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A surrogate-assisted multi-objective evolutionary algorithm is proposed for simultaneous optimization of robot
motion planning and layout design in robotic cellular manufacturing systems. A sequence-pair is used to
represent the layout of components in a robotic cell to avoid overlapping in the evolutionary computation.
The robot motion planning with Rapidly exploring Random Trees Star (RRT*) is applied to compute the total
operation time of a robot arm for each layout. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used
to minimize the total required layout area and the operation time for a robot arm. The proposed surrogate
model can estimate the robot’s operation time with 98% of accuracy without explicit computations of the
motion planning algorithm. The experimental results with a physical 6 Degree of Freedom (DOF) manipulator

show that the total computation time is approximately 1/400, significantly shorter than the conventional

methods.

1. Introduction

Cellular manufacturing has several advantages, including improved
system efficiency and quality of products, reduction in setup time,
work-in-process inventory, and material flow (Salimpour et al., 2021).
Robotic cellular manufacturing systems (RCMSs) are a new type of
manufacturing system in which one or more robots and accessory
equipment are involved to conduct several assembly operations that
had been performed by human operators in conventional cellular man-
ufacturing systems (Izui et al., 2013).

The optimization of layout design and motion planning for robots
has great economic significance for RCMSs, such as in reducing to-
tal costs and necessary areas, maximizing throughput, and enhancing
efficiency to exploit the advantages fully. Traditional layout planning
methods highly rely on the planner’s knowledge and the layout design
of robotic cells and motion planning for robot arms are often separated.
In the layout design stage, the positions of robots and workstations are
determined in a robotic cell. Then, the motion planning is conducted on
the condition that the layout design is fixed. In those cases, the dynamic
performance of robotic motion planning is sometimes neglected at the
layout design stage. As a result, it is difficult to find an optimal layout
design and optimal motion planning considering the manipulability of
the robot arms reducing total cycle time within a minimum necessary
area. Therefore, it is important to develop an efficient method to find
the optimal layout design method considering motion planning for the
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RCMSs. However, the computational burden of optimizing both layout
design and motion planning is extremely high because the layout design
problem without motion planning is Nondeterministic Polynomial (NP)
hard. Simulation-based optimization methods sometimes require more
than two or three days to derive near-optimal solutions. In such cases,
it is difficult to obtain the design and motion planning under different
configurations. Once the approximation of robot operating time is
used, the layout cannot be executed in real-world environments. The
acceleration of computation time for layout design and motion planning
without loss of precision is highly required. It motivates the surrogate-
assisted motion planning and layout design of RCMSs proposed in this
paper.
Simulation-based  optimization approaches Genetic
Algorithms (GA) have been utilized to solve layout optimization prob-

lems (Leiber et al., 2022). In most cases, the evolutionary computation

using

of motion planning for each layout design requires extensive computa-
tional efforts. The sequence-pair proposed by Murata et al. (1996) for
Very-Large-Scale Integration (VLSI) layout design has been effectively
used to represent the geometric relationships among modules for layout
design problems. A major advantage is that it can eliminate the over-
lapping between modules. Several previous studies have discussed the
applications of the sequence-pair for RCMSs. Izui et al. (2013) proposed
a multi-objective layout optimization method for the RCMSs using
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sequence-pair representation. The objectives are to minimize the layout
area and the operation time while maximizing the manipulability.
Along the same lines, Lim et al. (2017) have proposed multi-objective
hybrid algorithms for layout optimization problems. These previous
studies have successfully obtained the Pareto set of optimal solutions.
No previous studies have reported the simultaneous optimization of
robotic cell layout and precise motion planning at the same time.
Generally, the simultaneous optimization of layout design and mo-
tion planning generally requires extensive computational efforts. A
surrogate-assisted optimization is required to realize the simultaneous
computation within a realistic computation time for the simultaneous
optimization.

This paper presents a surrogate-assisted simultaneous motion plan-
ning and layout optimization method for RCMSs. The sequence-pair is
used to represent the layout optimization of the robotic cell. For a given
sequence-pair, motion planning is conducted to compute the total oper-
ation time. To reduce the computational effort of the motion planning
algorithm, machine learning models are employed to estimate a precise
operation time to complete the task. Since a certain layout design
candidate may not be a feasible solution, the feasibility of a sequence-
pair is also evaluated in the motion planning process. Rapidly Exploring
Random Trees (RRT) are used to search for the optimal motion. To
solve the multi-objective optimization problem, a surrogate-assisted
Non-dominated Sorting Genetic Algorithm II (NSGA-II) is proposed to
derive the Pareto optimal solution. The main contributions of the paper
are as follows.

» The multi-objective optimization of simultaneous motion plan-
ning and layout design is achieved for RCMSs to minimize the
area and the total operation time. Detailed collision-free motion
planning for a single robot arm is incorporated into the design of
robot cells.

Surrogate-assisted multi-objective optimization method can sig-
nificantly reduce the computation time, which previously took
several hours.

The proposed method is applied to a 6 Degree of Freedom (DOF)
robot manipulator. The experimental results suggest the effective-
ness of the proposed algorithm.

This study focuses on the simultaneous optimization of layout de-
sign and motion planning for RCMSs. Research into Layout design of
cellular manufacturing systems (CMSs) has a long history. Examples
of previous studies include several works (Akturk and Turkcan, 2000;
Kia et al., 2012; Bayram and Sahin, 2016; Feng et al., 2018; Forghani
and Fatemi Ghomi, 2020). With the development of industrial robots,
the interest in efficient layout design and motion planning for RCMSs
has increased. The RCMS design problem determines the positions
of robots and workstations in a robotic cell. Our research group has
extended this problem to various applications, such as the design of
pick-and-place systems in production lines (Nonoyama et al., 2022),
packaging systems in logistics (Mikyu et al., 2024), and task planning
in service robots (Kawabe et al., 2024). Given the broad applicability
of RCMS optimization, this study addresses the general problem of
layout design and motion planning rather than focusing on a specific
application. The proposed approach provides a method to efficiently
solve the optimization problem of RCMSs within a limited computation
time, which is a significant contribution to the field of manufacturing
systems and expected to be widely applicable to various industries.

