o') Available online at www.sciencedirect.com
ADVANCES IN

SPACE

RESEARCH
(a COSPAR publication)

Check for

ScienceDirect

ELSEVIER Advances in Space Research 76 (2025) 4815-4837

www.elsevier.com/locate/asr

Spatiotemporal evolution of ecosystem carbon storage under
land use/land cover dynamics in the coastal region of Central Vietnam

Viet Hoang Ho ““*, Hidenori Morita °, Thanh Ha Ho ¢, Felix Bachofer ¢

& Graduate School of Environmental and Life Science, Okayama University, 1 Chome-1-1 Tsushimanaka, Kita Ward, Okayama 700-8530, Japan
® Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1 Chome-1-1 Tsushimanaka, Kita Ward, Okayama
700-8530, Japan
€ University of Agriculture and Forestry, Hue University, 102 Phung Hung Str, Hue City 53000, Viet Nam
4 German Aerospace Center (DLR), Earth Observation Center, 82234 Wessling, Germany

Received 6 April 2025; received in revised form 12 June 2025; accepted 25 August 2025
Available online 26 August 2025

Abstract

Ecosystem carbon storage is a cost-effective strategy for global climate change mitigation, and its fluctuation is markedly shaped by
land use/land cover (LULC) dynamics. Taking Danang city as an example of Central Coastal Vietnam, this study aims to assess LULC
changes and analyze the spatiotemporal evolution of carbon storage from 2023 to 2050 under four LULC change scenarios, including
natural trend scenario (NTS), ecological protection scenario (EPS), economic development scenario (EDS), and cropland protection sce-
nario (CPS), by integrating the support vector machine-cellular automata-Markov (SVM-CA-Markov) model and the InVEST model.
The Optimal Parameters-based Geographical Detector (OPGD) model was subsequently employed to elucidate the impacts of driving
factors on the spatial distribution of carbon storage. The results showed that, from 2007 to 2023, Danang city experienced a dramatic
back-and-forth transformation between LULC types, with the predominant transitions being from natural forest to acacia tree-
dominated plantation forest (6492.31 ha), and from cropland to settlements, acacia tree-dominated plantation forest, and other land
(5483.05 ha, 3763.66 ha, 2762.35 ha, respectively). Between 2023 and 2050, LULC transformations in Danang city are projected to yield
varying degrees of carbon storage levels across different scenarios. Specifically, carbon storage is anticipated to dwindle by 0.221 Mt,
0.223 Mt, and 0.298 Mt under NTS, EDS, and CPS, respectively, while enhancing by 0.141 Mt under EPS. Regarding the spatial dis-
tribution of carbon storage, high values will be chiefly found in the western high-elevation mountainous region, while low values will be
concentrated mostly in the eastern lower-lying areas of the city. Additionally, elevation and temperature acted as the two most significant
driving factors influencing the spatial distribution of carbon storage, with Q values of 0.88 and 0.86 (p-value < 0.05), respectively. For
interaction detection, the combination of elevation and soil exhibited a synergistic reinforcement effect on the spatial partitioning of car-
bon storage, with a high Q value of 0.9566 (p-value < 0.05). Our study highlights the necessity of ecological conservation measures in
Danang city in the on-track pursuit of national net-zero carbon emissions by 2050.
© 2025 The Author(s). Published by Elsevier B.V. on behalf of COSPAR. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Carbon storage in terrestrial ecosystems is a crucial eco-
logical function that contributes to cost-effective strategies
for mitigating global climate change (Deng et al., 2017,
Singh et al., 2015; Ussiri and Lal, 2017). Nevertheless, land
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use/land cover (LULC) changes driven by human-induced
activities such as deforestation, agricultural expansion, and
urbanization, have pronouncedly impacted this process
both in vegetation and soils, resulting in an escalation in
carbon losses through carbon dioxide (CO,) emissions
and, in turn, exacerbating the challenges of climate change
(Houghton et al., 2012; Pielke et al., 2011; Zhu et al., 2022).
Specifically, LULC changes are widely recognized as the
second most significant anthropogenic source of carbon
emissions after fossil fuel combustion (Ussiri and Lal,
2017), with approximately 1.2 + 0.7 Gt C yr™', accounting
for approximately 10.81 % of total annual anthropogenic
CO, emissions during the 2013-2022  period
(Friedlingstein et al., 2023). The CO, emissions from
LULC changes are typically caused by conversions
between LULC types that differ in carbon storage capaci-
ties (Schulp et al., 2008; Yan et al., 2024). Generally, forests
contain the largest ecosystem carbon content, followed by
grassland, arable lands, and other non-forest lands
(Corbera et al., 2010; Mauya et al., 2019; Olorunfemi
et al., 2020). As a result, converting from land with higher
carbon storage leads to a loss of carbon storage, and vice
versa (Houghton, 2018; Huang et al., 2023; Nilsson and
Schopfhauser, 1995; Ussiri and Lal, 2017). Accordingly,
the attempts at spatiotemporally explicit carbon storage
evolution from the perspective of LULC structural changes
and under various future scenarios have received increasing
attention as a valuable strategy to optimize land-based cli-
mate change alleviation (Jiang et al., 2022; Kura and
Beyene, 2020; Zheng and Zheng, 2023).

