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 A B S T R A C T

A surrogate-assisted multi-objective evolutionary algorithm is proposed for simultaneous optimization of robot 
motion planning and layout design in robotic cellular manufacturing systems. A sequence-pair is used to 
represent the layout of components in a robotic cell to avoid overlapping in the evolutionary computation. 
The robot motion planning with Rapidly exploring Random Trees Star (RRT*) is applied to compute the total 
operation time of a robot arm for each layout. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used 
to minimize the total required layout area and the operation time for a robot arm. The proposed surrogate 
model can estimate the robot’s operation time with 98% of accuracy without explicit computations of the 
motion planning algorithm. The experimental results with a physical 6 Degree of Freedom (DOF) manipulator 
show that the total computation time is approximately 1/400, significantly shorter than the conventional 
methods.
1. Introduction

Cellular manufacturing has several advantages, including improved 
system efficiency and quality of products, reduction in setup time, 
work-in-process inventory, and material flow (Salimpour et al., 2021). 
Robotic cellular manufacturing systems (RCMSs) are a new type of 
manufacturing system in which one or more robots and accessory 
equipment are involved to conduct several assembly operations that 
had been performed by human operators in conventional cellular man-
ufacturing systems (Izui et al., 2013).

The optimization of layout design and motion planning for robots 
has great economic significance for RCMSs, such as in reducing to-
tal costs and necessary areas, maximizing throughput, and enhancing 
efficiency to exploit the advantages fully. Traditional layout planning 
methods highly rely on the planner’s knowledge and the layout design 
of robotic cells and motion planning for robot arms are often separated. 
In the layout design stage, the positions of robots and workstations are 
determined in a robotic cell. Then, the motion planning is conducted on 
the condition that the layout design is fixed. In those cases, the dynamic 
performance of robotic motion planning is sometimes neglected at the 
layout design stage. As a result, it is difficult to find an optimal layout 
design and optimal motion planning considering the manipulability of 
the robot arms reducing total cycle time within a minimum necessary 
area. Therefore, it is important to develop an efficient method to find 
the optimal layout design method considering motion planning for the 
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RCMSs. However, the computational burden of optimizing both layout 
design and motion planning is extremely high because the layout design 
problem without motion planning is Nondeterministic Polynomial (NP) 
hard. Simulation-based optimization methods sometimes require more 
than two or three days to derive near-optimal solutions. In such cases, 
it is difficult to obtain the design and motion planning under different 
configurations. Once the approximation of robot operating time is 
used, the layout cannot be executed in real-world environments. The 
acceleration of computation time for layout design and motion planning 
without loss of precision is highly required. It motivates the surrogate-
assisted motion planning and layout design of RCMSs proposed in this 
paper.

Simulation-based optimization approaches using Genetic
Algorithms (GA) have been utilized to solve layout optimization prob-
lems (Leiber et al., 2022). In most cases, the evolutionary computation 
of motion planning for each layout design requires extensive computa-
tional efforts. The sequence-pair proposed by Murata et al. (1996) for 
Very-Large-Scale Integration (VLSI) layout design has been effectively 
used to represent the geometric relationships among modules for layout 
design problems. A major advantage is that it can eliminate the over-
lapping between modules. Several previous studies have discussed the 
applications of the sequence-pair for RCMSs. Izui et al. (2013) proposed 
a multi-objective layout optimization method for the RCMSs using 
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sequence-pair representation. The objectives are to minimize the layout 
area and the operation time while maximizing the manipulability. 
Along the same lines, Lim et al. (2017) have proposed multi-objective 
hybrid algorithms for layout optimization problems. These previous 
studies have successfully obtained the Pareto set of optimal solutions. 
No previous studies have reported the simultaneous optimization of 
robotic cell layout and precise motion planning at the same time. 
Generally, the simultaneous optimization of layout design and mo-
tion planning generally requires extensive computational efforts. A 
surrogate-assisted optimization is required to realize the simultaneous 
computation within a realistic computation time for the simultaneous 
optimization.

This paper presents a surrogate-assisted simultaneous motion plan-
ning and layout optimization method for RCMSs. The sequence-pair is 
used to represent the layout optimization of the robotic cell. For a given 
sequence-pair, motion planning is conducted to compute the total oper-
ation time. To reduce the computational effort of the motion planning 
algorithm, machine learning models are employed to estimate a precise 
operation time to complete the task. Since a certain layout design 
candidate may not be a feasible solution, the feasibility of a sequence-
pair is also evaluated in the motion planning process. Rapidly Exploring 
Random Trees (RRT) are used to search for the optimal motion. To 
solve the multi-objective optimization problem, a surrogate-assisted 
Non-dominated Sorting Genetic Algorithm II (NSGA-II) is proposed to 
derive the Pareto optimal solution. The main contributions of the paper 
are as follows.

• The multi-objective optimization of simultaneous motion plan-
ning and layout design is achieved for RCMSs to minimize the 
area and the total operation time. Detailed collision-free motion 
planning for a single robot arm is incorporated into the design of 
robot cells.

• Surrogate-assisted multi-objective optimization method can sig-
nificantly reduce the computation time, which previously took 
several hours.

• The proposed method is applied to a 6 Degree of Freedom (DOF) 
robot manipulator. The experimental results suggest the effective-
ness of the proposed algorithm.

This study focuses on the simultaneous optimization of layout de-
sign and motion planning for RCMSs. Research into Layout design of 
cellular manufacturing systems (CMSs) has a long history. Examples 
of previous studies include several works (Akturk and Turkcan, 2000; 
Kia et al., 2012; Bayram and Şahin, 2016; Feng et al., 2018; Forghani 
and Fatemi Ghomi, 2020). With the development of industrial robots, 
the interest in efficient layout design and motion planning for RCMSs 
has increased. The RCMS design problem determines the positions 
of robots and workstations in a robotic cell. Our research group has 
extended this problem to various applications, such as the design of 
pick-and-place systems in production lines (Nonoyama et al., 2022), 
packaging systems in logistics (Mikyu et al., 2024), and task planning 
in service robots (Kawabe et al., 2024). Given the broad applicability 
of RCMS optimization, this study addresses the general problem of 
layout design and motion planning rather than focusing on a specific 
application. The proposed approach provides a method to efficiently 
solve the optimization problem of RCMSs within a limited computation 
time, which is a significant contribution to the field of manufacturing 
systems and expected to be widely applicable to various industries. 

The remaining part of this paper is organized into the following 
sections. Section 2 describes the literature review. Section 3 introduces 
integrated motion planning and layout design problem for RCMSs. 
Section 4 presents the surrogate-assisted evolutionary optimization 
algorithm for simultaneous optimization using accurate robot operation 
times. The experimental results using a physical robot manipulator are 
shown in Section 5. Section 6 summarizes the conclusions and indicates 
future research directions.
2 
2. Literature review

Related references are classified into cellular manufacturing sys-
tem optimization, RCIMs, sequence pair representation, and surrogate-
assisted optimization.

2.1. Cellular manufacturing system optimization

Akturk and Turkcan (2000) have proposed a local search heuristic 
to simultaneously optimize the cell formation problem and the layout 
problem. Kia et al. (2012) have proposed a mixed integer non-linear 
programming (MINLP) model for simultaneously optimizing cell for-
mation, inter-cell and intra-cell layout problem with dynamic CMS. 
Kia et al. (2012) and Bayram and Şahin (2016) have proposed two 
hybrid meta-heuristic algorithms for the dynamic CMS design problem 
showing that their approaches have better performance in terms of 
computation time and solution quality. Feng et al. (2018) have also 
focused on the integrated cell formation, inter- and intra-cell layout 
problem. Since the two-dimensional coordinate is used to represent 
the locations of machines, the components in cells can have different 
shapes. Forghani and Fatemi Ghomi (2020) have introduced the virtual 
CMS to the integrated CMS optimization problem.