The remaining part of this paper is organized into the following
sections. Section 2 describes the literature review. Section 3 introduces
integrated motion planning and layout design problem for RCMSs.
Section 4 presents the surrogate-assisted evolutionary optimization
algorithm for simultaneous optimization using accurate robot operation
times. The experimental results using a physical robot manipulator are
shown in Section 5. Section 6 summarizes the conclusions and indicates
future research directions.
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2. Literature review

Related references are classified into cellular manufacturing sys-
tem optimization, RCIMs, sequence pair representation, and surrogate-
assisted optimization.

2.1. Cellular manufacturing system optimization

Akturk and Turkcan (2000) have proposed a local search heuristic
to simultaneously optimize the cell formation problem and the layout
problem. Kia et al. (2012) have proposed a mixed integer non-linear
programming (MINLP) model for simultaneously optimizing cell for-
mation, inter-cell and intra-cell layout problem with dynamic CMS.
Kia et al. (2012) and Bayram and Sahin (2016) have proposed two
hybrid meta-heuristic algorithms for the dynamic CMS design problem
showing that their approaches have better performance in terms of
computation time and solution quality. Feng et al. (2018) have also
focused on the integrated cell formation, inter- and intra-cell layout
problem. Since the two-dimensional coordinate is used to represent
the locations of machines, the components in cells can have different
shapes. Forghani and Fatemi Ghomi (2020) have introduced the virtual
CMS to the integrated CMS optimization problem.

Most of these previous studies assume that the processing times
of parts for machines are known, and the single or multi-row layout
of equal area facilities is considered. However, facilities may have
different shapes in CMSs. In traditional CMSs, families of parts are
produced by a single line or cell of machines operated by machin-
ists (Helms, 2021). Recent developments in the field of industrial robots
have led to a growing interest in RCMSs. In an RCMS, since the optimal
robot motions change with the intra-cell layout, it is unrealistic to
assume that the processing time is constant. Therefore, it is necessary
to simultaneously solve the motion planning and layout design problem
in RCMSs.

2.2. Robotic cellular manufacturing system optimization

Nonoyama et al. (2022) have focused on the optimal motion plan-
ning and layout design problem. Since their study only involves a robot,
a conveyor belt, and workpieces, the non-overlapping constraint can
be easily implemented by restricting the range of the robot’s feasi-
ble locations. However, since CMSs may involve multiple robots and
workstations, it is difficult to handle the non-overlapping constraints
when using the coordinate representation. Shiller (1989) developed an
application for the design of work cells and the optimization of robot
operations. However, their formulation considers the pre-defined task
of planning robot movements through multiple waypoints, with the
focus primarily on motion planning. The work cell design focuses solely
on arranging obstacles in a way that prevents interference with the
robot, and it is not sufficient as a simultaneous optimization method
for both placement and motion planning.

2.3. Sequence-pair representation

The sequence-pair proposed initially by Murata et al. (1996) for
VLSI layout design, can be used to effectively represent the geometric
relationships among modules for layout designs. A major advantage is
that it can eliminate the overlapping between modules. Another ad-
vantage is that sequence-pair can also handle the unequal-area facility
layout problem. It has been applied in various fields, such as facility
layout problems (Liu and Meller, 2007; Meller et al., 2007), berth
allocation problems (Mohammadi and Forghani, 2019) and scheduling
problems (Kozik, 2017). During the last decade, several researchers
have applied sequence-pair representation in the design of CMSs. Izui
et al. (2013) have proposed a multi-objective optimization model with
three important decision criteria for robot CMSs design, including
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Table 1

Related works on cellular manufacturing system optimization.
Reference CF Inter-cell Intra-cell Facilities Operation Objective Motion Real Algorithm

layout layout time planning robot

Kia et al. (2012) v 4 4 Equal Constant Single - - Heuristic
Akturk and Turkcan (2000) v v v Equal Constant Single - - SA
Bayram and Sahin (2016) v v v Equal Constant Single - - HMLP*
Feng et al. (2018) v v 4 Unequal Constant Single - - HMLP
Forghani et al. (2020) v v v Unequal Constant Single - - SA, GA, MA
Izui et al. (2013) - - v Unequal Estimation Multiple - - NSGA-II
Lim et al. (2016) - - v Unequal Estimation Multiple - - HMP
Suemitsu et al. (2016) - - v Unequal Estimation Multiple - - NSGA-II
Lim et al. (2017) - - v Unequal Estimation Multiple - - HM
Kawabe et al. (2022) - - v Unequal Accurate Multiple v v NSGA-II
Current study - - v Unequal Data-driven Multiple v v NSGA-II

2 Hybrid Metaheuristics with Linear Programming.
b Hybrid Metaheuristics.

operation time, feasibility of assembly tasks, and layout area. A Non-
dominated sorting genetic algorithm, NSGA-II (Deb et al., 2002) has
been used to solve this problem. Lim et al. (2016) have examined the
performance of sequence-pair and B*-trees (Chang et al., 2000) on the
CMS design problem of Izui et al. (2013). Later, Lim et al. (2017) have
proposed four hybrid algorithms and compared their performance on
the RCMS design problem. On the basis of Izui et al.’s model, (Izui
et al., 2013; Suemitsu et al., 2016) have integrated the task scheduling
problem to the layout design of RCMSs. Forghani et al. (2020) have
proposed two integrated Simulated Annealing (SA) algorithms for an
integrated cell formation and layout design problem. Recently, Kawabe
et al. (2022) have proposed an optimization method for simultaneous
motion planning and intra-cell layout design in RCMSs. Overall, these
previous studies (Izui et al., 2013; Lim et al., 2016, 2017; Suemitsu
et al., 2016) suggest the effectiveness of the sequence-pair represen-
tation in RCMS design problems. All these studies assume that the
operation time for a certain layout can be estimated by the maximum
joint motion time, which is not the exact operation time for a layout in
RCMSs. Kawabe et al. (2022) have successfully developed an integrated
optimization algorithm for motion planning and layout design to obtain
the exact operation time. However, the computation time requires more
than 30.6 h since all the candidate solutions are enumerated in their
algorithm. We summarize the features of the current study and the
related works on cellular manufacturing system optimization in Table
1.