As modeling LULC change becomes increasingly criti-
cal, numerous land change modelers (LCM) have been cre-
ated to facilitate the examination of prospective LULC
changes and their determinants, as well as to aid in LULC
planning and policy formulation (Dezhkam et al., 2016;
Nyamekye et al., 2021; Omar et al., 2014). The extant
approaches for LCM primarily are empirical and statistical
(e.g., Markov chains and regression) models, dynamic
models (e.g., cellular automata, agent-based model, and
system dynamic), and integrated (e.g., CLUE) models
(Guan et al., 2011). Among these, cellular automata (CA)
have become the most widely adopted approach due to
their efficiency, simplicity, transparency, and capacity to
capture the dynamic nature of LULC changes (Kura and
Beyene, 2020; Munthali et al., 2020). However, CA empha-
sizes controlling the spatial pattern of LULC change by
considering the configuration of neighboring cells and tran-
sition rules which can be detected through an analysis of
driving  forces (e.g., population density, geo-
morphometric data, distance to commercial area, distance
to main roads) and calibration algorithms (e.g., multilayer
perceptron (MLP), logistic regression, support vector
machines (SVM)), rather than controlling the temporal
changes among LULC types as a Markov chain process
would (Gharaibeh et al., 2020; Ghosh et al., 2017; Guan
et al., 2011; Kim, 2010; Mustafa et al., 2018). Thus, inte-
grating the capabilities of the Markov chain and CA repre-
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sents a robust approach for modeling spatial and temporal
variations in LULC change within complex systems
(Munthali et al., 2020; Solaimani and Darvishi, 2024). In
recent advances, the CA-Markov chain simulation model
combined with ecological models e.g., the Integrated Valu-
ation of Ecosystem Services and Trade-offs (InVEST), Cen-
tury, and Biome-BGC, has emerged as a reliable technique
that provides promising results for assessing the impacts of
LULC dynamics on ecosystem carbon storage (Verma
et al.,, 2024). The InVEST model with its advantages,
including the use of a limited number of parameters, rapid
operation, ability to reflect the relationship between LULC
change and carbon storage, and capacity to spatially repre-
sent the allocation and dynamic variations of carbon stor-
age, has prevalently been utilized (Garcia-Ontiyuelo et al.,
2024; Yan et al., 2024). More importantly, InVEST is
appraised to be successful in evaluating the impacts of
diverse policies and planning strategies on regional carbon
storage, enabling the balance between overexploitation and
conservation (Verma et al., 2024). Existing studies have
demonstrated the high utility of linking CA-Markov and
InVEST models in assessing the effects of LULC change
scenarios on carbon storage (Bacani et al., 2024; Lei
et al., 2024; Yan et al., 2024; Zhao et al., 2019).

The coastal zone, which serves as an interface between
terrestrial and marine environments (Zhang et al., 2022),
possesses several distinctive features. Firstly, coastal areas
are among the most rapidly urbanized geographical regions
with a high concentration of human activities (Zheng et al.,
2020). Secondly, as a considerable carbon reservoir, the
coastal region’s carbon pool is crucial to the carbon cycle
across various spatial scales. That is to say, the alteration
of landscape configurations and carbon fixation processes,
attributed to the considerable LULC changes in coastal
areas, typically results in carbon losses exceeding those of
other regions (Zhu et al., 2022). On the one hand, in the
context of Vietnamese coastal areas, since the Doi Moi
(Renovation, related to the nationwide economic reform)
policy in 1986, the influences of globalization have
prompted the economy to develop rapidly, making it one
of the less developed but rapidly developing regions where
human activities and global changes vigorously interact
(Liang et al., 2022; M. et al., 2012; Phuong and Richard,
2011; Tuan, 2022). Specifically, in most coastal regions of
Vietnam, especially in the Central Coastal area, there has
been a continuous and rapid rise in construction land, with
its proportion rising from 2.72 % in 2000 to 4.40 % in 2020,
converted from either natural landscapes such as forests
and grassland or agricultural lands (Liang et al., 2022),
thereby contributing the terrestrial carbon losses. On the
other hand, according to Kissinger et al. (2021), during
the same period (post-1986), Vietnam’s terrestrial ecosys-
tem underwent a remarkable turnaround from net loss to
net regrowth in forest cover, primarily through conversion
from unproductive cultivated land to acacia tree-
dominated plantation forestry and some natural regenera-
tion, expanding from 9.4 million ha in 1990 to 14.8 million
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ha by 2015. This growth is ascribed to various ecological
engineering policies and state-sponsored programs imple-
mented to promote the conversion of different LULC types
to forest lands, thereby improving terrestrial carbon stor-
age. The best examples of these policies/programs are the
Forest Land Allocation (FLA) policy (Pham et al., 2023),
the Vietnam Forestry Development Strategy 2006-2020
which set a statutory target to boost the total forest cover
(including plantations) to 47 % of the national land area in
2020 (V.H. et al., 2020), and the payments for forest
ecosystem services (PFES) which represent one alternative
and voluntary way to secure financial sources for multi-
functional and protective forest (Cochard et al., 2020).
These two conflict transition trend patterns (conversion
from and to natural landscapes) consequently caused the
complex spatial and temporal LULC change in Vietnam’s
Central Coastal region, leading to uncertainties in estimat-
ing terrestrial carbon storage evolution. Therefore, accu-
rately simulating LULC change and unraveling its
relationship with ecosystem carbon storage are essential
for the stewardship of existing land-based carbon stocks
in Central Coastal Vietnam.

The main objectives of this study are: (1) to assess the
transitions of LULC from 2007 to 2023, (2) to analyze
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the carbon storage evolution under multiple LULC change
scenarios from 2023 to 2050, (3) to determine the influential
degrees of driving factors on the spatial distribution of car-
bon storage in the Coastal region of Central Vietnam. The
findings in our study are expected to provide reliable refer-
ences and precise data support for coastal landscape-scale
management and decision-making in the research site.