Most of these previous studies assume that the processing times 
of parts for machines are known, and the single or multi-row layout 
of equal area facilities is considered. However, facilities may have 
different shapes in CMSs. In traditional CMSs, families of parts are 
produced by a single line or cell of machines operated by machin-
ists (Helms, 2021). Recent developments in the field of industrial robots 
have led to a growing interest in RCMSs. In an RCMS, since the optimal 
robot motions change with the intra-cell layout, it is unrealistic to 
assume that the processing time is constant. Therefore, it is necessary 
to simultaneously solve the motion planning and layout design problem 
in RCMSs.

2.2. Robotic cellular manufacturing system optimization

Nonoyama et al. (2022) have focused on the optimal motion plan-
ning and layout design problem. Since their study only involves a robot, 
a conveyor belt, and workpieces, the non-overlapping constraint can 
be easily implemented by restricting the range of the robot’s feasi-
ble locations. However, since CMSs may involve multiple robots and 
workstations, it is difficult to handle the non-overlapping constraints 
when using the coordinate representation. Shiller (1989) developed an 
application for the design of work cells and the optimization of robot 
operations. However, their formulation considers the pre-defined task 
of planning robot movements through multiple waypoints, with the 
focus primarily on motion planning. The work cell design focuses solely 
on arranging obstacles in a way that prevents interference with the 
robot, and it is not sufficient as a simultaneous optimization method 
for both placement and motion planning.

2.3. Sequence-pair representation

The sequence-pair proposed initially by Murata et al. (1996) for 
VLSI layout design, can be used to effectively represent the geometric 
relationships among modules for layout designs. A major advantage is 
that it can eliminate the overlapping between modules. Another ad-
vantage is that sequence-pair can also handle the unequal-area facility 
layout problem. It has been applied in various fields, such as facility 
layout problems (Liu and Meller, 2007; Meller et al., 2007), berth 
allocation problems (Mohammadi and Forghani, 2019) and scheduling 
problems (Kozik, 2017). During the last decade, several researchers 
have applied sequence-pair representation in the design of CMSs. Izui 
et al. (2013) have proposed a multi-objective optimization model with 
three important decision criteria for robot CMSs design, including 
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Table 1
Related works on cellular manufacturing system optimization.
 Reference CF Inter-cell

layout
Intra-cell
layout

Facilities Operation
time

Objective Motion
planning

Real
robot

Algorithm  

 Kia et al. (2012) ✓ ✓ ✓ Equal Constant Single – – Heuristic  
 Akturk and Turkcan (2000) ✓ ✓ ✓ Equal Constant Single – – SA  
 Bayram and Şahin (2016) ✓ ✓ ✓ Equal Constant Single – – HMLPa  
 Feng et al. (2018) ✓ ✓ ✓ Unequal Constant Single – – HMLP  
 Forghani et al. (2020) ✓ ✓ ✓ Unequal Constant Single – – SA, GA, MA 
 Izui et al. (2013) – – ✓ Unequal Estimation Multiple – – NSGA-II  
 Lim et al. (2016) – – ✓ Unequal Estimation Multiple – – HMb  
 Suemitsu et al. (2016) – – ✓ Unequal Estimation Multiple – – NSGA-II  
 Lim et al. (2017) – – ✓ Unequal Estimation Multiple – – HM  
 Kawabe et al. (2022) – – ✓ Unequal Accurate Multiple ✓ ✓ NSGA-II  
 Current study – – ✓ Unequal Data-driven Multiple ✓ ✓ NSGA-II  
a Hybrid Metaheuristics with Linear Programming.
b Hybrid Metaheuristics.
operation time, feasibility of assembly tasks, and layout area. A Non-
dominated sorting genetic algorithm, NSGA-II (Deb et al., 2002) has 
been used to solve this problem. Lim et al. (2016) have examined the 
performance of sequence-pair and B*-trees (Chang et al., 2000) on the 
CMS design problem of Izui et al. (2013). Later, Lim et al. (2017) have 
proposed four hybrid algorithms and compared their performance on 
the RCMS design problem. On the basis of Izui et al.’s model, (Izui 
et al., 2013; Suemitsu et al., 2016) have integrated the task scheduling 
problem to the layout design of RCMSs. Forghani et al. (2020) have 
proposed two integrated Simulated Annealing (SA) algorithms for an 
integrated cell formation and layout design problem. Recently, Kawabe 
et al. (2022) have proposed an optimization method for simultaneous 
motion planning and intra-cell layout design in RCMSs. Overall, these 
previous studies (Izui et al., 2013; Lim et al., 2016, 2017; Suemitsu 
et al., 2016) suggest the effectiveness of the sequence-pair represen-
tation in RCMS design problems. All these studies assume that the 
operation time for a certain layout can be estimated by the maximum 
joint motion time, which is not the exact operation time for a layout in 
RCMSs. Kawabe et al. (2022) have successfully developed an integrated 
optimization algorithm for motion planning and layout design to obtain 
the exact operation time. However, the computation time requires more 
than 30.6 h since all the candidate solutions are enumerated in their 
algorithm. We summarize the features of the current study and the 
related works on cellular manufacturing system optimization in Table 
1.

2.4. Surrogate-assisted optimization

Because of the complexity of the CMS design, metaheuristic algo-
rithms are commonly used for the optimization of CMSs as shown 
in Table  1. However, to obtain a satisfactory solution for a com-
plex optimization problem, a large number of computations of the 
function evaluations are commonly required for metaheuristic algo-
rithms (Tong et al., 2021). In many real-world problems, the function 
evaluation is the most time-consuming component of evolutionary al-
gorithms (Coello Coello et al., 2007). Furthermore, multi-objective evo-
lutionary algorithms, such as NSGA-II, may need more execution time 
for better performance compared with single-objective evolutionary 
algorithms (Coello Coello et al., 2007).

In recent years, researchers have shown an increased interest in 
integrating machine learning into metaheuristic algorithms (Karimi-
Mamaghan et al., 2022).  Supervised learning, unsupervised learning, 
and reinforcement learning are the three main types of machine learn-
ing algorithms. Supervised learning can be used to predict/estimate the 
output of a function given input data using a labeled dataset. Super-
vised learning has been used in various fields, such as the remaining 
useful life prediction (Zhang et al., 2023a,b).  An important applica-
tion of machine learning in metaheuristic algorithms is a functional 
approximation, that has been known as surrogate-assisted evolution-
ary algorithms (Jin, 2011). For optimization problems with expensive 
3 
objective functions, using a surrogate model may significantly reduce 
time, space, and computing costs (Bartz-Beielstein and Zaefferer, 2017). 
Also, there has been a growing number of publications focusing on the 
real-world applications of surrogate-assisted evolutionary algorithms, 
such as regional trauma system design (Wang and Jin, 2021), wind 
farm layout optimization (Long and Li, 2020; Li et al., 2022), blast 
furnace optimization (Chugh et al., 2017), scheduling problems (Togo 
et al., 2022), neural architecture search (Calisto and Lai-Yuen, 2021), 
and supply chain management (Liu and Nishi, 2024). 