2.4. Surrogate-assisted optimization

Because of the complexity of the CMS design, metaheuristic algo-
rithms are commonly used for the optimization of CMSs as shown
in Table 1. However, to obtain a satisfactory solution for a com-
plex optimization problem, a large number of computations of the
function evaluations are commonly required for metaheuristic algo-
rithms (Tong et al., 2021). In many real-world problems, the function
evaluation is the most time-consuming component of evolutionary al-
gorithms (Coello Coello et al., 2007). Furthermore, multi-objective evo-
lutionary algorithms, such as NSGA-II, may need more execution time
for better performance compared with single-objective evolutionary
algorithms (Coello Coello et al., 2007).

In recent years, researchers have shown an increased interest in
integrating machine learning into metaheuristic algorithms (Karimi-
Mamaghan et al., 2022). Supervised learning, unsupervised learning,
and reinforcement learning are the three main types of machine learn-
ing algorithms. Supervised learning can be used to predict/estimate the
output of a function given input data using a labeled dataset. Super-
vised learning has been used in various fields, such as the remaining
useful life prediction (Zhang et al., 2023a,b). An important applica-
tion of machine learning in metaheuristic algorithms is a functional
approximation, that has been known as surrogate-assisted evolution-
ary algorithms (Jin, 2011). For optimization problems with expensive

objective functions, using a surrogate model may significantly reduce
time, space, and computing costs (Bartz-Beielstein and Zaefferer, 2017).
Also, there has been a growing number of publications focusing on the
real-world applications of surrogate-assisted evolutionary algorithms,
such as regional trauma system design (Wang and Jin, 2021), wind
farm layout optimization (Long and Li, 2020; Li et al., 2022), blast
furnace optimization (Chugh et al., 2017), scheduling problems (Togo
et al., 2022), neural architecture search (Calisto and Lai-Yuen, 2021),
and supply chain management (Liu and Nishi, 2024).

To date, very few studies have investigated the application of
surrogate-assisted evolutionary algorithms in industrial robots. Zhang
and Yan (2021) have developed a surrogate model by using an artificial
neural network to reveal the relations between operation parameters
and the energy consumption of an industrial robot. Genetic algorithms
(GA) have been used to optimize the parameters to minimize energy
consumption based on the surrogate model. A recent study by Liu
et al. (2024) has proposed a surrogate-assisted optimization method
for packing problems in the logistics industry. The surrogate model has
been used to accelerate the computation of the objective function in the
evolutionary algorithm. The results suggest that the proposed method
can significantly reduce the computation time by more than 90% com-
pared to the non-surrogate method in Mikyu et al. (2024). To the best
of our knowledge, this is the first study to implement surrogate-assisted
evolutionary optimization to the RCMSs design problems.

3. Integrated motion planning and layout design problem for
robotic cellular manufacturing systems

3.1. Problem description

This study aims to address the motion planning and intra-cell layout
design problem of RCMSs in a static environment. We focus on the
optimization problem for a robot cell in a two-dimensional space
that consists of a single robot, an assembly table, and multiple parts
boxes. The robot is responsible for moving parts from the boxes to
the assembly table in a predetermined sequence and carrying out the
assembly operations on the assembly table. This study assumes a static
manufacturing environment, where the sequence of assembly tasks is
given in advance.

Let I = {0,1,...,n} be a set of components in a robotic cell which
includes a robot, an assembly table and parts boxes. The robot is
represented by 0, the assembly table is represented by 1, and the parts
boxes are represented by 2,3,...,n. Each component i € I has two
modes, the initial mode and the 90-degree rotated mode which are
represented by k € K, where K = {ini, rot}. Each mode k of component
i specifies its width w¥ and length /¥. For example, w” represents the
width of component 3 in its 90-degree rotation mode. Let A represent
the area of an intra-cell layout of a robotic cell, and T represent the
total operation time required for a robot to complete the assembly task
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Area of a robotic cell

‘{ Robot

=

Hi=4 j=5
Parts box 1=6

Fig. 1. Area of a robotic cell.

Assembly table

which is given as an operation sequence. The objectives are to minimize
the area A and to minimize the total operation time 7. Similar to the
previous studies (Izui et al., 2013; Lim et al., 2016, 2017; Suemitsu
et al.,, 2016), we define A as the minimum area of a rectangle that
can encompass all the components in a robotic cell, as illustrated in
Fig. 1. Here, it is clear that the order of the numbers labeled on each
component does not affect the area of the layout and operation time of
the robot.

Also, the parts boxes are labeled with a number that denotes their
assembly sequence as shown in Fig. 1. To perform the assembly task,
the robot picks up and transports parts from the box with the lowest
numbered label to the assembly table first, and then moves on to the
box with the second-smallest number, and so on, until the parts in the
box with the highest numbered label are transported to the table.

The total operation time T consists of the pick-up time, transport
time, and the assembly time. The cell layout only has a major impact
on the transport time, it is worth noting that our model only considers
the transport time in a robotic cell for an assembly task and the time
for the assembly and pick-up operation is sufficiently small compared
with the transport time for simplicity. We assume that the assembly
sequence is arbitrarily given because the total operation time does not
depend on the assembly sequence. Multiple assembly tasks cannot be
performed during the same time period. All tasks must be performed
as soon as possible after a given task is completed.

Conventional studies did not consider the motion trajectory of the
robot in their layout design problem. However, the determination of
layout design in RCMSs is highly related to the trajectory of mo-
tion planning for the robot. For example, the total operation time
may change depending on the posture and path of the robot and the
positioning of the robot and boxes.

Overall, we state the joint motion planning and intra-cell layout
design optimization problem as follows.

Given parameters

Number and dimensions of boxes, dimensions of the assembly table
and robot, assembly sequence, number of links in the robot, the length
of each link of the robot, and physical parameters to describe the
dynamics of the robot: range of movement of each link, the angular
velocity of each link, the joint angular acceleration of each link, the
mass of each joint, coordinates of the center of gravity of each joint,
moment of inertia of each joint, and gravitational acceleration applied
to the robot.

Decision variables
» Two-dimensional layout of the robot, assembly table, and parts

boxes
» Motion trajectory of the robot

Objective function In the layout optimization, the total required area
and the total operation time are minimized because they are related to
the costs. We use the following two objective functions.

