,0) = M(n) =fM(n, £M) = g;l(n, £M) (Vn, o),
Y(n,0) =fy (0, M(n, o), £Y) = g;(n, 0, &y, £Y) (Vn, 0),

where N(a) and O(a) denote the potential outcomes of N
and O, respectively, if, possibly contrary to fact, there had
been interventions to set A to a. Note that the first equation,
N(a) = O(a) = a, indicates the deterministic relationships
between A, N, and O [16]. Note also that, because we assume
that O is not a cause of M for every individual, we can write
M(n,0) as M(n). This is an individual-level assumption,
sometimes referred to as the “isolation assumption” (see
Online Appendix D for further discussion) [46]. Figure 4b
presents a causal diagram incorporating the potential out-
comes of M and Y, as well as the error terms for A, M, and
Y. As mentioned above, there are no error terms €, or £g. As
indicated in the nonparametric structural equations for the
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potential outcomes, arrows exert from M(n) to Y(n, 0) and
Y(n,o'). Similarly, arrows exert from M(n’) to Y(n’, 0) and
Y(n',0). These are the primary differences between Figs. 1b
and 4b. However, there are also some similarities between
them; a total of three arrows go to M and a total of six arrows
go to Y. This point is related to the fact that, although we
consider interventions on A and M in the natural direct and
indirect effects, we consider interventions on N and O in the
separable direct and indirect effects.

Finally, note that, if we implement interventions on N
and O in a future (actual) trial, the nonparametric structural
equations for the observable variables will become

N =fy(en) = gx(en)-

0 =f5(50) = gg(ea),

M =fM(N, eM) = g;;‘(eN,eM),

Y =fy(0v M,ey) = 8;* (6N’80’£M’ 5Y)7

which are completely different from the previous ones. How-
ever, the nonparametric structural equations for the potential
outcomes become

{ M(n,o0) = M(n) =fM(n, 6M) = g;l(n, 6M) (Vn, o),
Y(n,o0) =fY(0, M(n, 0),6Y) = g;(n, o, £M,£Y) (Vn, o),

which are identical to the nonparametric structural equations
for the potential outcomes of M and Y in the current trial;
this shows that a similar discussion applies in a future trial,
where, unlike the current trial, (N, O) = (a, a ) can be imple-
mented (Va, a’) [52]. In the following discussion, although
we assume that a future trial could be designed to apply
interventions separately to the separable components N and
O, we only observe the value of A.

Identification of Separable Effects

Unlike natural direct and indirect effects, because sepa-
rable effects are defined without relying on any cross-
world quantities, they are claimed to be identifiable under
assumptions that are testable in principle [15]. Regarding
the identification condition for the separable direct and
indirect effects, note that the following three assumptions
hold in Fig. 4b:

(Y(n,0),M(n,0)) L (N,0) (¥n,o0), (13)

N(a) = O(a) = a (Va),

M 1 O|N, (14)

Y L N|(0, M). s)

Assumptions (14) and (15) trivially hold in the observed
data because N = O. In a future trial where N and O are
separately intervened, assumptions (14) and (15) are test-
able [52]. The fact that these assumptions hold in both the
observed data and future trial in the same population ensures
that E[Y(n’,0)] in the future trial is identifiable from the
observed data. This is consistent with the discussion in the
last paragraph of the previous section. Under assumptions
(13) to (15), E[Y(n’, 0)]is identified as

E|Y(n,0)] = Y E[Y|A=a,M =mP(M =m|A=d),

which is identical to the identification formula for
E|Y(a,M(d"))], and the separable direct and indirect effects
are identified and given by the empirical expressions (see
Online Appendix E). As explained in Online Appendix F,
these effects are identified under weaker assumptions. The
positivity assumption is addressed in footnote b of Table 1.
When there is a common cause H of the mediator M and the
outcome Y, the separable direct and indirect effects in the
subgroup with H=h are similarly identified and given by the
empirical expressions, and the separable direct and indirect
effects in the total population are obtained by marginalizing
them over H=h.