2. Materials and methods
2.1. Study area

This study was conducted in Danang city (between
15°55 to 16°13" North and 107°49’ to 108°20" East)
(Fig. 1), a geographically elongated and narrow region that
is recognized as a vibrant urban center within the Key Eco-
nomic Zone of Central Coastal Vietnam (Hoang Khanh
Linh and Van Chuong, 2015). The study area is character-
ized by topographic heterogeneity, with altitudes being up
to 1663 m above sea level and spreading from the delta
region in the east to the mountains in the west. As a trop-
ical monsoon climate, the area experiences two distinct
annual seasons: a dry period from January to July and a
rainy period from August to December (Ho et al., 2024).
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In 2023, the forest area comprised the largest proportion
(more than half) of the city’s total area. Danang has expe-
rienced rapid socioeconomic transformation following the
implementation of the Doi Moi policy and its administra-
tive separation from Quang Nam Province in 1997, which
led to its designation as a centrally governed city. Since
then, it has become one of the most densely populated,
industrialized, and urbanized centers in Vietnam’s Central
Coastal region (M. et al., 2012), making it an ideal case for
examining the impacts of LULC change on ecosystem ser-
vices, particularly carbon sequestration.

2.2. Dataset

2.2.1. Historical LULC maps

The 10-m resolution LULC map of the study area for
2023 was generated using the random forest classifier based
on multi-source remote sensing data (Sentinel-1, Sentinel-2,
and Shuttle Radar Topography Mission (SRTM) Digital
Elevation Model (DEM) data) in Google Earth Engine
(GEE, https://code.earthengine.google.co.in). 427 ground
truth points collected in 2023 using a global positioning
system (GPS) through field surveys and visual interpreta-
tion of high-resolution Google Earth imagery were split
into 70 % for training and 30 % for validating the LULC
classification. The map legend was based on six [PCC
(2006) classes, namely forest, cropland, grassland, wet-
lands, settlements, and other land. Given the considerable
escalation in plantation forest area observed in central
Vietnam over the research period (Cochard et al., 2017;
Paudyal et al., 2020), we subdivided the forest class into
natural forest and plantation forest, using the plantation
area delineations obtained from the Danang Department
of Forest Protection. The generated 2023 LULC classifica-
tion map had a satisfactory accuracy, with overall accuracy
(OA) and Kappa coefficient (K) exceeding the commonly
accepted threshold of 85 % and 0.80, respectively
(Nyamekye et al., 2021).

Besides, LULC maps with a 10-m spatial resolution for
the study area, covering the years 2007 and 2020, were
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obtained from the Japan Aecrospace Exploration Agency
(JAXA, https://www.eorc.jaxa.jp). We subsequently reclas-
sified twelve inherent LULC types in the dataset into seven
classes to align with the above 2023 LULC map. The his-
torical LULC maps of the research site are presented in
Fig. 5.

2.2.2. Driving factors

In this research, the driving factors, including elevation,
slope, soil, mean annual precipitation (MAP), mean annual
temperature (MAT) distance to main roads (DTR) and dis-
tance to rivers (DTW), population density (PD), distance
to the central business district area (DTC), and normalized
difference vegetation index (NDVI), were derived from var-
ious data sources. The details of these driving factors data
and their spatial distributions are given in Table 1 and
Fig. 2.

All driving force data were then resampled to 10 m spa-
tial resolution to align with the spatial resolution of LULC
maps. For LCM, the multicollinearity issue among the
driving variables was assessed and determined by absolute
Pearson’s correlation coefficients (r), with a threshold set at
values exceeding 0.80 (Zhi et al., 2021).

2.2.3. Carbon density data

In this study, the forest carbon density data of Danang
city was calculated using in situ data from a field sample
survey in 2023, while the carbon density of other LULC
types was obtained by referring to Avitabile et al. (2016)
and Dondini et al. (2023). A total of 104 sampling plots
were established to collect forest field data using a system-
atic unaligned sampling design, which combines the spatial
regularity of systematic sampling with the randomness of
simple random sampling to minimize spatial bias
(McRoberts et al., 2015). The procedure for identifying
these sampling locations involved two key steps: (1) a 2.5
km x 2.5 km grid was generated based on the forest admin-
istrative map provided by the Danang Department of For-
est Protection, and (2) within each grid cell, a geographic
coordinate was randomly selected using a random point

Table 1

Detailed information on driving factors.

Data type Data source and processing Resolution

Elevation Elevation and slope were extracted from SRTM DEM data in GEE (https://code.carthengine.google.co.in) 30 m

Slope

MAP MAP and MAP were downloaded directly from the WorldClim dataset (https://worldclim.org) 1 km

MAT

DTR DTR was generated using the road layer from the forest administrative map provided by the Danang Department of Forest —
Protection

DTW DTW was calculated using SRTM DEM data in GEE (https://code.carthengine.google.co.in) 30 m

PD PD was obtained from the WorldPop dataset (https://hub.worldpop.org) 1 km

DTC A field visit identified Hai Chau district as the central business district of the city, notable for its accessibility and high 10 m
concentration of specialized goods and services compared to other areas. After that, DTC was created using the Hai Chau
district’s boundary

NDVI NDVI was calculated using Sentinel-2 MSI level-2A image collection in GEE (https://code.earthengine.google.co.in) 10 m
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Fig. 2. Spatial distribution of driving forces for LULC change, including elevation (a), slope (b), soil (c), MAT (d), MAP (e), DTR (f), DTW (g), DTC (h),

and PD (i).

generator in QGIS. The resulting sampling points were
then transferred to portable GPS devices (Garmin
GPSMAP 64) and used for navigation during fieldwork.
Since carbon storage in forest ecosystems consists mainly
of above- and belowground biomass, dead organic matter,
and soil organic carbon (Zhu et al., 2022), we designed
nested plots (Fig. 3) at designated locations to collect these
data. Each plot consisted of a 900-m? main plot with three
1-m? subplots systematically placed along a 14.14-m inter-
val transect, extending from the southwest to the northeast
corner of the main plot.