To date, very few studies have investigated the application of 
surrogate-assisted evolutionary algorithms in industrial robots. Zhang 
and Yan (2021) have developed a surrogate model by using an artificial 
neural network to reveal the relations between operation parameters 
and the energy consumption of an industrial robot. Genetic algorithms 
(GA) have been used to optimize the parameters to minimize energy 
consumption based on the surrogate model.  A recent study by Liu 
et al. (2024) has proposed a surrogate-assisted optimization method 
for packing problems in the logistics industry. The surrogate model has 
been used to accelerate the computation of the objective function in the 
evolutionary algorithm. The results suggest that the proposed method 
can significantly reduce the computation time by more than 90% com-
pared to the non-surrogate method in Mikyu et al. (2024).  To the best 
of our knowledge, this is the first study to implement surrogate-assisted 
evolutionary optimization to the RCMSs design problems.

3. Integrated motion planning and layout design problem for 
robotic cellular manufacturing systems

3.1. Problem description

This study aims to address the motion planning and intra-cell layout 
design problem of RCMSs in a static environment. We focus on the 
optimization problem for a robot cell in a two-dimensional space 
that consists of a single robot, an assembly table, and multiple parts 
boxes. The robot is responsible for moving parts from the boxes to 
the assembly table in a predetermined sequence and carrying out the 
assembly operations on the assembly table.  This study assumes a static 
manufacturing environment, where the sequence of assembly tasks is 
given in advance. 

Let 𝐼 = {0, 1,… , 𝑛} be a set of components in a robotic cell which 
includes a robot, an assembly table and parts boxes. The robot is 
represented by 0, the assembly table is represented by 1, and the parts 
boxes are represented by 2, 3,… , 𝑛. Each component 𝑖 ∈ 𝐼 has two 
modes, the initial mode and the 90-degree rotated mode which are 
represented by 𝑘 ∈ 𝐾, where 𝐾 = {𝑖𝑛𝑖, 𝑟𝑜𝑡}. Each mode 𝑘 of component 
𝑖 specifies its width 𝑤𝑘

𝑖  and length 𝑙𝑘𝑖 . For example, 𝑤𝑟𝑜𝑡
3  represents the 

width of component 3 in its 90-degree rotation mode. Let 𝐴 represent 
the area of an intra-cell layout of a robotic cell, and 𝑇  represent the 
total operation time required for a robot to complete the assembly task 
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Fig. 1. Area of a robotic cell.

which is given as an operation sequence. The objectives are to minimize 
the area 𝐴 and to minimize the total operation time 𝑇 . Similar to the 
previous studies (Izui et al., 2013; Lim et al., 2016, 2017; Suemitsu 
et al., 2016), we define 𝐴 as the minimum area of a rectangle that 
can encompass all the components in a robotic cell, as illustrated in 
Fig.  1. Here, it is clear that the order of the numbers labeled on each 
component does not affect the area of the layout and operation time of 
the robot.

Also, the parts boxes are labeled with a number that denotes their 
assembly sequence as shown in Fig.  1. To perform the assembly task, 
the robot picks up and transports parts from the box with the lowest 
numbered label to the assembly table first, and then moves on to the 
box with the second-smallest number, and so on, until the parts in the 
box with the highest numbered label are transported to the table.

The total operation time 𝑇  consists of the pick-up time, transport 
time, and the assembly time. The cell layout only has a major impact 
on the transport time, it is worth noting that our model only considers 
the transport time in a robotic cell for an assembly task and the time 
for the assembly and pick-up operation is sufficiently small compared 
with the transport time for simplicity. We assume that the assembly 
sequence is arbitrarily given because the total operation time does not 
depend on the assembly sequence. Multiple assembly tasks cannot be 
performed during the same time period. All tasks must be performed 
as soon as possible after a given task is completed.

Conventional studies did not consider the motion trajectory of the 
robot in their layout design problem. However, the determination of 
layout design in RCMSs is highly related to the trajectory of mo-
tion planning for the robot. For example, the total operation time 
may change depending on the posture and path of the robot and the 
positioning of the robot and boxes.

Overall, we state the joint motion planning and intra-cell layout 
design optimization problem as follows.
Given parameters

Number and dimensions of boxes, dimensions of the assembly table 
and robot, assembly sequence, number of links in the robot, the length 
of each link of the robot, and physical parameters to describe the 
dynamics of the robot: range of movement of each link, the angular 
velocity of each link, the joint angular acceleration of each link, the 
mass of each joint, coordinates of the center of gravity of each joint, 
moment of inertia of each joint, and gravitational acceleration applied 
to the robot.
Decision variables

• Two-dimensional layout of the robot, assembly table, and parts 
boxes

• Motion trajectory of the robot
Objective function In the layout optimization, the total required area 

and the total operation time are minimized because they are related to 
the costs. We use the following two objective functions.

• To minimize the total area 𝐴 of a intra-cell layout
4 
• To minimize the total operation time 𝑇  of the robot for a given 
assembly sequence

The operation time 𝑇  has been approximated by the following equation 
in Izui et al. (2013) and Suemitsu et al. (2016) without generating a 
motion trajectory of the robot. 

𝑇 =
ℎ
∑

𝑖=1
max
𝑘

[

|𝑞𝑘𝑖|
𝑣𝑘

]

(1)

where 𝑘 is the number of each joint of the robot, 𝑣𝑘 is the maximum 
angular velocity of joint 𝑘th, and |𝑞𝑘𝑖| is the amount of angular change 
of joint 𝑘th during 𝑖th motion. There is an assumption that the angular 
velocity of the robot arm is constant in conventional studies. However, 
it does not hold in practice. In this problem definition, the detailed 
robot’s operation time is computed when the joint angular velocity is 
changed. Determining the precise motion time is challenging because it 
involves solving nonlinear and complex dynamics equations when the 
initial position and target position of a robot are given. To compute 
the motion time, both inverse kinematics and motion planning are 
necessary.

Inverse kinematics
These are complex nonlinear equations that take into account ele-

ments such as mass, moment of inertia, and friction. 
𝑀(𝒒)𝒒̈ = −𝐶(𝒒, 𝒒̇)𝒒̇ − 𝐺(𝒒) − 𝐽 (𝒒)𝑇𝐹𝐸𝑥𝑡

+ 𝝉 (2)

where 𝑀(𝒒) is the mass matrix of each joint, 𝐶(𝒒, 𝒒̇) is the Coriolis term, 
𝐺(𝒒) is the gravity term, 𝐽 (𝒒) is the Jacobian of each joint, 𝐹𝐸𝑥𝑡

 is the 
matrix of external forces on the robot, and 𝝉 is the torque applied to 
each joint. Also, 𝒒 = [𝑞1, 𝑞2,…] is the set of each joint angle, 𝒒̇ is each 
joint angular velocity vector, and 𝒒̈ is each joint angular acceleration 
vector. The trajectory sequence 𝜁 = {(𝑡0, 𝒒0), (𝑡1, 𝒒1),… , (𝑡𝐾 , 𝒒𝐾 )} of the 
robot arm consisting of the set of each joint 𝒒 at time 𝑡 is derived 
by a motion planning algorithm. From the trajectory sequence 𝜁 (𝑡, 𝒒), 
the exact robot operation time 𝑇  is determined from the last 𝑡𝑘 in 
the trajectory sequence 𝜁 . Solving the dynamic equations represented 
by Eq.  (2) is required to determine the necessary torque and angular 
velocity for each joint.