Next, we consider situations in which there is an expo-
sure-induced mediator—outcome confounder L. Following
Robins et al. [16], we consider three scenarios. First, we
consider a scenario in which N is a parent of L, but O is not,
as described in Fig. 5a. In this case, we obtain the follow-
ing nonparametric structural equations for the observable
variables:

A=f, (£A) =8a (5A)’

N = fy(A) = gy(e4).

0 =fy(A) = go(£4)

M :fM(N’L’EM) ng(eA’eL’eM)’
L=fL(N’6L) sz(gA’eL)’

Y =fY(O,M,L,sY) = gy(eA,eM,sL,ey).

A

L

Accordingly, the following nonparametric structural equa-
tions for the potential outcomes can be obtained:

M(n,0) = M) =fy, (n, L(n), sM) = g;I (n, sL,eM) (Vn, o),
L(n,0) = L(n) = f,(n.€,) = g; (n.€,) (¥n,0),
Y(n,o0) =fy(0,M(n, 0), L(n,0), sy) =gy (n, 0,€), €, gy) (Vn, o),
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Fig.5 a A causal directed acy- a)
clic graph (DAG) with exposure
A, mediator M, and outcome

Y, where A is assumed to be
decomposed into two separable
components N and O, and an
exposure-induced mediator—out-
come confounder L is present.
We consider a scenario in which
N is a parent of L, but O is not.
The bold arrows from A to N
and O indicate deterministic
relationships. b A causal DAG
incorporating the potential out-
comes as well as error terms

&M €L

LT

Mm) M@®') L) _Ln")

AR

A > N
0

where L(n, 0) denotes the potential outcome of L if, possibly
contrary to fact, there had been interventions to set N to n
and to set O to 0. Because we assume that O is not a cause of
L for every individual in this setting, we can write L(n, 0) as
L(n). Figure 5b shows these relationships visually, in which
the following assumptions hold:

(Y(n, 0),L(n,0),M(n, o)) 1L (N,0) (vn,o0), (16)

M
(n,0")
S, Ve

L
Y(n,o0)
&y
Y
Y(n',0")

M 1 0|(L,N), (17)
Y L N|(L,M,0), (18)
L 1L O|N. (19)

Under assumptions (16) to (19), E[Y(n’, 0)] is identified as

E|Y(n,0)] = Y ElYIM=mL=1LA=alP(M=m|L=1A=d)P(L=1A=d),
m,l

and the separable direct and indirect effects are identified
and given by the empirical expressions (see Online Appen-
dix G). As explained in Online Appendix H, these effects are
identified under weaker assumptions.

Next, we consider a scenario in which O is a parent of L,
but N is not, as described in Fig. 6a. In this case, we obtain
the following nonparametric structural equations for the
observable variables:

@ Springer
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A=fy(es) = galea)
N =fyA) = gN<5A)v
J 0= Fol) = go(e4):
M sz(N’L’ 5M) = gM(fA’fu ‘SM)’
L =fL(0’ EL) = gL(£A’5L)’
Y =fY(0,M,L,£Y) = gY(sA,eM,eL,ey).
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Fig.6 a A causal directed acy- a)
clic graph (DAG) with exposure
A, mediator M, and outcome

Y, where A is assumed to be
decomposed into two separable
components N and O, and an
exposure-induced mediator—out-
come confounder L is present.
We consider a scenario in which
O is a parent of L, but N is not.
The bold arrows from A to N
and O indicate deterministic
relationships. b A causal DAG
incorporating the potential out-
comes as well as error terms

b)

€A

A > N M L
\OC_/

/%/ASMf %& \

M(n,0) M(n,0") M(n',0) M(n',0") L(0)

Accordingly, the following nonparametric structural equa-
tions for the potential outcomes can be obtained:

N(a) = O(a) = a (Va),

M(n,0) = fy (n, L(n,0), eM) = g;’;/[(n, 0,€;, eM) (Vn, o),
L(n,0) = L(o) =f; (0, eL) = gz(o, EL) (Vn, o),
Y(n, o) =fy(0, M(n, o), L(n,0), ey) = g’; (n, 0,&y, €L, ey) (Vn, o).