Aboveground biomass encompasses all living vegeta-
tion, including trees (diameter at breast height — DBH
above 5 cm) and non-tree vegetation (shrubs and herbs).
DBH of all trees at 1.3 m above ground was measured
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using D-tapes within the main plot, while all shrubs and
herbs in the three subplots were cut and weighed directly
in the field. Mixed subsamples of herbs and shrubs were
then transported to the laboratory to determine moisture
content. The carbon stored in dead organic matter was
quantified by measuring the aggregation of leaf litter and
dead wood biomass. Leaf litter within three subplots was
weighed in the field, with evenly mixed subsamples col-
lected for laboratory moisture content analysis. Deadwood
(standing and lying) was measured within the same plots as
living trees, and its decomposition levels were simultane-
ously recorded (Level 1 — trees with both branches and
twigs, and Level 2 — trees without branches or twigs).
For standing dead trees, those at Level 1 were measured
similarly to living trees, while Level 2 trees had their height,
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Fig. 3. Sampling plot design for collecting information on carbon pools.

ground-level diameter, and top diameter recorded. Lying
deadwood with a DBH above 10 cm was assessed using
the line-intersect method, recording diameters and density
classes (sound, intermediate, rotten), with representative
wood discs collected for each class to determine density.
Soil samples of 30 cm depth were collected using soil cores
and probes in three subplots, and these samples were sub-
sequently bagged, labeled, and brought to the laboratory
for organic carbon analysis.

The procedure for laboratory analysis and calculation of
carbon stock density from various pools followed the
guidelines of Pearson et al. (2007). Accordingly, subsam-
ples of herbs, shrubs, leaf litter, and wood discs were
oven-dried to determine their constant dry weights. Specif-
ically, herbs, shrubs, and leaf litter were dried at 70 °C for
48 h, while wood discs were dried at the same temperature
for 72 h. Aboveground biomass density (AGBD) was cal-
culated by aggregating the biomass density of tree
(AGBDy.), herb (HBD), and shrub (SBD). Among these,
AGBDy,. was calculated using Eq. (1) developed for ever-
green broadleaf forests in the South Central Coastal ecore-
gion of Vietnam by Huy et al. (2016), while HBD and SBD
were calculated using Eq. (2).

~ >77,0.104189 x DBH; '

Amainplot

x 10

AGBD,,. (t.ha™") (1)
where DBH; is the diameter at breast height of tree i (cm)
and Amainplot 1S the main plot area (mz).

w erb/shrub/litter fie
HBD/SBD/LBD (t.ha™") = —Lebihnb/liver jietd ”2” btier field
subplots

Wherb /shrub |/ litter—sample(dry)

Wherb/ shrub/ litter—sample(fresh)

x 10 ()
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where Whershrub/titeer field 1S the fresh weight of herb/shrub/
leaf litter sample in three subplots (kg), Aguplots 1S the total
area of three subplots (mz), Wierb shrublitter—sample(dry) 18 the
oven-dried weight of herb/shrub/leaf litter sub-sample
(2), and Wherb/shrub/litterfsample(fresh) is the fresh Weight of
herb/shrub/leaf litter sub-sample (g).

Belowground biomass density (BGBD) was estimated
using Eq. (3) developed by Cairns et al. (1997) for tropical
landscapes.

BGBD(t.ha ') = exp(—1.0587 + 0.8836 x InAGBD) (3)

Biomass of dead organic matter density (DBD) was esti-
mated by the sum of leaf litter biomass density (LBD),
standing deadwood biomass density (SDBD), and lying
deadwood biomass density (LDBD). LBD, SDBD at the
decomposition Level 1, SDBD at the decomposition Level
2, and LDBD were calculated by Eq. (2), Eq. (1), Eq. (4),
and Eq. (5), respectively.

(WD X Enhi (ri_ +”i + rblxr,[)]) 4)

2, 2
(WDX[nzdl—f—dz;—L +d1}> 5)

n

SDBD(t.ha ') =)

LDBD(tha') ="
mass

3
WD(t/m ) ~ volume (6)
where WD is the wood density for each density class (t/m?),
mass 1s the mass of oven-dried wood disc (t), volume is the
volume of the fresh wood disc (m?), %, is the height of dead-
wood i (m), 7, is the radius at the base of deadwood i (cm),
r, is the radius at the top of deadwood i (cm), d; is diame-
ters of intersecting pieces of deadwood i (cm), and L is the
length of line (m).
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After that, biomass carbon densities, namely above car-
bon (Cupove), below carbon (Cyeow), and dead carbon
(Cgeaq), were estimated by applying a conversion factor
of 50 % to the respective AGBD, BGBD, and DBD.

Soil organic carbon density (SOCD) was calculated
using the following equation:

SOCD(t.ha ") = (SBD x D x C) x 100 (7)

where SBD is the soil bulk density of fine fraction (g/cm?),
D is soil depth (cm), and C is carbon concentration data
(%).

For SBD determination, samples from soil cores were
dried in an oven at 105 °C for a minimum of 48 h and cal-
culated using Eq. (8). For C determination, the materials
taken by soil probes were air-dried, sieved through a
2 mm sieve, and thoroughly mixed before being measured
by an MT-700 CN CORDER machine (Yanaco, Japan).
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<

SBD(g/cm?) (8)
where ODM is the oven-dry mass of fine fractions (g), CV is
the core volume (cm®) CFM is coarse fragment mass (g),
and RFD is rock fragment density (given as 2.65 g/cm?).

2.3. Modeling LULC change with SVM-CA-Markov models

In the current study, the SVM-CA-Markov model was
proposed for predicting LULC change using the LCM
module of TerrSet software. The process was presented in
Fig. 4, occurring in three steps: (1) applying Markov chain
analysis to 2007 and 2020 LULC maps for computation of
transition probabilities and transition areas, (2) using SVM
to calibrate 2007-2020 LULC changes with the driving
forces to explore the set of rules for LULC transition
potentials on a yearly basis by considering the effects of
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the neighboring LULC states, and (3) using the CA model
to predict the spatial distribution of LULC from the tran-
sition probabilities and the transition potential maps.