» To minimize the total area A of a intra-cell layout
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» To minimize the total operation time T of the robot for a given
assembly sequence

The operation time 7 has been approximated by the following equation
in Izui et al. (2013) and Suemitsu et al. (2016) without generating a
motion trajectory of the robot.

h i
T = ) max [ML] M

where k is the number of each joint of the robot, v is the maximum
angular velocity of joint kth, and |g;’| is the amount of angular change
of joint kth during ith motion. There is an assumption that the angular
velocity of the robot arm is constant in conventional studies. However,
it does not hold in practice. In this problem definition, the detailed
robot’s operation time is computed when the joint angular velocity is
changed. Determining the precise motion time is challenging because it
involves solving nonlinear and complex dynamics equations when the
initial position and target position of a robot are given. To compute
the motion time, both inverse kinematics and motion planning are
necessary.

Inverse kinematics
These are complex nonlinear equations that take into account ele-
ments such as mass, moment of inertia, and friction.

M(@)4=-Cq.9)q-G@-J(@ Fg, +7 )

where M (q) is the mass matrix of each joint, C(q, ¢) is the Coriolis term,
G(q) is the gravity term, J(q) is the Jacobian of each joint, F, £, is the
matrix of external forces on the robot, and 7 is the torque applied to
each joint. Also, g = [q;, ¢, ...] is the set of each joint angle, ¢ is each
joint angular velocity vector, and g is each joint angular acceleration
vector. The trajectory sequence ¢ = {(¢y.qg). (t1.4;). ..., (tx.qk)} of the
robot arm consisting of the set of each joint g at time ¢ is derived
by a motion planning algorithm. From the trajectory sequence ¢(t, q),
the exact robot operation time 7 is determined from the last 7, in
the trajectory sequence ¢. Solving the dynamic equations represented
by Eq. (2) is required to determine the necessary torque and angular
velocity for each joint.

Motion planning

In motion planning, the calculation of motion time takes into ac-
count the robot’s angular velocity and acceleration. The motion plan-
ning algorithm is utilized to find a collision-free motion planning
at each step of computing an objective function for each individ-
ual in the evolutionary computation. However, It is evident that the
computational complexity would become exceedingly large when the
precise robot motion times are determined for each individual in the
evolutionary computation, Therefore, instead of pursuing precise ana-
lytical solutions, a surrogate model construction is required using deep
learning techniques to accelerate computations.

Constraints

» The robot motions must be feasible without collisions.
» The parts boxes should not overlap with each other

3.2. Mathematical formulation

Let i be the index of the components in a robotic cell, and I =
{0,1,...,n} be the set of components in a robotic cell. Specifically,
the robot is represented by O, the assembly table is represented by
1, and the parts boxes are represented by 2,3,...,n. Let = represent
a layout in a robotic cell and the mode of components represented by
u(w) = (py(n), py (), ..., p,(x)). For all i € I, u;(x) € K. The location
of component i is denoted by (x;(x), y;(x)) where the origins of the x,
y coordinates of the layout is the position of the robot represented by



T. Kawabe et al.

component 0. The length /() and width w,,,, () of a layout can be
obtained by

lmax(”) (max(x (7[) + w(Ml(”))) .

Wiy (T) = [I_lax(y,.(ﬂ) + li/‘x(”))) “
{iel}

The area of a robotic cell can be obtained by

Sarea() = Loy () - Wiy () 5)

Let a binary variable pf[j represent the relative position of component
i and j in direction d, where d € {left,right,behind,ahead}. For
example, p/' = 1 means that component i is placed at the left of j.
Therefore, the coordinates of components must satisfy the following
inequalities:

left (uj (7))

P =12 xim + W < x;(m) (6)

right _ (uj () < 7
P = x;(m) + w; x;(r) 7)
Pf,j'hmd =1=yn)+ liﬂi(”)) < yj(”) (8)
Pl = 1=y )+ 19 < () )

Let ud be a binary variable that represents the component i is placed
at the left of j, and let vdj be a binary variable that represents the
component i is placed at the above of j. In addition, let W and L be
the upper bound of the width and length of the layout, respectively.
Constraints (6)-(9) can be rewritten as (10) and (11).

xi(”) + wEMi(ﬂ)) < xj(”) + W(l — uw_) (10)

Y+ 17 <y + LA = v,)) an

The operation time f,;,,.(7) is calculated by executing a motion
planning. The constraint is that the robot arm does not collide with
itself or with any object in its environment. Then, the integrated
motion planning and layout design problem for RCMSs is formulated
as follows.

min farea(”)’ frime(”) (12)

st x(m+w ™ <x (W F W —u ), VijelLi#] 13)
2@ + 1 <y F L =0, VijELi#) a4
ujtup+v v, 2LV jELI#] (15)

x;(7) + w(”’(”)) S Wy (m), Viel (16)

yi(m) + lf”’(”)) <lpax(@), Viel a

x;(7),yi(m) 20, Viel (18)

U0 €10,1), Vi, jELi# ] 19)

Constraints (15) ensures that the at least one of the binary variables
Uijs Ujis Uy and v;; is equal to 1. Constraints (16) and (17) are the
constraints that the components are placed within the layout area.
Constraints (18) are the non-negativity constraints for the coordinates
of the components. Constraints (19) are the binary constraints for the
relative positions of the components. An industrial application is a
robotic cell layout optimization in small part assembly (SPA) (Zhang
and Fang, 2013). Another practical application is the optimization
of multifunctional cells in multi-robot systems (Nagele et al., 2020).
The efficiency of multi-robot assembly operations is improved through
placement optimization that takes into account the operation time of
the robots.

4. Surrogate-assisted evolutionary algorithm

We introduce a surrogate-assisted evolutionary algorithm for solv-
ing the problem considering the exact robot operation time.

Engineering Applications of Artificial Intelligence 150 (2025) 110530

Fig. 2. An oblique grid for the sequence pair (I',,I_).

4.1. Sequence-pair representation

Sequence-pair representation consists of two related entity
sequences that can be used to determine the relative positions of enti-
ties in a two-dimensional space. It is used to generate the layout of the
robot, assembly table, and parts boxes assuming that all components
are rectangular. Two permutations I', and I'_ are defined and a binary
variable ¢, is introduced to represent the direction of component i.
Given I',,I'_, and ¢;, a unique layout can be generated. For a detailed
explanation of the sequence-pair representation, please refer to Murata
et al. (1996). In the following, we use an example to illustrate the
sequence-pair representation for layout design.