Because we assume that N is not a cause of L for every indi-
vidual in this setting, we can write L(n, o) as L(o). Figure 6b
shows these relationships visually; this figure is slightly
more complicated than Fig. 5b because M is influenced by
both N and O (via L), and we draw four potential outcomes
of M. In Fig. 6b, the following assumptions hold:

(Y(n,0),L(n,0),M(n,0)) L (N,0) (Vn,o0), (16)

M 1 O|(L,N), (17)
Y 1L N|(L,M,0), (18)
L1 N|O. (20)

Under assumptions (16), (17), (18), and (20), E[Y(n’, 0)] is
identified as

E[Y(n,0)] = Y EIYIM =m,L=1LA=alP(M=m|L=1A=d)P(L=I|A=a),

m,l
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and the separable direct and indirect effects are identified
and given by the empirical expressions (see Online Appen- A=y (5A) =84 (5A) ’
dix I). As explained in Online Appendix J, these effects are N =fy(A) = gy ()
identified under weaker assumptions. J 0 = fo(A) = go(€4),
Finally, we consider a scenario in which both N and O lli/l—sz AZ;]N ’OL:E 51‘>4 )_ = gélflg (52’ Z;L’ En )7
are parents of L, as described in Fig. 7a. In this case, we P gﬁ A>TL)»
obtain the following nonparametric structural equations for Y=fy(0.M.L, EY) =8 <5A’ Em- €L SY)'
the observable variables:

L

Accordingly, the following nonparametric structural equa-
tions for the potential outcomes can be obtained:

N(a) = O(a) = a (Va),

M(n, o) =fM(n, L(n,0), sM) =gy (n, 0,€;, sM) (Vn, o),

L(n, 0) :fL(n, o, eL) = gz(n, o, eL) (Vn, o),

Y(n, o) =fY(0, M(n, o), L(n,0), eY) = g;‘,(n, 0,€y, €L, 6Y) (Vn, o).

Figure 7b shows these relationships visually; this figure is (Y(n,0),L(n,0),M(n,0)) 1L (N,0) (Vn,0), (16)
even more complicated than Fig. 6b because L is influenced
by both N and O, and we draw four potential outcomes of L.

In Fig. 7b, the following three assumptions hold: M 1 0|(L,N), an

Fig.7 a A causal directed acy- a)
clic graph (DAG) with exposure

A, mediator M, and outcome

Y, where A is assumed to be

/’\)
A —> N M L
decomposed into two separable
components N and O, and an
exposure-induced mediator—out-
come confounder L is present.
We consider a scenario in which
both N and O are parents of L. 0 ———Y
The bold arrows from A to N
and O indicate deterministic

relationships. b A causal DAG
incorporating the potential out-
comes as well as error terms

b)

€A M €L

S~

M(n,0) M(n,0") M(n',0) M(n',0") L(n,0) L(n,0") L(n',0) L(n',0")
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Y L N|(L, M, 0). (18)

However, because there are direct paths N - Land O — L
in Fig. 7b, the following assumptions do not generally hold:

L 1 O|N, 19)

L 1 NJoO. (20)

Therefore, when L has both N and O as parents, E[Y (n’,0)]
is not generally identified from the observed data, and the

Table 1 Comparison of natural effects and separable effects

separable direct and indirect effects cannot generally be
identified.

Philosophical Contrasts: Causation
and Manipulation

We have contrasted natural effects and separable effects in
the context of mediation, each of which has its own advan-
tages and important considerations (Table 1). Despite some
similarities, the two approaches differ fundamentally, with
these differences likely rooted in contrasting philosophical

Natural direct and indirect effects

Separable direct and indirect effects

Definitions NDE 2 E[Y(a,M(a))] — E[Y(a’,M(a")]
NIE £ E[Y(a, M(a))] - E[Y(a, M(a))]
Counterfactuals “Cross-world” counterfactual (e.g., ¥(a, M(a"))
Required properties Positivity

Consistency®

Compositiond

Well-defined intervention on M

Sufficient Y(a,m) L A (Va,m) (1)

SDE 2 E[Y(n',0)] — E[Y(n’,0")]

SIE £ E[Y(n,0)] — E[Y(n',0)]

“Non-cross-world” counterfactual (e.g., Y (n',0))
Positivityb

Consistency®

A = N = 0 in the observed data

Each separable component can be intervened separately.