The Markov chain model, based on empirical statistics,
is promising for LULC change modeling as it quantita-
tively calculates pixel transition probabilities over time
using a transition probability matrix, providing a founda-
tion for future predictions (Marko et al., 2016; Subedi
et al., 2013; Yan et al., 2024). The formulae for the Markov
chain are as follows:

St+] = P,’j X St (9)
P Pn Pin
P Pn Doy
Pui P2 DPun

where S;;; and S; are the LULC states at moments ¢+ 1
and ¢, respectively; P;; is the transfer probability matrix; n
is the number of LULC classes and }_7 ,p,, = 1 for each
row i.

Generally speaking, Markov alone is not sufficient for
LULC change modeling due to the lack of spatial knowl-
edge related to each LULC category, therefore, it is neces-
sary to integrate with the CA model (Ghosh et al., 2017).
The CA model is a spatiotemporally discrete dynamical
system that effectively simulates LULC changes over time
by applying transition rules to generate spatial distribu-
tions of LULC states (Lei et al., 2024; Omar et al., 2014;
Yan et al., 2024). According to Yang et al. (2008), defining
transition rules in the CA model is challenging due to the
complex and non-linear nature of LULC dynamics. To
effectively address this concern, LCM carries a hybrid
approach as it combines the properties of machine learning
(e.g., MLP and SVM) with the merits of the CA model
(Mustafa et al., 2018; Verma et al., 2024). In this study,
we used SVM to couple with the CA model. The main
advantage of SVM is its ability to map input data to a
higher-dimensional space using a kernel function, optimiz-
ing a balance between margin maximization and error tol-
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(Cervantes et al., 2020; Mustafa et al., 2018; Sun, 2014).
The future LULC states are defined in the CA model as fol-
lows (Verma et al., 2024):

Si1 = f(Si,N,con(.)) (11)

where f represents the transition function, N denotes all
cells in the Moore neighborhood, and con(.) accounts for
constraints and incentives aligned with the development
orientations and policies of the study area. In our case
study, four LULC change scenarios, namely natural trend
scenario (NTS), ecological protection scenario (EPS), eco-
nomic development scenario (EDS), and cropland protec-
tion scenario (CPS), were proposed (Table 2). These
scenarios were designed based on the development goals
set in the Danang People Committee’s Decision No.2609/
QD-UBND approving the action plan to respond to cli-
mate change in Danang city for the period 2021-2030
and a vision to 2050, and Prime Minister’s Decision
No.1287/QD-TTg approving Danang city plan for the per-
iod 2021-2030 and a vision to 2050.

The simulated 2023 LULC map was compared with the
reference 2023 LULC map to validate the SVM-CA-
Markov model. Kappa statistics, including Ko, Kiocations
Kirata, and Kgangarg, Were calculated by following the for-
mulas developed by Pontius and Millones (2011) and uti-
lized to assess the model’s accuracy in terms of the
location and quantity of correctly classified cells. Once
these Kappa indices were deemed acceptable (above 0.80)
(Kura and Beyene, 2020), the LULC maps for 2030,
2040, and 2050 were further simulated.

2.4. Modeling carbon storage with InVEST

This study utilized the InVEST model to estimate the
spatial and temporal distribution of carbon storage in
Danang city from 2023 to 2050. The model required three
key inputs: the 2023 LULC map, the projected LULC
maps generated through LCM, and a carbon pool table
containing data from four primary carbon pools. The
mathematical representation of calculating carbon storage

erance to handle complex nonlinear relationships  (Ciorg) is detailed as follows (Yan et al., 2024):

Table 2

Future scenarios of LULC change for Danang city.

Scenarios Description

NTS Under NTS, the demand for LULC is assumed to remain unconstrained and continue following the existing trend evolution observed
during the 2007-2020 period.

EPS The study site includes two ecologically protected areas, Ba Na — Nui Chua Nature Reserve and Son Tra Nature Reserve (Fig. 1). Under
EPS, an absolute constraint is imposed to prevent the conversion of natural forest within these reserves. Additionally, the probability of
natural forest outside the reserves being converted to other LULC types is reduced by 40 %. Likewise, the probability of plantation forest
being converted to other LULC types is reduced by 40 % (except natural forest).

EDS Under EDS, the probability of land conversion from other LULC types to settlements is assumed to be augmented by 20 %

CPS Under CPS, the probability of cropland converting to settlements is assumed to diminish by 70 %, while its conversion to other LULC types

is reduced by 40 %
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n

Cstarage — Z(Cabm!ej + Cbelow,i + Cdead,i + SOCDZ) X Si

=1
(12)
where i is a given LULC type, n is the number of LULC

types and equals seven in this study, and S; refers to the
area of LULC type i.

2.5. Optimal parameters-based geographical detector model
and spatial autocorrelation analysis

Optimal Parameters-based Geographical Detector
(OPGD) model was chosen to quantitatively analyze the
effects of the seven driving factors (including elevation,
slope, soil, MAT, MAP, PD, and NDVI) and the interac-
tions between these factors in the spatial differentiation of
carbon storage through measuring Q value (Song et al.,
2020). The study area was divided into a 300 x 300 m grid,
and the average values of carbon storage and driving fac-
tors extracted within grid cells were used as input data
for implementing OPGD in the GD package in the R envi-
ronment. For optimal spatial data discretization, we
applied grid-search to pinpoint the best combination of
parameters, including spatial data discretization method
(including equal interval, geometrical interval, natural
breaks, quantile), and break number of spatial strata (rang-
ing from 3 to 7).