Motion planning
In motion planning, the calculation of motion time takes into ac-

count the robot’s angular velocity and acceleration. The motion plan-
ning algorithm is utilized to find a collision-free motion planning 
at each step of computing an objective function for each individ-
ual in the evolutionary computation. However, It is evident that the 
computational complexity would become exceedingly large when the 
precise robot motion times are determined for each individual in the 
evolutionary computation, Therefore, instead of pursuing precise ana-
lytical solutions, a surrogate model construction is required using deep 
learning techniques to accelerate computations.

Constraints

• The robot motions must be feasible without collisions.
• The parts boxes should not overlap with each other

3.2. Mathematical formulation

Let 𝑖 be the index of the components in a robotic cell, and 𝐼 =
{0, 1,… , 𝑛} be the set of components in a robotic cell. Specifically, 
the robot is represented by 0, the assembly table is represented by 
1, and the parts boxes are represented by 2, 3,… , 𝑛. Let 𝜋 represent 
a layout in a robotic cell and the mode of components represented by 
𝜇(𝜋) = (𝜇0(𝜋), 𝜇1(𝜋),… , 𝜇𝑛(𝜋)). For all 𝑖 ∈ 𝐼, 𝜇𝑖(𝜋) ∈ 𝐾. The location 
of component 𝑖 is denoted by (𝑥𝑖(𝜋), 𝑦𝑖(𝜋)) where the origins of the 𝑥, 
𝑦 coordinates of the layout is the position of the robot represented by 
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component 0. The length 𝑙max(𝜋) and width 𝑤max(𝜋) of a layout can be 
obtained by
𝑙max(𝜋) = max

{𝑖∈𝐼}
(𝑥𝑖(𝜋) +𝑤(𝜇𝑖(𝜋))

𝑖 ) (3)

𝑤max(𝜋) = max
{𝑖∈𝐼}

(𝑦𝑖(𝜋) + 𝑙(𝜇𝑖(𝜋))𝑖 ) (4)

The area of a robotic cell can be obtained by 
𝑓𝑎𝑟𝑒𝑎(𝜋) = 𝑙max(𝜋) ⋅𝑤max(𝜋) (5)

Let a binary variable 𝑝𝑑𝑖,𝑗 represent the relative position of component 
𝑖 and 𝑗 in direction 𝑑, where 𝑑 ∈ {𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑏𝑒ℎ𝑖𝑛𝑑, 𝑎ℎ𝑒𝑎𝑑}. For 
example, 𝑝𝑙𝑒𝑓 𝑡𝑖,𝑗 = 1 means that component 𝑖 is placed at the left of 𝑗. 
Therefore, the coordinates of components must satisfy the following 
inequalities: 
𝑝𝑙𝑒𝑓 𝑡𝑖,𝑗 = 1 ⇒ 𝑥𝑖(𝜋) +𝑤(𝜇𝑖(𝜋))

𝑖 ≤ 𝑥𝑗 (𝜋) (6)

𝑝𝑟𝑖𝑔ℎ𝑡𝑖,𝑗 = 1 ⇒ 𝑥𝑗 (𝜋) +𝑤
(𝜇𝑗 (𝜋))
𝑗 ≤ 𝑥𝑖(𝜋) (7)

𝑝𝑏𝑒ℎ𝑖𝑛𝑑𝑖,𝑗 = 1 ⇒ 𝑦𝑖(𝜋) + 𝑙(𝜇𝑖(𝜋))𝑖 ≤ 𝑦𝑗 (𝜋) (8)

𝑝𝑎ℎ𝑒𝑎𝑑𝑖,𝑗 = 1 ⇒ 𝑦𝑗 (𝜋) + 𝑙
(𝜇𝑗 (𝜋))
𝑗 ≤ 𝑦𝑖(𝜋) (9)

Let 𝑢𝑑𝑖,𝑗 be a binary variable that represents the component 𝑖 is placed 
at the left of 𝑗, and let 𝑣𝑑𝑖,𝑗 be a binary variable that represents the 
component 𝑖 is placed at the above of 𝑗. In addition, let 𝑊  and 𝐿 be 
the upper bound of the width and length of the layout, respectively. 
Constraints (6)–(9) can be rewritten as (10) and (11). 

𝑥𝑖(𝜋) +𝑤(𝜇𝑖(𝜋))
𝑖 ≤ 𝑥𝑗 (𝜋) +𝑊 (1 − 𝑢𝑖,𝑗 ) (10)

𝑦𝑖(𝜋) + 𝑙(𝜇𝑖(𝜋))𝑖 ≤ 𝑦𝑗 (𝜋) + 𝐿(1 − 𝑣𝑖,𝑗 ) (11)

The operation time 𝑓𝑡𝑖𝑚𝑒(𝜋) is calculated by executing a motion 
planning. The constraint is that the robot arm does not collide with 
itself or with any object in its environment. Then, the integrated 
motion planning and layout design problem for RCMSs is formulated 
as follows. 
min 𝑓𝑎𝑟𝑒𝑎(𝜋), 𝑓𝑡𝑖𝑚𝑒(𝜋) (12)
s.t. 𝑥𝑖(𝜋) +𝑤(𝜇𝑖(𝜋))

𝑖 ≤ 𝑥𝑗 (𝜋) +𝑊 (1 − 𝑢𝑖,𝑗 ), ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗 (13)

𝑦𝑖(𝜋) + 𝑙(𝜇𝑖(𝜋))𝑖 ≤ 𝑦𝑗 (𝜋) + 𝐿(1 − 𝑣𝑖,𝑗 ), ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗 (14)

𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 + 𝑣𝑖,𝑗 + 𝑣𝑗,𝑖 ≥ 1,∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗 (15)

𝑥𝑖(𝜋) +𝑤(𝜇𝑖(𝜋))
𝑖 ≤ 𝑤max(𝜋), ∀𝑖 ∈ 𝐼 (16)

𝑦𝑖(𝜋) + 𝑙(𝜇𝑖(𝜋))𝑖 ≤ 𝑙max(𝜋), ∀𝑖 ∈ 𝐼 (17)

𝑥𝑖(𝜋), 𝑦𝑖(𝜋) ≥ 0, ∀𝑖 ∈ 𝐼 (18)
𝑢𝑖,𝑗 , 𝑣𝑖,𝑗 ∈ {0, 1}, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗 (19)

Constraints (15) ensures that the at least one of the binary variables 
𝑢𝑖,𝑗 , 𝑢𝑗,𝑖, 𝑣𝑖,𝑗 , and 𝑣𝑗,𝑖 is equal to 1. Constraints (16) and (17) are the 
constraints that the components are placed within the layout area. 
Constraints (18) are the non-negativity constraints for the coordinates 
of the components. Constraints (19) are the binary constraints for the 
relative positions of the components.  An industrial application is a 
robotic cell layout optimization in small part assembly (SPA) (Zhang 
and Fang, 2013). Another practical application is the optimization 
of multifunctional cells in multi-robot systems (Nagele et al., 2020). 
The efficiency of multi-robot assembly operations is improved through 
placement optimization that takes into account the operation time of 
the robots.

4. Surrogate-assisted evolutionary algorithm

We introduce a surrogate-assisted evolutionary algorithm for solv-
ing the problem considering the exact robot operation time.
5 
Fig. 2. An oblique grid for the sequence pair (𝛤+ , 𝛤−).

4.1. Sequence-pair representation

Sequence-pair representation consists of two related entity
sequences that can be used to determine the relative positions of enti-
ties in a two-dimensional space. It is used to generate the layout of the 
robot, assembly table, and parts boxes assuming that all components 
are rectangular. Two permutations 𝛤+ and 𝛤− are defined and a binary 
variable 𝜙𝑖 is introduced to represent the direction of component 𝑖. 
Given 𝛤+, 𝛤−, and 𝜙𝑖, a unique layout can be generated. For a detailed 
explanation of the sequence-pair representation, please refer to Murata 
et al. (1996). In the following, we use an example to illustrate the 
sequence-pair representation for layout design. 