4.1.1. Oblique grid

Consider a sequence pair (I',,I_) with I, = (0,1,2,3,4,5,6,7,8,9,
10,11) and I'_ = (3,7,10,1,8,5,11,2,4,0,9,6). The oblique grid for this
sequence pair is a 12 x 12 grid. We label the vertical and horizontal
lines of the grid with the component numbers in the sequence. Each
point in this grid is the intersection of a vertical line and a horizontal
line, which can be referred as (i, j). Then we rotate the grid by 45
degrees and put each component i at the point (i, i) in the rotated grid.
See Fig. 2 for the resulted oblique grid.

4.1.2. Constraint graphs
Given I', and I'_, the geometric relation of the components can be
determined as follows:

* (Horizontal constraint): component i is to the left of component
j if i is to the left of j in both I', and I'_.

» (Vertical constraint): component i is below component j if i
appears after j in I, and before j in I'_.

Hence, when I, = (...,i,...,j,...) and I_ = (...,i,...,j,...), com-
ponent i is to the left of component j. When I, = (...,i,...,j,...)
and I = (...,j,...,i,...), component i is below component j. We
can generate the horizontal vertical constraint graph based on the
constraint relations between the components.

Let G, = (V,, E,) be the horizontal constraint graph and G, =
(V,, E,) be the vertical constraint graph, where ¥, and V, are the set of
vertices and E, and E, are the set of edges, respectively. The vertex set
V,, includes the starting point s and the endpoint ¢, and all components.
(s,i) and (i,?) are included in E,, and (i, j) € E, if i if and only if i is
to the left of j according to the horizontal constraint. Similarly, the
vertical constraint graph G, can be generated. For our example, the
horizontal and vertical constraint graphs are shown in Fig. 3.

The weight for each node is the width or length of the corresponding
component in the corresponding direction. The starting point s and the
endpoint r have a weight of 0.
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(a) Vertical constraint graph.

(b) Horizontal constraint graph.

Fig. 3. Given corresponding vertical constraint graph (a) and horizontal constraint
graph (b). Directed edges between components represent constraints on the relative
positions of those components.

0 : Robot

1 : Table

3] 5 |10 11

Fig. 4. Arrangement of the corresponding components.

4.1.3. Layout generation

Given the horizontal and vertical constraint graphs, the x-coordinate
of a component i is obtained by solving the longest path problem from
the source s to i in the horizontal constraint graph, and the y-coordinate
of i can be computed by the vertical constraint graph. For the layout
design problem with rotation, the parameter ¢; is used to determine
whether the weight of the node is the width or length of the component.
In our example, the layout of the components is shown in Fig. 4.

4.2. NSGA-II algorithm for optimal layout and motion planning

Recall that = represents the layout of a robotic cell, f,,.,(7) is the
area of the layout, and f,;,,.(7) is the total operation time of the robot
arm. The following definitions are used to define the dominance of
solutions.

Definition 1. A solution x, is said to dominate another solution r, if
and only if the following conditions are satisfied:

° farea(”l) < farea(”2) and ftime(”l) < frime(”2)
° farea(”l) < farea(”2) and ftime(”l) < ftime(ﬂ'Z)

Let P be a set of solutions, where P = {x,,n,,...,7,}. The non-
dominated set P’ is defined as follows:

Definition 2. Among a set of solutions P, the non-dominated set P’
consists of those solutions that are not dominated by any other solutions
in P.

When P include all the feasible solutions, the non-dominated set P’
is called the Pareto-optimal set. The number of solutions of the layout
design problem with n components is (n!)%.
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Theorem 1. The number of solutions of the layout design problem is (n!)2.

The proof of Theorem 1 is omitted because it is straightforward.
Since the search space is large, it is difficult to find the Pareto-
optimal set by exhaustive search. Therefore, we use the NSGA-II (Non-
dominated Sorting Genetic Algorithm II) algorithm to find a non-
dominated set of solutions.

NSGA-II (Deb et al., 2002) is a multi-objective optimization algo-
rithm that aims to find the Pareto front, which represents a set of
non-dominated solutions in a multi-objective problem with multiple
conflicting objectives.

To implement the NSGA-II algorithm for the integrated motion
planning and layout design problem, an important assumption is that
the operation time of the robot arm can be calculated by a function
S (Zinits Ziarger» C) = OT that returns the operation time OT for a robot
arm to move from the initial posture z;,, to the target posture z,,,,,, in
the configuration space C. Furthermore, this study assumes that using
the Rapidly exploring Random Trees Star (RRT*) algorithm can provide
good approximations of the operation time for the robot arm given
enough computation time.

The pseudo-code of NSGA-II is shown in Coello Coello et al. (2007).
The algorithm first generates an initial population of candidate solu-
tions. A candidate solution consists of the set of permutations of I',,
I'_, and binary variables ¢ to represent the layout in the sequence
pair. After the generation of the layout candidate for each gene by
sequence-pair, the motion planning algorithm is executed to obtain
a collision-free path where the layout of the solution is fixed. We
use a sampling-based motion planning algorithm RRT* (Karaman and
Frazzoli, 2011) because the total operation time for a robot arm may
be different according to the layout, initial and final postures, and
environment. NSGA-II then applies genetic operators, such as crossover
and mutation, to create offspring solutions from the parent solutions.
Crossover combines the genetic information of two parent solutions to
create two offspring solutions, while mutation introduces small changes
in the genetic information of a solution. These genetic operators allow
for the exploration of the solution space and the generation of diverse
solutions.

NSGA-II uses a crowding distance measure to select solutions from
the Pareto fronts for the next generation. The crowding distance reflects
the density of solutions in the objective space, and it helps to maintain
a diverse set of solutions by encouraging the selection of solutions that
are farther apart from each other. In addition, NSGA-II carries over the
best solution of the current generation to the next generation, so that
the best solution is not lost in the process of evolution.