(Y(n,0),M(n,0)) L (N,0) (vn,0) (13)

independence
conditions for

identification® (when

Y(a,m) L M(a)|A=a (Va,m) (2)
M(a) L A(Va) (3)
Y(a,m) L M(a') (Va,a’,m) (4)

MLO|N (14)
Y L N|(0O,M) (15)

c=9)

Identifying formulae

E[Y(a,M(a))] = Z E[Y|A=a,M =m]P(M =m|A = a’) E[Y(n,0)] = Z E[Y|A=a,M =m]P(M =m|A = a')

Advantages Causal reasoning based on DAGs and d-separation of the Makes questions of mediation empirically testable in future

observed variables suffices. randomized controlled trials.
Does not require considering the separable components, each of Does not require reference to counterfactuals indexed by m
(e.g., Y(a,m)).

FFRCISTG models

which can be intervened separately.
Commonly-used NPSEM-IE
causal models
“No causation without manipulation”

Philosophical dicta “Causation first, manipulation second”

DAG: directed acyclic graph, FFRCISTG: finest fully randomized causally interpretable structured tree graph, NDE: natural direct effect, NIE:
natural indirect effect, NPSEM-IE: nonparametric structural equation models with independent errors, SDE: separable direct effect, SIE: separa-
ble indirect effect

*We consider an exposure A, a mediator M, and an outcome Y. We also consider that the exposure A can be decomposed into two separable com-
ponents N and O, where the separable component N directly affects M but not Y; by contrast, the separable component O directly affects ¥ but
not M. See Definitions 1 and 3 and the main text for details. Note that NDE and NIE here correspond to PDE and TIE, respectively, in the main
text. SDE and SIE here correspond to SDE(#) and SIE(0), respectively, in the main text

In the observed data where A = N = O, no individual has data (N,0) = (n’,o), and positivity for (N, O) = (n’, 0) does not hold. However, the
mediational g-formula is a function of the observed data distribution only because N = n’ if and only if A = ¢’ and O = o if and only if A = a.
See Technical Point 23.2 of Hernan and Robins[18]

“Pearl [70] argues that consistency is a theorem in the logic of counterfactuals, whereas Robins and Richardson [15] explain that the FFRCISTG
model satisfies the consistency assumption

dComposition is needed not for identification but for interpretation

“Assumption (2) is equivalent to Y (a,m) 1L M|A = a (Va, m) under the consistency assumption. Regarding assumption (13), the follow-
ing equivalence relationship holds by the weak union and decomposition graphoid axioms (=) and the contraction graphoid axiom (<) [14]:

(Y(n, 0),M(n, 0)) 1 (N,0) (Vn,0) & (Y(n, 0) L (N,0)|M(n, 0)) (Vn,0) A (M(n, o) L (N, 0)) (vn,0)
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perspectives on causation and manipulation. One key dis-
tinction lies in the role of experimental intervention in estab-
lishing causal relationships. Recall that experiment is one of
the nine Bradford Hill viewpoints [53].

Some researchers may argue that genuine causal infer-
ences are only possible if certain variables can be carefully
manipulated, asserting an ontological primacy of manipula-
tion relative to causation. This perspective is often encap-
sulated by the dictum “no causation without manipulation”
[54], emphasizing that causation should be understood
through experimental control and intervention. From this
standpoint, the separable effects are particularly valuable
because they align with the principle that mediation should
be empirically testable in future trials. In this context, the
target trial framework has been proposed as a way to formal-
ize causal inference by structuring observational analyses
around the design principles of a hypothetical randomized
experiment [55]. This approach reinforces the idea that
causal questions should be framed in a way that facilitates
empirical validation through intervention-based studies.
When the counterfactual outcomes are not sufficiently well
defined, observational data may still be quite useful for non-
causal prediction [18, 56].