4.1.1. Oblique grid
Consider a sequence pair (𝛤+, 𝛤−) with 𝛤+ = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11) and 𝛤− = (3, 7, 10, 1, 8, 5, 11, 2, 4, 0, 9, 6). The oblique grid for this 
sequence pair is a 12 × 12 grid. We label the vertical and horizontal 
lines of the grid with the component numbers in the sequence. Each 
point in this grid is the intersection of a vertical line and a horizontal 
line, which can be referred as (𝑖, 𝑗). Then we rotate the grid by 45 
degrees and put each component 𝑖 at the point (𝑖, 𝑖) in the rotated grid. 
See Fig.  2 for the resulted oblique grid. 

4.1.2. Constraint graphs
Given 𝛤+ and 𝛤−, the geometric relation of the components can be 

determined as follows:

• (Horizontal constraint): component 𝑖 is to the left of component 
𝑗 if 𝑖 is to the left of 𝑗 in both 𝛤+ and 𝛤−.

• (Vertical constraint): component 𝑖 is below component 𝑗 if 𝑖
appears after 𝑗 in 𝛤+ and before 𝑗 in 𝛤−.

Hence, when 𝛤+ = (… , 𝑖,… , 𝑗,…) and 𝛤− = (… , 𝑖,… , 𝑗,…), com-
ponent 𝑖 is to the left of component 𝑗. When 𝛤+ = (… , 𝑖,… , 𝑗,…)
and 𝛤− = (… , 𝑗,… , 𝑖,…), component 𝑖 is below component 𝑗. We 
can generate the horizontal vertical constraint graph based on the 
constraint relations between the components. 

Let 𝐺ℎ = (𝑉ℎ, 𝐸ℎ) be the horizontal constraint graph and 𝐺𝑣 =
(𝑉𝑣, 𝐸𝑣) be the vertical constraint graph, where 𝑉ℎ and 𝑉𝑣 are the set of 
vertices and 𝐸ℎ and 𝐸𝑣 are the set of edges, respectively. The vertex set 
𝑉ℎ includes the starting point 𝑠 and the endpoint 𝑡, and all components. 
(𝑠, 𝑖) and (𝑖, 𝑡) are included in 𝐸ℎ, and (𝑖, 𝑗) ∈ 𝐸ℎ if 𝑖 if and only if 𝑖 is 
to the left of 𝑗 according to the horizontal constraint. Similarly, the 
vertical constraint graph 𝐺𝑣 can be generated. For our example, the 
horizontal and vertical constraint graphs are shown in Fig.  3. 

The weight for each node is the width or length of the corresponding 
component in the corresponding direction. The starting point 𝑠 and the 
endpoint 𝑡 have a weight of 0. 



T. Kawabe et al. Engineering Applications of Artiϧcial Intelligence 150 (2025) 110530 
Fig. 3. Given corresponding vertical constraint graph (a) and horizontal constraint 
graph (b). Directed edges between components represent constraints on the relative 
positions of those components.

Fig. 4. Arrangement of the corresponding components.

4.1.3. Layout generation
Given the horizontal and vertical constraint graphs, the x-coordinate 

of a component 𝑖 is obtained by solving the longest path problem from 
the source 𝑠 to 𝑖 in the horizontal constraint graph, and the y-coordinate 
of 𝑖 can be computed by the vertical constraint graph. For the layout 
design problem with rotation, the parameter 𝜙𝑖 is used to determine 
whether the weight of the node is the width or length of the component. 
In our example, the layout of the components is shown in Fig.  4. 

4.2. NSGA-II algorithm for optimal layout and motion planning

Recall that 𝜋 represents the layout of a robotic cell, 𝑓𝑎𝑟𝑒𝑎(𝜋) is the 
area of the layout, and 𝑓𝑡𝑖𝑚𝑒(𝜋) is the total operation time of the robot 
arm. The following definitions are used to define the dominance of 
solutions. 

Definition 1.  A solution 𝜋1 is said to dominate another solution 𝜋2 if 
and only if the following conditions are satisfied:

• 𝑓𝑎𝑟𝑒𝑎(𝜋1) ≤ 𝑓𝑎𝑟𝑒𝑎(𝜋2) and 𝑓𝑡𝑖𝑚𝑒(𝜋1) < 𝑓𝑡𝑖𝑚𝑒(𝜋2)
• 𝑓𝑎𝑟𝑒𝑎(𝜋1) < 𝑓𝑎𝑟𝑒𝑎(𝜋2) and 𝑓𝑡𝑖𝑚𝑒(𝜋1) ≤ 𝑓𝑡𝑖𝑚𝑒(𝜋2)

Let 𝑃  be a set of solutions, where 𝑃 = {𝜋1, 𝜋2,… , 𝜋𝑛}. The non-
dominated set 𝑃 ′ is defined as follows: 

Definition 2.  Among a set of solutions 𝑃 , the non-dominated set 𝑃 ′

consists of those solutions that are not dominated by any other solutions 
in 𝑃 .

When 𝑃  include all the feasible solutions, the non-dominated set 𝑃 ′

is called the Pareto-optimal set. The number of solutions of the layout 
design problem with 𝑛 components is (𝑛!)2. 
6 
Theorem 1.  The number of solutions of the layout design problem is (𝑛!)2.

The proof of Theorem  1 is omitted because it is straightforward. 
Since the search space is large, it is difficult to find the Pareto-
optimal set by exhaustive search. Therefore, we use the NSGA-II (Non-
dominated Sorting Genetic Algorithm II) algorithm to find a non-
dominated set of solutions.

NSGA-II (Deb et al., 2002) is a multi-objective optimization algo-
rithm that aims to find the Pareto front, which represents a set of 
non-dominated solutions in a multi-objective problem with multiple 
conflicting objectives. 

To implement the NSGA-II algorithm for the integrated motion 
planning and layout design problem, an important assumption is that 
the operation time of the robot arm can be calculated by a function 
𝑓 (𝑧𝑖𝑛𝑖𝑡, 𝑧𝑡𝑎𝑟𝑔𝑒𝑡,) = 𝑂𝑇  that returns the operation time 𝑂𝑇  for a robot 
arm to move from the initial posture 𝑧𝑖𝑛𝑖𝑡 to the target posture 𝑧𝑡𝑎𝑟𝑔𝑒𝑡 in 
the configuration space . Furthermore, this study assumes that using 
the Rapidly exploring Random Trees Star (RRT*) algorithm can provide 
good approximations of the operation time for the robot arm given 
enough computation time. 

The pseudo-code of NSGA-II is shown in Coello Coello et al. (2007). 
The algorithm first generates an initial population of candidate solu-
tions. A candidate solution consists of the set of permutations of 𝛤+, 
𝛤−, and binary variables 𝜙 to represent the layout in the sequence 
pair. After the generation of the layout candidate for each gene by 
sequence-pair, the motion planning algorithm is executed to obtain 
a collision-free path where the layout of the solution is fixed. We 
use a sampling-based motion planning algorithm RRT* (Karaman and 
Frazzoli, 2011) because the total operation time for a robot arm may 
be different according to the layout, initial and final postures, and 
environment. NSGA-II then applies genetic operators, such as crossover 
and mutation, to create offspring solutions from the parent solutions. 
Crossover combines the genetic information of two parent solutions to 
create two offspring solutions, while mutation introduces small changes 
in the genetic information of a solution. These genetic operators allow 
for the exploration of the solution space and the generation of diverse 
solutions.