The order crossover is a genetic operator used in GA to generate
offspring individuals from two-parent individuals. It selects a range
of genes from the parent individuals and maintains their order while
incorporating the remaining genes from the other parent to generate
a new gene sequence. Specifically, two crossover points are randomly
selected, and the gene sequence between these points is extracted and
copied from parent 1 to the offspring. The remaining genes are then
extracted from parent 2 in order, ignoring any genes that are already
present in the offspring, and inserted into the empty spaces in sequence.
The resulting offspring individual retains the characteristics of the
parent individuals while having a new gene sequence. This crossover
operator is an effective technique for expanding the search space in
genetic algorithms. Mutation plays a key role in the exploration of
the solution space by creating new solutions that are different from the
parent solutions. For binary encoding, mutation flips the value of one
or more bits in the binary string. It helps to introduce diversity in the
population allowing the algorithm to escape local optima and search
for new, potentially better solutions.
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4.3. Motion planning algorithm

We use an RRT* algorithm (Karaman and Frazzoli, 2011), which is a
commonly used motion planning method for robots, to obtain operation
times. In RRT*, a group of neighboring nodes around the extended node
is selected, and the node with the lowest cost is selected to become the
parent node of the new node. First, the tree structure is built as in RRT*.
Then, randomly sample points in the space and extend the tree in that
direction from the nearest node. RRT* generates a set of neighboring
nodes around the extended node and reconstructs the node with the
lowest cost among them as the parent node. The radius for choosing
neighbor nodes is determined by

1
. logN \d
= R —=— R 20
r = min ( N > n (20)

where N is the number of nodes, R is the weight, d is the number of the
dimensions of the state space, and # is the upper bound of the radius.
In this study, R = 0.5, d = 7 (6 axes + end-effector), and # = 0.3. The
length of the edge to be extended at each step is 0.1[m], and the target
posture z,,.,,, is selected as the sampling point with a probability of
20%. The joint angles at each time are obtained by RRT* with Open
Motion Planning Library (OMPL). Then, the total operation time is
computed from the time corresponding to the start and endpoints of the
trajectory for each pick and place trajectory. Also, we include feasibility
as a constraint condition since it is not feasible if the layout exceeds
the maximum reach length of the robot. The RRT* algorithm is widely
known and the time complexity of RRT* is generally considered to be
O(N log N) (Karaman and Frazzoli, 2011).

4.4. Surrogate-assisted NSGA-II

The NSGA-II with RRT* sometimes requires huge computing efforts
because the RRT*-based motion planning is conducted for each indi-
vidual to obtain the total operation time. To reduce the computational
burden of the algorithm, a surrogate-assisted NSGA-II is proposed in
this section.

In the proposed algorithm, the total operation time is estimated
by a surrogate model to reduce the computation time of function
evaluation in NSGA-II. To construct the surrogate model, we assume
that the complex function f(z;.» Zjarger» C) = OT can be approximated
by a supervised learning model. In addition, since we use the RRT*
algorithm to generate the training data, which is time-consuming,
another assumption is that there is sufficient time to generate the
training data. The surrogate model is trained by data generated from
random sampling. Fig. 5 shows the framework and Algorithm 1 shows
the pseudo-code of our proposed method.

In the first step, a surrogate model is created to estimate the robot’s
operation time. Using the RRT* algorithm, the exact robot operation
times corresponding to the robot’s initial and target postures are ran-
domly sampled. Then, using sampled data as training data, a surrogate
model is created by machine learning methods.

Then, the robot’s operation time is estimated from the sequence
pair from the given layout in the solution of NSGA-II. NSGA-II updates
the generation using the area of the layout obtained and the total
operation time of the robot. Steps 11-14 of Algorithm 2 are repeated
pre-determined number of generation updates is reached. After that,
the Pareto solution is obtained.

Because the Pareto solution is derived by using an estimated value
from the surrogate model, the exact operation time and the robot’s
motion planning is obtained by the derived set of solutions using
RRT*. The RRT* is executed multiple times for the derived solution.
Eventually, the near-optimal layout design and the corresponding robot
trajectory are obtained.
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Fig. 5. Framework of the proposed algorithm.

Algorithm 1 Surrogate-assisted NSGA-II algorithm

Require: List of component sizes; Number of individuals MaxPop; Terminal generation
number M axGen; Configuration space C; Maximum computation time M axTime; Number
of samples Samples;

Ensure: Pareto-front[Floorplan z, Area f,,,, Operation time f;;,,, Trajectory ]

1: OperationTimeList < Initialize();

2: for i =1 : Samples do

3 Zinit» Ztarget < RandomSampling(C);

4 OT, F, { < RRT*(C, Zipjt» Ztarget» MaxTime);

5: OperationTimeList[i] « OT;

6: end for

7: SurrogateModel — GenModel(OperationTimeList);

8: P « InitializePopulation(M ax Pop);

9: for i=1: MaxGen do

10:  fi.frci <0

11:  for each pe P do

12: 7, farea — SequencePair(p);

13: 7 « GetPickupAndPlacePosition(r);

14: for each (ziyi(s Zarge) € Z do

15: OT, F « Predict(zinit» Zrarger - SurrogateModel);
16: ftime < frime +OT

17: if 7 = False then

18: break

19: end if

20: end for

21: F1 = f1Y fareas f2 < [2U frimes €1 = € UT;
22:  end for

23: P « GenerationUpdate(P, f{, fa, ¢1);
24:  Pareto-front « GetPareto(P);

25: end for

26: Pareto-front, ¢ < Recalculate(Pareto-front);
27: return Pareto-front

4.5. Surrogate model

4.5.1. Selection of surrogate model

In building a surrogate model, training data is first created by
random sampling. Here, the robot is given initial and target positions,
RRT* is executed, and the robot’s operation time is sampled. The
following three types of initial and target positions given were used
and compared (see Fig. 6).

» The difference between the x — y coordinates of the robot’s initial
position and the target position (Fig. 6(a)).

 The difference between the r — 6 coordinates of the robot’s initial
position and the target position (Fig. 6(b)).

+ The difference of each joint angle (Jy,J,,J3,J,,J5,Jg) in the
initial and target posture of the robot (Fig. 6(c)).
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(1, 1)

(a) The polar coordinate system (r, 8) input to
the surrogate model.

(b) The rectangular coordinate system (x,y)
input to the surrogate model.

(c) The difference of the robot's joint angles
U1,J2,J3,J4.J5,J6) input to the surrogate model.