In this study, global Moran’s I and LISA local Moran’s
I were employed for spatial autocorrelation analysis
(Anselin, 1995), and both indices were calculated in the

Advances in Space Research 76 (2025) 4815-4837

Spdep package in the R environment. Among these, the
global Moran’s I values ranging from —1 to 1 were used
to reflect the overall distribution characteristics of carbon
storage. The LISA local Moran’s I was subsequently used
to identify statistically hot spots, cold spots, and spatial
outliers of carbon storage through five quadrants, namely
High-High Cluster, High-Low Cluster, Low-High Cluster,
Low-Low Cluster, and Not Significant.

3. Results
3.1. Carbon density calculation

The carbon density varied considerably across different
LULC types and carbon pools (Table 3). Natural forest
exhibited the highest carbon density (236.45 t.ha™"), with
biomass carbon being considerably greater than soil carbon
(131.00 and 105.45 t.ha™!, respectively). Compared to natu-
ral forest, plantation forest store approximately half the
carbon density (129.81 t.ha™!), with the soil carbon pool
contributing the largest share (76.07 t.ha™"). Both grassland
and cropland showed moderate carbon density (60.80 and
46.40 t.ha™!, respectively), likely due to their agricultural
characteristics. Similar to plantation forest, the majority
of carbon in these LULC types was concentrated in the soil
carbon pool (53.00 and 40.80 t.ha™", respectively). Whereas,
in wetlands, settlements, and other land categories, where
vegetation is largely absent, carbon density had the least fig-
ures among LULC types and came radically from the soil
carbon pool with the same value of 43.20 t.ha™".

Table 3

Carbon density of various LULC types in Danang city.

LULC types Carbon density (t.ha™") Source

Cabove Chelow Cdead SOCD Total C

Natural forest 104.94 19.54 6.52 105.45 236.45 Field data

Plantation forest 42.12 8.72 2.90 76.07 129.81 Field data

Cropland 4.00 1.00 0.60 40.80 46.40 Avitabile et al. (2016)

Grassland 6.50 1.30 0.00 53.00 60.80 Avitabile et al. (2016) and Dondini et al. (2023)

No vegetation (wetlands, settlements, 0.00 0.00 0.00 43.20 43.20 Avitabile et al. (2016)

and other land)

Table 4

Changes in LULC types in Danang city from 2007 to 2023.

LULC types Natural forest Plantation forest Cropland Grassland Wetlands Settlements Other land

2007 Area (ha) 51546.07 11094.83 22485.94 0.00 2183.88 8745.39 1809.17
Proportion (%) 52.67 11.34 22.98 0.00 2.23 8.94 1.84

2020 Area (ha) 49284.83 17657.67 9608.31 77.20 2641.13 14720.26 3875.88
Proportion (%) 50.36 18.04 9.82 0.08 2.70 15.04 3.96

2023 Area (ha) 46319.38 18706.71 10497.44 74.11 1900.17 15007.29 5360.18
Proportion (%) 47.33 19.11 10.73 0.08 1.94 15.33 5.48

Area change from 2007 to 2023 (ha) —5226.69 7611.88 —11988.50 74.11 —283.71 6261.90 3551.01
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3.2. Historical LULC changes

Table 4 demonstrates the total area covered by each
LULC class, along with the corresponding percentage
and changes (gain/loss) from 2007 to 2023. The results
showed that natural forest consistently remained the dom-
inant LULC type in Danang city, occupying nearly half of
the total area, with a coverage of 52.67 % in 2007, 50.36 %
in 2020, and 47.33 % in 2023. Furthermore, remarkable
increases were recorded in plantation forest (7611.88 ha),
settlements (6261.90 ha), and other land (3551.01 ha).
Whereas, the opposite was true for cropland and natural
forest when these LULC types dropped by 11988.50 ha
and 5226.69 ha, respectively. Unlike the mentioned LULC
type above, the area changes of wetlands and grassland
were marginal, solely with 283.71 ha and 74.11 ha,
respectively.

According to the historical LULC maps and diagram
presented in Fig. 5, Danang city experienced substantial
LULC transformations from 2007 to 2023. The loss of
cropland was the largest during the 16-year period, reach-
ing nearly half of its total area with 12998.74 ha. Specifi-
cally, 5483.05 ha, 3763.66 ha, 2762.35 ha, 605.73 ha,
344.65 ha, and 39.30 ha of cropland were transferred into
settlements, plantation forest, other land, natural forest,
wetlands, and grassland, respectively. Natural forest pos-
sessed the second largest roll-out region of 7027.87 ha, with
6492.31 ha, 448.93 ha, 47.95 ha, 27.04 ha, 9.87, and 1.77 ha
of land being transferred into plantation forest, other land,
settlements, cropland, grassland, and wetlands, respec-
tively. The total shrinking area of wetlands was
696.70 ha, mainly converted into other land, cropland,
and settlements. From a roll-in perspective, plantation for-
est had the largest transfer area over the past 16 years from
2007, which was 10384.93 ha, primarily sourced from nat-
ural forest and cropland, covering 6492.31 ha and
3763.66 ha, respectively. Settlements also had a large
expansion area of 6661.98 ha, but its main source solely
came from cropland with 5483.05 ha. In addition, other
land was steadily accumulated during this period as its area
continuously went up, mostly converting from cropland
(2762.35 ha) and plantation forest (1027.85 ha).