Others may argue that whereas manipulation and experi-
ments play a crucial role in scientific inquiry, cause—effect
relationships are ultimately governed by natural laws,
many—if not most—of which extend beyond human con-
trol, asserting an ontological primacy of causation relative
to manipulation. From this perspective, scientific progress
has often been driven by uncovering these natural laws
through careful observation, logical reasoning, and statisti-
cal inference, even in the absence of direct experimental
manipulation. This perspective may be summarized by the
dictum “causation first, manipulation second” [14] (p. 43),
suggesting that the existence of causal relationships does not
necessarily depend on our ability to manipulate variables
experimentally. Within this framework, natural effects may
provide valuable insights into causal mechanisms, even if we
must consider the cross-world independence assumptions.
In this context, the “ladder of causation” was introduced as
a conceptual framework that categorizes causal reasoning
into three hierarchical levels: associational, interventional,
and counterfactual [57]. This hierarchy underscores the idea
that causality extends beyond experimental manipulation,
supporting the use of natural effects as a means of explor-
ing mediation and causal pathways within complex systems.

Additional Remarks on Other Effects

Before concluding this review article, it is worth
briefly highlighting two types of effect, which can be
identified even in the presence of an exposure-induced

@ Springer

mediator—outcome confounder. The first is the controlled
direct effect. Although natural direct and indirect effects
may be of greater interest in evaluating the action of vari-
ous mechanisms and the importance of different pathways
as well as for effect decomposition, the controlled direct
effect is often of greater interest in policy evaluation.
The controlled direct effect (CDE) of A on Y, setting the
mediator M at a specific level m, is defined as follows
[12, 13]:

Definition 5

CDE(m) £ E[Y(a,m)] — E[Y(d',m)],

which may vary across different levels of m. Note that
indirect effects cannot be defined in a similar manner, and
the difference between the total effect and the controlled
direct effect cannot generally be interpreted as an indirect
effect [29, 58]. The controlled direct effect is identifiable
in the settings depicted in Figs. 1, 2, and 3. Specifically,
this effect can be identified under assumptions (1) and (2)
in Fig. 1b, assumptions (1) and (5) in Fig. 2b, and assump-
tions (1) and (10) in Fig. 3b (see Online Appendix K). Note
that the natural direct effect and the controlled direct effect
coincide when there is no interaction between the exposure
and mediator. On a related issue, the proportion eliminated
has also been proposed as a policy-relevant proportion for
direct effects [59], which is defined on the difference scale
as ((ElY@] - E[Y(d')]) = (E[Y(a,m)] = E[Y(a'.m)]))/
(E[Y ()] —-E [Y (a’ )] ) Further discussion on the controlled
direct effect and the proportion eliminated can be found in
the related literature [59-61].

As for the second effect, when there is an exposure-
induced mediator-outcome confounder, an alternative
approach is to consider randomized interventional analogs
of the natural direct and indirect effects [38, 62, 63]. Appar-
ently, these effects first appeared in Didelez et al. [64], and
they are often denoted interventional direct and indirect
effects, although some authors also use the label stochastic
effects, which is short for stochastic interventional effects
[65]. The interventional direct and indirect effects (IDE and
IIE, respectively) are defined as follows:

Definition 6

IDE(d') £ E[Y(a,G(d'))] - E[Y(d',G(d"))].
NE(a) £ E[Y(a, G(a)] - E[Y(a,G(d))],

where G(a) denotes a random draw from the distribution of
the mediator among those with exposure status a. Alterna-
tively, the interventional direct and indirect effects can be
also defined as follows:



Current Epidemiology Reports (2025) 12:20

Page150f19 20

Definition 7

IDE(a) £ E[Y(a, G(a)] - E[Y (', G(a))],
IE(d') 2 E[Y(d',G()]| - E[Y(d',G(d"))].