Fig. 6. Three types of inputs when using the surrogate models. (a): the robot’s initial and target postures are given, and the difference between r and 6, expressed in polar
coordinates of the end-effector’s position coordinates are used as input. (b): the difference between x and y, expressed in Cartesian coordinates for the position coordinates of the

end-effector, is used as input. (c): the difference between the posture angles of each robot, J,,J,,...,J; is used as input.
Table 2
Details of the robotic arm.
Item Value
Manufacturer Niryo
Model Ned
Degrees of freedom 6
Reach 440 mm
Repeatability +0.5 mm
Depth 200 mm A
Width 200 mm

4.5.2. Surrogate models

We implemented and compared 7 surrogate methods: MLP (Mul-
tiLayer Perceptron), Ridge regression, Lasso regression, Elastic net,
Random forest, GBDT (Gradient Boosting Decision Tree), SVR (Support
Vector Regression) for the regression model. Details and parameters of
each method are introduced in the following sections. Each method was
implemented using Scikit-learn (Pedregosa et al., 2011).

5. Computational experiments
5.1. Experimental conditions

This section conducts computational experiments to evaluate the
proposed method. To examine the robustness and adaptability of the
proposed method, we conducted experiments under various conditions.

First, to build the surrogate model with high accuracy, we compared
the accuracy of seven machine learning methods for the surrogate
model, and we tested three types of feature sets for the surrogate model.
Second, we compared the performance of our surrogate model with
Izui’s method (Izui et al., 2013), which has been intensively studied in
the literature (Lim et al., 2017; Liu et al., 2024). Third, we compared
the performance of the surrogate-assisted NSGA-II with the RRT*-based
NSGA-II (Kawabe et al., 2022) and Izui’s method in 10 different layout
design problems.

We conducted our physical experiments using a 6-axis robotic arm,
Niryo Ned. Fig. 7 shows the experimental system with a 6-axis robot
arm. The details of this robot are shown in Table 2. Robot Operating
System (ROS) Melodic with Ubuntu 18.04.6 LTS is used for the platform
to Niryo Ned drivers: https://github.com/NiryoRobotics. The footprint
of the Ned is 200 [mm] square, however, if a parts box is placed
immediately next to the robot, the robot cannot reach the parts box,
so a margin of 40 [mm] is provided.

Table 3 shows the heights and widths of the robots, tables, and parts
boxes to be placed, and the order in which the parts boxes are placed.

Although Table 3 shows the sizes of 10 parts boxes, we varied the
number of parts boxes in the experiments to examine the adaptability
of the proposed method. Fig. 8 shows a robotic cell with one robot, one
assembly table and five parts boxes.

240 [mm]

<

240 [mm]

Fig. 7. Experimental system with Niryo Ned2 6-axis robotic arm.

Table 3
Size of components.
Component i Height [mm] Width [mm] Pick order
Robot 0 240 240 -
Assembly table 1 100 100 -
2 30 50 1
3 30 50 2
4 40 50 3
5 40 50 4
6 50 50 5
Parts box 7 50 50 6
8 60 50 7
9 60 50 8
10 70 50 9
11 70 50 10

The number of individuals, the terminal generation number, the
crossover rate and the mutation rate are set to 100, 500, 1.0, respec-
tively, for the NSGA-II algorithm.

5.2. Comparison of surrogate models

We compared seven surrogate methods (MLP, Ridge regression,
Lasso regression, Elastic net, Random forest, GBDT, SVR) for the re-
gression model. Details and parameters of each method are introduced
in Section 4.5.2. The surrogate model has three inputs: the difference
between the initial robot hand position and the target position (polar
and Cartesian coordinates), the difference between the initial robot
posture and the target posture at each joint angle. The output of the
surrogate model is the robot’s operation time, which is the same for
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Assembly table

Parts box

Fig. 8. A robotic cell.
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Fig. 9. Coefficient of determination R? for each method. The input to the regression
model is the difference between the initial position of the robot hand (r,6,) and the
target position (r,,6,). The output is the robot’s operation time.
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Fig. 10. Coefficient of determination R? for each method. The input to the regression
model is the difference between the initial position of the robot hand (x,,y,) and the
target position (x,,y,). The output is the robot’s operation time.

-
L 1B ) = [034]
~ 04

02

0

MLP Ridge Lasso Elastic RF GBDT SVR
Net

Fig. 11. Coefficient of determination R? for each method. The input of the regression
model is the difference between the angles of each joint (J,,J,,J3,J4,J5, Jg) in the
robot’s initial posture and the angles (J,,J,,J5,J,,J5,Jq) in the target posture. The
output is the robot’s operation time.

all models. Figs. 9-11 show the coefficient of determination R? of the
models created by each method. The number of samples was 10,000,
of which 8000 were training data and 2000 were test data. It is clear
that models such as MLP, Random Forest, and GBDT can construct
predictive models with high accuracy from the results.

5.3. Performance of the proposed surrogate models

This subsection examines the accuracy of the surrogate model in
estimating the robot’s operation time. Methods such as mean squared
error (MSE), mean absolute error (MAE), and coefficient of determina-
tion R? are commonly used to evaluate the performance of regression
models. Since the interpretation of MSE and MAE depends on the scale
of the data, the coefficient of determination R? is used to evaluate the
performance of the surrogate model. The coefficient of determination
of the surrogate model created was compared with that of conven-
tional estimation models. The conventional estimation model in Eq. (1)
developed by Izui et al. (2013) is used as the estimated operation time.

The proposed surrogate model and Eq. (1) were used to estimate
the robot’s operation time. Figs. 12-13 show the robot’s operation time
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Fig. 12. Coefficient of determination R?> of robot operation time using conventional
estimation. Blue lines are the exact robot operation times, and gray dots are the

operation times obtained using the estimation model. R? = —0.80.
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Fig. 13. Coefficient of determination R> of robot operation time derived by using
surrogate models. The surrogate model with a random forest method. Blue lines are
the exact robot operation times, and gray dots are the operation times obtained using
the estimation model. R?> = 0.98.
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Fig. 14. Running Metrics for optimization calculations.
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Fig. 15. Comparison of computation time for optimization calculations using RRT*-
based NSGA-II and surrogate-assisted NSGA-IIL.

from 5000 random input values compared to the exact robot’s operation
times. The results show that the proposed surrogate model results in
fewer measurement point errors than estimating the robot’s operation
time using Eq. (1). On the other hand, Eq. (1) cannot be accurately
estimate the operating time.
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Fig. 16. Comparison of Pareto solution obtained using Eq. (1) for estimating the robot’s operation time, RRT*-based NSGA-II considering the exact robot’s operation time, and
SA-NSGA-II using surrogate models under different numbers of parts boxes.