NSGA-II uses a crowding distance measure to select solutions from 
the Pareto fronts for the next generation. The crowding distance reflects 
the density of solutions in the objective space, and it helps to maintain 
a diverse set of solutions by encouraging the selection of solutions that 
are farther apart from each other. In addition, NSGA-II carries over the 
best solution of the current generation to the next generation, so that 
the best solution is not lost in the process of evolution. 

The order crossover is a genetic operator used in GA to generate 
offspring individuals from two-parent individuals. It selects a range 
of genes from the parent individuals and maintains their order while 
incorporating the remaining genes from the other parent to generate 
a new gene sequence. Specifically, two crossover points are randomly 
selected, and the gene sequence between these points is extracted and 
copied from parent 1 to the offspring. The remaining genes are then 
extracted from parent 2 in order, ignoring any genes that are already 
present in the offspring, and inserted into the empty spaces in sequence. 
The resulting offspring individual retains the characteristics of the 
parent individuals while having a new gene sequence. This crossover 
operator is an effective technique for expanding the search space in 
genetic algorithms.  Mutation plays a key role in the exploration of 
the solution space by creating new solutions that are different from the 
parent solutions. For binary encoding, mutation flips the value of one 
or more bits in the binary string. It helps to introduce diversity in the 
population allowing the algorithm to escape local optima and search 
for new, potentially better solutions. 
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4.3. Motion planning algorithm

We use an RRT* algorithm (Karaman and Frazzoli, 2011), which is a 
commonly used motion planning method for robots, to obtain operation 
times. In RRT*, a group of neighboring nodes around the extended node 
is selected, and the node with the lowest cost is selected to become the 
parent node of the new node. First, the tree structure is built as in RRT*. 
Then, randomly sample points in the space and extend the tree in that 
direction from the nearest node. RRT* generates a set of neighboring 
nodes around the extended node and reconstructs the node with the 
lowest cost among them as the parent node. The radius for choosing 
neighbor nodes is determined by 

𝑟 = min
⎛
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⎜

⎝
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(20)

where 𝑁 is the number of nodes, 𝑅 is the weight, 𝑑 is the number of the 
dimensions of the state space, and 𝜂 is the upper bound of the radius. 
In this study, 𝑅 = 0.5, 𝑑 = 7 (6 axes + end-effector), and 𝜂 = 0.3. The 
length of the edge to be extended at each step is 0.1[m], and the target 
posture 𝑧𝑡𝑎𝑟𝑔𝑒𝑡 is selected as the sampling point with a probability of 
20%. The joint angles at each time are obtained by RRT* with Open 
Motion Planning Library (OMPL). Then, the total operation time is 
computed from the time corresponding to the start and endpoints of the 
trajectory for each pick and place trajectory. Also, we include feasibility 
as a constraint condition since it is not feasible if the layout exceeds 
the maximum reach length of the robot.  The RRT* algorithm is widely 
known and the time complexity of RRT* is generally considered to be 
(𝑁 log𝑁) (Karaman and Frazzoli, 2011).

4.4. Surrogate-assisted NSGA-II

The NSGA-II with RRT* sometimes requires huge computing efforts 
because the RRT*-based motion planning is conducted for each indi-
vidual to obtain the total operation time. To reduce the computational 
burden of the algorithm, a surrogate-assisted NSGA-II is proposed in 
this section.

In the proposed algorithm, the total operation time is estimated 
by a surrogate model to reduce the computation time of function 
evaluation in NSGA-II.  To construct the surrogate model, we assume 
that the complex function 𝑓 (𝑧𝑖𝑛𝑖𝑡, 𝑧𝑡𝑎𝑟𝑔𝑒𝑡,) = 𝑂𝑇  can be approximated 
by a supervised learning model. In addition, since we use the RRT* 
algorithm to generate the training data, which is time-consuming, 
another assumption is that there is sufficient time to generate the 
training data.  The surrogate model is trained by data generated from 
random sampling. Fig.  5 shows the framework and Algorithm 1 shows 
the pseudo-code of our proposed method.

In the first step, a surrogate model is created to estimate the robot’s 
operation time. Using the RRT* algorithm, the exact robot operation 
times corresponding to the robot’s initial and target postures are ran-
domly sampled. Then, using sampled data as training data, a surrogate 
model is created by machine learning methods.

Then, the robot’s operation time is estimated from the sequence 
pair from the given layout in the solution of NSGA-II. NSGA-II updates 
the generation using the area of the layout obtained and the total 
operation time of the robot. Steps 11–14 of Algorithm 2 are repeated 
pre-determined number of generation updates is reached. After that, 
the Pareto solution is obtained.

Because the Pareto solution is derived by using an estimated value 
from the surrogate model, the exact operation time and the robot’s 
motion planning is obtained by the derived set of solutions using 
RRT*. The RRT* is executed multiple times for the derived solution. 
Eventually, the near-optimal layout design and the corresponding robot 
trajectory are obtained.
7 
Fig. 5. Framework of the proposed algorithm.

Algorithm 1 Surrogate-assisted NSGA-II algorithm
Require: List of component sizes; Number of individuals 𝑀𝑎𝑥𝑃𝑜𝑝; Terminal generation 

number 𝑀𝑎𝑥𝐺𝑒𝑛; Configuration space ; Maximum computation time 𝑀𝑎𝑥𝑇 𝑖𝑚𝑒; Number 
of samples 𝑆𝑎𝑚𝑝𝑙𝑒𝑠;

Ensure: Pareto-front[Floorplan 𝜋, Area 𝑓𝑎𝑟𝑒𝑎, Operation time 𝑓𝑡𝑖𝑚𝑒, Trajectory 𝜁] 
1: 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒𝐿𝑖𝑠𝑡 ← Initialize();
2: for 𝑖 = 1 ∶ 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 do 
3: 𝑧init , 𝑧target ← RandomSampling();
4: 𝑂𝑇 ,  , 𝜁 ← RRT∗(, 𝑧init , 𝑧target ,𝑀𝑎𝑥𝑇 𝑖𝑚𝑒);
5: 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒𝐿𝑖𝑠𝑡[𝑖] ← 𝑂𝑇 ;
6: end for
7: 𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙 ← GenModel(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒𝐿𝑖𝑠𝑡);
8: P ← InitializePopulation(𝑀𝑎𝑥𝑃𝑜𝑝);
9: for 𝑖 = 1 ∶ 𝑀𝑎𝑥𝐺𝑒𝑛 do 
10: 𝒇1 ,𝒇2 , 𝒄1 ← ∅;
11: for each 𝑝 ∈ P do 
12: 𝜋, 𝑓𝑎𝑟𝑒𝑎 ← SequencePair(𝑝);
13: Z ← GetPickupAndPlacePosition(𝜋);
14: for each (𝑧init , 𝑧target ) ∈ Z do 
15: 𝑂𝑇 ,  ← Predict(𝑧init , 𝑧target , 𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙);
16: 𝑓𝑡𝑖𝑚𝑒 ← 𝑓𝑡𝑖𝑚𝑒 + 𝑂𝑇 ;
17: if  = 𝐹𝑎𝑙𝑠𝑒 then 
18: break
19: end if
20: end for
21: 𝒇1 ← 𝒇1 ∪ 𝑓𝑎𝑟𝑒𝑎;𝒇2 ← 𝒇2 ∪ 𝑓𝑡𝑖𝑚𝑒; 𝒄1 ← 𝒄1 ∪  ;
22: end for
23: P ← GenerationUpdate(P, 𝒇1, 𝒇2, 𝒄1);
24: Pareto-front ← GetPareto(P);
25: end for
26: Pareto-front, 𝜁 ← Recalculate(Pareto-front);
27: return  Pareto-front

4.5. Surrogate model

4.5.1. Selection of surrogate model
In building a surrogate model, training data is first created by 

random sampling. Here, the robot is given initial and target positions, 
RRT* is executed, and the robot’s operation time is sampled. The 
following three types of initial and target positions given were used 
and compared (see Fig.  6).