Note that the interventional direct and indirect effects
decompose not the total effect but the overall effect (i.e.,
E[Y(a,G(a))] - E[Y(a’,G(a'))]) [62]. The interventional
direct and indirect effects are analogs arising not from fix-
ing the mediator for each individual to the level it would
have been under a particular exposure but rather from fix-
ing it to a level that is randomly chosen from the distribu-
tion of the mediator among all those with a particular expo-
sure [62]. In other words, unlike natural direct and indirect
effects, interventional direct and indirect effects are contrasts
of interventions that set the exposure to a specific value and
the mediator distribution to a specific distribution; thus, it is
not meaningful to talk about interventional direct and indi-
rect effects for the individual [4]. Even in the presence of an
exposure-induced mediator—outcome confounder L, inter-
ventional direct and indirect effects are identifiable from the
data if—in addition to assumptions (1) and (10)—assump-
tion (3) holds, as in Fig. 3b [38] (see Online Appendix L).
Furthermore, even in the presence of an exposure-induced
mediator—outcome confounder L, if assumption (4) holds in
addition to assumptions (1), (3), and (10), the interventional
direct and indirect effects are identified and become iden-
tical to the natural direct and indirect effects, respectively;
the overall effect also becomes identical to the total effect.
However, recall that assumption (4) does not generally hold
in Fig. 3b, and when an exposure-induced mediator—outcome
confounder L is present, it becomes challenging to consider
specific causal structures that satisfy assumptions (1), (3),
(4), and (10); see Online Appendix L for further discussion.
Nguyen et al. [4] emphasized the importance of defining
interventional effects more broadly to better align with the
scientific research question, noting that the controlled direct
effect belongs to the broader class of interventional effects;
for further details, see Nguyen et al. [4].

Conclusions

To conduct meaningful mediation analysis, it is crucial
to clearly define the research question of interest, and the
choice of methods should align with the nature of the ques-
tion and the assumptions researchers are willing to make
[66, 67]. For example, although separable effects are defined
without relying on any cross-world quantities and are
claimed to be identifiable under assumptions that are testable
in principle [15], researchers may still find it challenging

to envision such a future trial in certain research settings.
Indeed, as admitted by Robins et al. [16] and Hernan and
Robins [18], although rare, cross-world counterfactuals can
at least be conceptually observed in situations where a valid
crossover trial is feasible. Regardless of whether one consid-
ers natural or separable effects, the estimated causal effect
may well be interpreted as the effect of an intervention that
has not actually been implemented in the observed data. In
this regard, examining the underlying philosophical perspec-
tives on causation and manipulation can provide valuable
insights.

Ultimately, mediation is inherently a causal concept, and
its validity relies on a well-defined causal structure and the
justification of assumptions for identification. Comparing
and contrasting natural effects and separable effects provides
valuable insights into the foundations of mediation analysis,
deepening our understanding of both its theoretical basis and
practical implications.
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position that yield quantities interpretable as direct and
indirect effects, which can be identified from data even
in the presence of an exposure-induced mediator—out-
come confounder.

Appendix

Regarding assumption (2), some researchers have provided
the following alternative assumption [1, 29, 62, 68, 69]:

Y(a,m) L M|A (WVa,m), (2%)

which is stronger than assumption (2). To understand this,
note that the following equivalence relationship holds:

Y(a,m) L M|A (WVa,m) (2%)
o (Y(a,m) L M(a)|A =a) (Va,m) (2)

A(Y(a,m) L M(a")|A=a') (Va,a’,m).

On the right-hand side, the former condition, assumption
(2), is based on “single-world” independence whereas the
latter represents “cross-world” independence; like assump-
tion (2), this holds in Fig. 1b because we use NPSEM-IE.
This discussion demonstrates that assumption (2*) entails
“cross-world” independence.

In the main text, we use assumption (2) to emphasize
that assumptions (1) to (3) pertain to “single-world” inde-
pendence whereas assumption (4) represents “cross-world”
independence. A similar discussion applies to assumptions
(6) and (10).
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