5.4. Performance of multi-objective optimization Table 4
IGD of the Pareto solution obtained by SA-NSGA-II and optimization by Eq. (1) as the

reference point for the Pareto solution of NSGA-IL

5.4.1. Convergence analysis

. . Number of parts boxes SA-NSGA-II Estimated by Eq. (1)

The convergence of the Pareto front is evaluated by using Run- P v 4
ning Metric (Blank and Deb, 2020) for the analysis. Running Metric ; g'ggzz g‘g;gg
computes the Inverted Generational Distance (IGD) of each generation 3 0.1803 0.3106
using a certain population of generations as a reference point set. We 4 0.1368 0.2290
constructed a reference point set for every 100 generations. It then 5 0.1237 0.2386
visualizes the degree of improvement using the survival rate of the 6 0.0495 0.1185
leorith 7 0.0440 0.1530
aigorithm. ) ) o o 8 0.0473 0.1360

IGD is a performance metric used in multi-objective optimization 9 0.0121 0.0867
to evaluate the quality of a set of generated solutions compared to a 10 0.0275 0.0923

known set of true Pareto-optimal solutions. A lower IGD value indicates Average 0.1600 0.2339
better convergence and diversity of the generated solutions toward the
true Pareto front, with values close to zero indicating higher quality
solutions. Let A = {a;,a,,..., a4} be the solution set obtained by the
algorithm and Z = {z;, 2, ..., 2|z} be the set of reference points, then
IGD is calculated using the following equation.

represented by Eq. (21) is used to compare the Pareto solutions derived
by SA-NSGA-II and NSGA-IL. The solution set A in Eq. (21) is the set of
Pareto solutions obtained by SA-NSGA-II, and the reference point set Z

1 4 1/p is the set of Pareto solutions obtained from NSGA-II. Table 4 shows the
IGD(A) = ZI <Z &I.p > 2D value of IGD for each number of parts boxes.
121\ Fig. 16 shows all Pareto solutions obtained by each method for each

case. From the results in Fig. 16, it can be seen that the Pareto solution
is far from the optimal value when the operating time is estimated.
On the other hand, Pareto solutions for SA-NSGA-II predicted by the
surrogate model are close to Pareto solutions for NSGA-II, which uses
accurate robot operation times. This is also confirmed by the smaller
average value of IGD for SA-NSGA-II in Table 4. This is because the
robot’s operation time is precisely estimated using a highly accurate
surrogate model, and the Pareto solution is recalculated by the motion

where J, is the Euclidean distance (p = 2) between z; and the nearest
reference point q; from z;.

Fig. 14 shows the Running Metric for the optimization calculations.
The results show that the curves obtained when IGD is calculated for
400 generations are almost identical to those obtained when IGD is
calculated for 500 generations.

5.4.2. Performance of surrogate-assisted NSGA-II planning after the NSGA-II computations.

This section examines the performance of the proposed surrogate- This section compares the performance of the RRT*-based approach,
assisted NSGA-II (SA-NSGA-II) in terms of computation time and the surrogate-assisted approach, and the Izui’s approach (Izui et al., 2013).
quality. The experimental results show that the Izui’s approach has the worst

First, to evaluate the computation time, we compare the computa- performance in terms of accuracy and optimization results. The RRT*-
tion time of SA-NSGA-II and RRT*-based NSGA-II (NSGA-II) developed based approach has the best performance in terms of accuracy and
by Kawabe et al. (2022). Fig. 15 shows the changes in the respective optimization results. However, it suffers from high computational cost.
computation times for optimization computations with SA-NSGA-II In addition, its computational cost increases rapidly as the number of
and RRT*-NSGA-II when the number of parts boxes is increased. The parts boxes increases. This approach is suitable for small-scale prob-
number of updated generations and the number of individuals per lems and sufficient computational resources. On the other hand, the
generation for NSGA-II are the same for both methods. The computa- surrogate-assisted approach has a good balance between accuracy and

computational cost. It can reduce the computational cost by 1/400 com-
pared to the RRT*-based approach with higher accuracy. Furthermore,
the experimental results show that the surrogate-assisted approach can
find solutions that are comparable to the RRT*-based approach in a
very short computation time. This approach is suitable for large-scale
problems and limited computational resources.

tion time for SA-NSGA-II includes the time required to recalculate the
Pareto solution with RRT* after the optimization calculation using the
surrogate model. The average of two experiments for each method and
condition is obtained. The computational results show that the com-
putation time for NSGA-II increases linearly with the number of parts
boxes. The computation time for SA-NSGA-II is significantly shorter
than that of the NSGA-IIL. This is due to the computational burden to 6. Conclusion
calculate the motion planning of RRT* algorithm for all individuals to
obtain an accurate operation time. A surrogate-assisted-NSGA-II (SA-NSGA-II) has been proposed for
Second, we compare the quality of the Pareto solution obtained simultaneous layout design and motion planning for RCMSs. Com-
by SA-NSGA-II, NSGA-II, and Izui’s approach (Izui et al., 2013). IGD putational experiments show that the surrogate model has sufficient

10
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accuracy with 98% of the robot’s operation time. The SA-NSGA-II
can reduce the 40 h of computation time into seconds while the IGD
between the exact Pareto solution is 0.1715. The proposed SA-NSGA-
II can obtain the Pareto solutions within 1/400 of computation time,
which is significantly less computation time than the conventional
RRT*-based NSGA-II with higher accuracy. The findings of this study
have a number of important implications for future practice. Several
limitations and future research directions of the present study should
be noted. First, this study focuses on the single robot system for the pick
and place operation in the RCMSs. By applying the proposed method
to RCMSs with multiple robots, the efficiency and feasibility of the
manufacturing systems can be improved. It is interesting to explore
how to implement multi-robot systems while avoiding collisions and
improving the efficiency of the manufacturing system. One of the key
issues is that it is necessary to develop an efficient motion and path
planning algorithm to solve a conflict-free motion planning problem
within a limited computation time. Second, this study assumes the
manufacturing system is deterministic. However, the manufacturing
system is often stochastic due to uncertainty of the order, the processing
time, and the machine failure. In the future, discussing the dynamic
cellular manufacturing system (DCMS) with the proposed method is
important.
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