3.3. LULC change modeling

In this study, to avoid the effects of multicollinearity
issues on spatial prediction of LULC changes, we carried
out a variable selection procedure in the following two
steps. Firstly, SVM using nine driving variables, as shown
in Fig. 2, was implemented to discover the influence order
based on skill measures. Secondly, r values were calculated,
and each set of highly correlated variables (r > 0.8) was
simplified by removing one variable that had a lower level
of influence among the correlated variables. As a result,
MAT and MAP were eliminated since they were highly
correlated with elevation (0.95 and 0.86, respectively),
and elevation had a stronger influence on LULC changes.
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Therefore, seven driving variables (elevation, slope, soil,
DTR, DTW, DTC, and PD) were retained for LCM. Nine
major transition sub-models, as shown in Fig. 6, were inte-
grated with selected driving factors for the calibration pro-
cess of SVM-CA to establish transition rules. The Markov
chain model was employed to capture LULC transitions by
evaluating gains, losses, and persistence over 13-year inter-
vals from 2007, generating both the transition probability
matrix and the transition area matrix. Future LULC sce-
narios were then simulated by incorporating SVM-CA
and Markov. The simulated validation for assessing the
functionality, acceptance, and reliability of the prediction
was conducted to examine the effectiveness of the SVM-
CA-Markov model by comparing simulated and reference
LULC maps of 2023. The accuracy results of the simulated
LULC map in 2023 are presented in Table 5. Among the
seven LULC types, natural forest, plantation forest, grass-
land, and settlements showed high agreement, with accu-
racy ranging from 93.94 % to 96.35 %, indicating that
these types in the simulated LULC map closely correspond
to the reference LULC map. However, the simulated map
shows that natural forest, grassland, and settlements were
overestimated by 6.45 %, 4.17 %, and 5.36 %, respectively,
while plantation forest was underestimated by 3.65 %. On
the other hand, results from cropland, wetlands, and other
land showed a lower agreement with accuracies ranging
from 69.30 % to 76.48 %, suggesting moderate misclassifi-
cation between these and other LULC types.

Apart from determining the prediction accuracy of the
model through a comparison of reference and simulated
LULC maps of 2023, an attempt was made to examine
its accuracy with the kappa coefficients (Table 6). The com-
puted kappa coefficients (K, = 0.9276, Kjocation = 0.9408,
Kiirata = 0.9408, and Kngara = 0.9072), were all above the
acceptable threshold of 0.8, implying the SVM-CA-
Markov model can effectively predict future LULC in the
study area.

Following the validation of satisfactory simulation
accuracy, the SVM-CA-Markov model was adopted to
project the spatial distribution of LULC in Danang city
from 2023 to 2050 under four distinct scenarios, as illus-
trated in Fig. 6. In general, the simulated spatiotemporal
dynamics of LULC types exhibit significant heterogeneity
across the four scenarios. Furthermore, these transforma-
tions will be predominantly concentrated in the central sec-
tion (mainly the transition between natural forest and
plantation forest, and between cropland and plantation
forest) and lower sections (mainly the transition to settle-
ments from other LULC classes) of the research site.

The simulation results in Fig. 7 demonstrate that
Danang city’s overall LULC patterns will undergo notice-
able changes across the four scenarios, with the exception
of grassland, which will remain largely unchanged. From
2023 to 2050, NTS will maintain the LULC transition
trends and development trajectories observed in the pre-
ceding phase, with change magnitudes remaining relatively
consistent. The most pronounced expansion will be
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Fig. 5. Spatiotemporal distributions of LULC types in 2007 (a), 2020 (b), and 2023 (c); and Sankey diagram of LULC transformation during 2007-2023 (d).

observed in settlements, increasing by a total of  constraints to limit the uncontrolled conversion of ecolog-
5116.68 ha, and it will be followed by plantation forest ically significant land, leading to enhanced conservation of
and wetlands with 2459.67 ha and 341.09 ha, respectively. natural forests within the nature reserves (Ba Na — Nui
Conversely, cropland, natural forest, and other land will ~ Chua and Son Tra) and a slight expansion of both natural
have their areas declined by the respective amount of  and plantation forests outside these protected areas, with
5368.01 ha, 2156.12 ha, and 393.31 ha in the same 559.47 ha and 586.36 ha, respectively, in the next 27 years.
research period. Under EPS, this scenario will impose  In contrast, EDS, which prioritized economic develop-
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Fig. 6. Spatiotemporal distributions of LULC types and their changes under multiple scenarios in Danang city from 2023 to 2050.

ment, will accelerate LULC transitions toward settle-
ments, resulting in the most extensive expansion of settle-
ment areas among all scenarios. Specifically, the elevated
area of settlements in EDS is set to 6358.61 ha, mean-
while, these in NTS and EPS are projected to be the same
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by 5116.68 ha, and that in CPS is expected by 2518.59 ha.
Notably, CPS will exhibit the smallest reduction in crop-
land area among the four scenarios, with a shrinkage of
only 1205.69 ha, thereby ensuring a more stable level of
food security.
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Table 5
Accuracy results of the simulated 2023 LULC map.
LULC type 2023 LULC Reference (ha) 2023 LULC Simulated (ha) Difference(ha) Difference (%) Accuracy(%)
Natural forest 46319.38 49306.05 —2986.67 —-6.45 93.94
Plantation forest 18706.71 18024.74 681.97 3.65 96.35
Cropland 10497.44 8028.73 2468.71 23.52 76.48
Grassland 74.11 77.20 -3.09 -4.17 96.00
Wetlands 1900.17 2742.02 —841.85 —44.30 69.30
Settlements 15007.29 15810.95 -803.66 -5.36 94.92
Other land 5360.18 3875.59 1484.59 27.70 72.30
Total 97865.28 97865.28 0.00
Table 6
Validation metrics of the simulated 2023 LULC map.
Information Allocation Information of Quantity

Nojn] Medium|[m] Perfect[p]
Perfect [P(x)] P(n) = 0.5212 P(m) = 0.9756 P(p) = 1.0000
Perfect Stratum [K(x)] K(n) = 0.5212 K(m) = 0.9756 K(p) = 1.0000
Medium Grid [M(x)] M(n) = 0.4823 M(m) = 0.9367 M(p) = 0.9233
Medium Stratum [H(x)] H(n) = 0.1250 H(m) = 0.3175 H(p) = 0.3146
No [N(x)] N(n) = 0.1250 N(m) = 0.3175 N(p) = 0.3146