• The difference between the 𝑥− 𝑦 coordinates of the robot’s initial 
position and the target position (Fig.  6(a)).

• The difference between the 𝑟− 𝜃 coordinates of the robot’s initial 
position and the target position (Fig.  6(b)).

• The difference of each joint angle (𝐽1, 𝐽2, 𝐽3, 𝐽4, 𝐽5, 𝐽6) in the 
initial and target posture of the robot (Fig.  6(c)).
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Fig. 6. Three types of inputs when using the surrogate models. (a): the robot’s initial and target postures are given, and the difference between 𝑟 and 𝜃, expressed in polar 
coordinates of the end-effector’s position coordinates are used as input. (b): the difference between 𝑥 and 𝑦, expressed in Cartesian coordinates for the position coordinates of the 
end-effector, is used as input. (c): the difference between the posture angles of each robot, 𝐽1 , 𝐽2 ,… , 𝐽6 is used as input.
Table 2
Details of the robotic arm.
 Item Value  
 Manufacturer Niryo  
 Model Ned  
 Degrees of freedom 6  
 Reach 440 mm  
 Repeatability ±0.5 mm 
 Depth 200 mm  
 Width 200 mm  

4.5.2. Surrogate models
We implemented and compared 7 surrogate methods: MLP (Mul-

tiLayer Perceptron), Ridge regression, Lasso regression, Elastic net, 
Random forest, GBDT (Gradient Boosting Decision Tree), SVR (Support 
Vector Regression) for the regression model. Details and parameters of 
each method are introduced in the following sections. Each method was 
implemented using Scikit-learn (Pedregosa et al., 2011).

5. Computational experiments

5.1. Experimental conditions

This section conducts computational experiments to evaluate the 
proposed method. To examine the robustness and adaptability of the 
proposed method, we conducted experiments under various conditions. 

First, to build the surrogate model with high accuracy, we compared 
the accuracy of seven machine learning methods for the surrogate 
model, and we tested three types of feature sets for the surrogate model. 
Second, we compared the performance of our surrogate model with 
Izui’s method (Izui et al., 2013), which has been intensively studied in 
the literature (Lim et al., 2017; Liu et al., 2024). Third, we compared 
the performance of the surrogate-assisted NSGA-II with the RRT*-based 
NSGA-II (Kawabe et al., 2022) and Izui’s method in 10 different layout 
design problems. 

We conducted our physical experiments using a 6-axis robotic arm, 
Niryo Ned. Fig.  7 shows the experimental system with a 6-axis robot 
arm. The details of this robot are shown in Table  2. Robot Operating 
System (ROS) Melodic with Ubuntu 18.04.6 LTS is used for the platform 
to Niryo Ned drivers: https://github.com/NiryoRobotics. The footprint 
of the Ned is 200 [mm] square, however, if a parts box is placed 
immediately next to the robot, the robot cannot reach the parts box, 
so a margin of 40 [mm] is provided.

Table  3 shows the heights and widths of the robots, tables, and parts 
boxes to be placed, and the order in which the parts boxes are placed.

Although Table  3 shows the sizes of 10 parts boxes, we varied the 
number of parts boxes in the experiments to examine the adaptability 
of the proposed method. Fig.  8 shows a robotic cell with one robot, one 
assembly table and five parts boxes. 
8 
Fig. 7. Experimental system with Niryo Ned2 6-axis robotic arm.

Table 3
Size of components.
 Component 𝑖 Height [mm] Width [mm] Pick order 
 Robot 0 240 240 –  
 Assembly table 1 100 100 –  
 

Parts box

2 30 50 1  
 3 30 50 2  
 4 40 50 3  
 5 40 50 4  
 6 50 50 5  
 7 50 50 6  
 8 60 50 7  
 9 60 50 8  
 10 70 50 9  
 11 70 50 10  

The number of individuals, the terminal generation number, the 
crossover rate and the mutation rate are set to 100, 500, 1.0, respec-
tively, for the NSGA-II algorithm. 

5.2. Comparison of surrogate models

We compared seven surrogate methods (MLP, Ridge regression, 
Lasso regression, Elastic net, Random forest, GBDT, SVR) for the re-
gression model. Details and parameters of each method are introduced 
in Section 4.5.2. The surrogate model has three inputs: the difference 
between the initial robot hand position and the target position (polar 
and Cartesian coordinates), the difference between the initial robot 
posture and the target posture at each joint angle. The output of the 
surrogate model is the robot’s operation time, which is the same for 

https://github.com/NiryoRobotics
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Fig. 8. A robotic cell.

Fig. 9.  Coefficient of determination 𝑅2 for each method. The input to the regression 
model is the difference between the initial position of the robot hand (𝑟1 , 𝜃1) and the 
target position (𝑟2 , 𝜃2). The output is the robot’s operation time.

Fig. 10. Coefficient of determination 𝑅2 for each method. The input to the regression 
model is the difference between the initial position of the robot hand (𝑥1 , 𝑦1) and the 
target position (𝑥2 , 𝑦2). The output is the robot’s operation time.

Fig. 11. Coefficient of determination 𝑅2 for each method. The input of the regression 
model is the difference between the angles of each joint (𝐽1 , 𝐽2 , 𝐽3 , 𝐽4 , 𝐽5 , 𝐽6) in the 
robot’s initial posture and the angles (𝐽1 , 𝐽2 , 𝐽3 , 𝐽4 , 𝐽5 , 𝐽6) in the target posture. The 
output is the robot’s operation time.

all models. Figs.  9–11 show the coefficient of determination 𝑅2 of the 
models created by each method. The number of samples was 10,000, 
of which 8000 were training data and 2000 were test data. It is clear 
that models such as MLP, Random Forest, and GBDT can construct 
predictive models with high accuracy from the results.

5.3. Performance of the proposed surrogate models

This subsection examines the accuracy of the surrogate model in 
estimating the robot’s operation time. Methods such as mean squared 
error (MSE), mean absolute error (MAE), and coefficient of determina-
tion 𝑅2 are commonly used to evaluate the performance of regression 
models. Since the interpretation of MSE and MAE depends on the scale 
of the data, the coefficient of determination 𝑅2 is used to evaluate the 
performance of the surrogate model.  The coefficient of determination 
of the surrogate model created was compared with that of conven-
tional estimation models. The conventional estimation model in Eq.  (1) 
developed by Izui et al. (2013) is used as the estimated operation time.

The proposed surrogate model and Eq.  (1) were used to estimate 
the robot’s operation time. Figs.  12–13 show the robot’s operation time 
9 
Fig. 12. Coefficient of determination 𝑅2 of robot operation time using conventional 
estimation. Blue lines are the exact robot operation times, and gray dots are the 
operation times obtained using the estimation model. 𝑅2 = −0.80.

Fig. 13. Coefficient of determination 𝑅2 of robot operation time derived by using 
surrogate models. The surrogate model with a random forest method. Blue lines are 
the exact robot operation times, and gray dots are the operation times obtained using 
the estimation model. 𝑅2 = 0.98.

Fig. 14. Running Metrics for optimization calculations.

Fig. 15. Comparison of computation time for optimization calculations using RRT*-
based NSGA-II and surrogate-assisted NSGA-II.

from 5000 random input values compared to the exact robot’s operation 
times. The results show that the proposed surrogate model results in 
fewer measurement point errors than estimating the robot’s operation 
time using Eq. (1). On the other hand, Eq. (1) cannot be accurately 
estimate the operating time.
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Fig. 16. Comparison of Pareto solution obtained using Eq. (1) for estimating the robot’s operation time, RRT*-based NSGA-II considering the exact robot’s operation time, and 
SA-NSGA-II using surrogate models under different numbers of parts boxes.
5.4. Performance of multi-objective optimization

5.4.1. Convergence analysis
The convergence of the Pareto front is evaluated by using Run-

ning Metric (Blank and Deb, 2020) for the analysis. Running Metric 
computes the Inverted Generational Distance (IGD) of each generation 
using a certain population of generations as a reference point set. We 
constructed a reference point set for every 100 generations. It then 
visualizes the degree of improvement using the survival rate of the 
algorithm.

IGD is a performance metric used in multi-objective optimization 
to evaluate the quality of a set of generated solutions compared to a 
known set of true Pareto-optimal solutions. A lower IGD value indicates 
better convergence and diversity of the generated solutions toward the 
true Pareto front, with values close to zero indicating higher quality 
solutions. Let 𝐴 = {𝑎1, 𝑎2,… , 𝑎

|𝐴|} be the solution set obtained by the 
algorithm and 𝑍 = {𝑧1, 𝑧2,… , 𝑧

|𝑍|

} be the set of reference points, then 
IGD is calculated using the following equation. 

𝐼𝐺𝐷 (𝐴) = 1
|𝑍|

(

|𝑍|

∑

𝑖=1
𝑑𝑖

𝑝
)1∕𝑝

(21)

where 𝑑𝑖 is the Euclidean distance (𝑝 = 2) between 𝑧𝑖 and the nearest 
reference point 𝑎𝑖 from 𝑧𝑖.

Fig.  14 shows the Running Metric for the optimization calculations. 
The results show that the curves obtained when IGD is calculated for 
400 generations are almost identical to those obtained when IGD is 
calculated for 500 generations.

5.4.2. Performance of surrogate-assisted NSGA-II
This section examines the performance of the proposed surrogate-

assisted NSGA-II (SA-NSGA-II) in terms of computation time and the 
quality. 

First, to evaluate the computation time, we compare the computa-
tion time of SA-NSGA-II and RRT*-based NSGA-II (NSGA-II) developed 
by Kawabe et al. (2022). Fig.  15 shows the changes in the respective 
computation times for optimization computations with SA-NSGA-II 
and RRT*-NSGA-II when the number of parts boxes is increased. The 
number of updated generations and the number of individuals per 
generation for NSGA-II are the same for both methods. The computa-
tion time for SA-NSGA-II includes the time required to recalculate the 
Pareto solution with RRT* after the optimization calculation using the 
surrogate model. The average of two experiments for each method and 
condition is obtained. The computational results show that the com-
putation time for NSGA-II increases linearly with the number of parts 
boxes. The computation time for SA-NSGA-II is significantly shorter 
than that of the NSGA-II. This is due to the computational burden to 
calculate the motion planning of RRT* algorithm for all individuals to 
obtain an accurate operation time.

Second, we compare the quality of the Pareto solution obtained 
by SA-NSGA-II, NSGA-II, and Izui’s approach (Izui et al., 2013).  IGD 
10 
Table 4
IGD of the Pareto solution obtained by SA-NSGA-II and optimization by Eq.  (1) as the 
reference point for the Pareto solution of NSGA-II.
 Number of parts boxes SA-NSGA-II Estimated by Eq.  (1) 
 1 0.6478 0.6485  
 2 0.3312 0.3255  
 3 0.1803 0.3106  
 4 0.1368 0.2290  
 5 0.1237 0.2386  
 6 0.0495 0.1185  
 7 0.0440 0.1530  
 8 0.0473 0.1360  
 9 0.0121 0.0867  
 10 0.0275 0.0923  
 Average 0.1600 0.2339  

represented by Eq.  (21) is used to compare the Pareto solutions derived 
by SA-NSGA-II and NSGA-II. The solution set 𝐴 in Eq.  (21) is the set of 
Pareto solutions obtained by SA-NSGA-II, and the reference point set 𝑍
is the set of Pareto solutions obtained from NSGA-II. Table  4 shows the 
value of IGD for each number of parts boxes.

Fig.  16 shows all Pareto solutions obtained by each method for each 
case. From the results in Fig.  16, it can be seen that the Pareto solution 
is far from the optimal value when the operating time is estimated. 
On the other hand, Pareto solutions for SA-NSGA-II predicted by the 
surrogate model are close to Pareto solutions for NSGA-II, which uses 
accurate robot operation times. This is also confirmed by the smaller 
average value of IGD for SA-NSGA-II in Table  4. This is because the 
robot’s operation time is precisely estimated using a highly accurate 
surrogate model, and the Pareto solution is recalculated by the motion 
planning after the NSGA-II computations. 

This section compares the performance of the RRT*-based approach, 
surrogate-assisted approach, and the Izui’s approach (Izui et al., 2013). 
The experimental results show that the Izui’s approach has the worst 
performance in terms of accuracy and optimization results. The RRT*-
based approach has the best performance in terms of accuracy and 
optimization results. However, it suffers from high computational cost. 
In addition, its computational cost increases rapidly as the number of 
parts boxes increases. This approach is suitable for small-scale prob-
lems and sufficient computational resources. On the other hand, the 
surrogate-assisted approach has a good balance between accuracy and 
computational cost. It can reduce the computational cost by 1/400 com-
pared to the RRT*-based approach with higher accuracy. Furthermore, 
the experimental results show that the surrogate-assisted approach can 
find solutions that are comparable to the RRT*-based approach in a 
very short computation time. This approach is suitable for large-scale 
problems and limited computational resources. 

6. Conclusion

A surrogate-assisted-NSGA-II (SA-NSGA-II) has been proposed for 
simultaneous layout design and motion planning for RCMSs. Com-
putational experiments show that the surrogate model has sufficient 
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accuracy with 98% of the robot’s operation time. The SA-NSGA-II 
can reduce the 40 h of computation time into seconds while the IGD 
between the exact Pareto solution is 0.1715. The proposed SA-NSGA-
II can obtain the Pareto solutions within 1/400 of computation time, 
which is significantly less computation time than the conventional 
RRT*-based NSGA-II with higher accuracy.  The findings of this study 
have a number of important implications for future practice. Several 
limitations and future research directions of the present study should 
be noted. First, this study focuses on the single robot system for the pick 
and place operation in the RCMSs. By applying the proposed method 
to RCMSs with multiple robots, the efficiency and feasibility of the 
manufacturing systems can be improved. It is interesting to explore 
how to implement multi-robot systems while avoiding collisions and 
improving the efficiency of the manufacturing system. One of the key 
issues is that it is necessary to develop an efficient motion and path 
planning algorithm to solve a conflict-free motion planning problem 
within a limited computation time. Second, this study assumes the 
manufacturing system is deterministic. However, the manufacturing 
system is often stochastic due to uncertainty of the order, the processing 
time, and the machine failure. In the future, discussing the dynamic 
cellular manufacturing system (DCMS) with the proposed method is 
important. 
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