Agreement Chance = 0.1250
Agreement Quantity = 0.1925
Agreement Strata = 0.0000
Agreement Grid cell = 0.6192
Disagree Grid cell = 0.0389
Disagree Strata = 0.0000
Disagree Quantity = 0.0244
Ko = 0.9276

Kiocation = 0.9408

Kistrata = 0.9408

Kstandara = 0.9072

3.4. Carbon storage change modeling

The results from the InVEST model (Fig. 9) illustrate
varying degrees of change in carbon storage and density
across Danang city under four simulated scenarios from
2023 to 2050. Generally speaking, both carbon storage
and density are projected to dwindle in most scenarios,
except for EPS. Besides, CPS is anticipated to yield the
most substantial decrease in carbon storage, while NTS
and EPS show a relatively similar pattern in trend and
pace. By 2050, the study area is expected to retain carbon
storage within the range of 14.990-15.429 Mt, with carbon
density varying between 153.17 and 157.66 t.ha™". Relative
to 2023, Danang city’s carbon storage by 2050 is forecast to
reduce by 0.221 Mt under NTS, 0.223 Mt under EDS, and
0.298 Mt under CPS, while enhancing by 0.141 Mt under
EPS. Similarly, the carbon density by 2050 is anticipated
to drop by 2.26 tha™' in NTS, 2.28 t.ha™' in EDS, and
3.05 tha™! in CPS, whereas EPS is expected to exhibit a
slight increase of 1.44 t.ha™'.

According to the spatial differentiation of carbon stor-
age from 2023 to 2050 shown in Fig. 8, carbon loss and car-
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bon sequestration regions will take place in line with
LULC change areas. To uncover the spatial agglomeration
characteristics of carbon storage in Danang city in 2050
across four scenarios, we adopted the spatial autocorrela-
tion analysis. Under NTS, EPS, EDS, and CPS, the global
Moran’s I values of carbon storage were 0.939, 0.942,
0.939, and 0.940, respectively (all p-values < 0.05), indicat-
ing the existence of strong spatial clustering overall. The
LISA Local Moran’s I result of cluster and outlier analysis
(Fig. 10) show that the spatial distributions of carbon stor-
age under four scenarios will have relative resemblance.
Specifically, carbon storage presents a high — not signifi-
cant — low spatial distribution pattern from west to east.
Hot spots (High-High Cluster) will be primarily concen-
trated in the western parts of Danang city, corresponding
to the distribution of undisturbed natural forests in high-
altitude mountainous areas. Whereas, cold spots (Low-
Low Cluster) will be predominantly found in settlements
in the eastern regions of the study area. Furthermore, the
number of hot spots will be moderately more than its coun-
terpart in all scenarios, and EPS will emerge subtly more
hot spots than in other scenarios.
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Fig. 7. Changes in LULC types under multiple scenarios in Danang city from 2023 to 2050.

The results in Table 7 show that irrespective of pro-
jected years and LULC simulation scenarios, natural for-
est will be the dominant LULC type within Danang city,
accounting for more than 70 % of total carbon storage,
and the LULC type that will contribute most to the
changes in carbon storage over time. Considering changes
in carbon storage across various LULC types, variations
will arise due to LULC transitions. However, such carbon
storage changes for each LULC type will differ across sce-
narios, and the overall tendency will conform to the
changes in the LULC type of corresponding scenarios.
Specifically, the carbon storage in natural forest and crop-
land will remarkably reduce from 2023 to 2050 in NTS,
by 0.510 Mt and 0.249 Mt, respectively, while plantation

4828

forest and settlements reveal a pronounced rise of 0.319
Mt and 0.221 Mt, respectively. Under EPS, while crop-
land, plantation forest, and settlements will possess the
same change pattern as NTS, the carbon storage of natu-
ral forest is set to accumulate by 0.132 Mt, indicating that
the adoption of ecological protection measurements will
partly contribute to achieving a degree of carbon seques-
tration. Whereas, the amount of sequestered carbon in
settlements is forecast to climb the most under EDS
(0.275 Mt), and the carbon loss from cropland will be mit-
igated most effectively under CPS (0.056 Mt), compared
to other scenarios. Notably, carbon storage changes in
grassland, wetlands, and other land will not be obvious
in the four mentioned scenarios by 2050.
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Fig. 8. Spatiotemporal distributions of carbon storage and its changes under multiple scenarios in Danang city from 2023 to 2050.

3.5. Analysis of the effects of spatial distribution driving shows the result of the optimal discretization process,

forces on carbon storage and the parameter combinations with the largest Q value

were chosen. As a result, the quantile method was chosen

In this study, the OPGD model was performed to to discretize elevation, MAT, and NDVI into seven inter-

explore the potential driving factors (including elevation,  vals, and to discretize¢ MAP and PD into six intervals,

slope, soil, MAT, MAP, PD, and NDVI) affecting the spa-  meanwhile, slope and soil were discretized into six intervals
tial distribution of carbon storage in Danang city. Fig. 11 using the standard deviation method.
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Fig. 9. Changing storage (a) and density (b) of carbon under multiple scenarios in Danang city from 2023 to 2050.
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Fig. 10. Local spatial autocorrelation analysis of carbon storage in Danang city under NTS (a), EPS (b), EDS (c), and CPS (d) by 2050.

The results from the single-factor analysis demonstrate
that all driving factors significantly influenced the spatial
distribution characteristics of carbon storage in the study
area (all p-values < 0.05). Fig. 12a illustrates the influencing
ranking of driving factors individually in explaining the spa-
tial differentiation of carbon storage. As can be seen, the
explanatory power of elevation was the strongest among
the driving factors, with a Q value of 0.88. This was fol-
lowed by MAT (Q value = 0.86), NDVI (Q value = 0.83),
slope (Q value = 0.78), PD (Q value = 0.68), and MAP
(Q value = 0.64). Soil had the smallest drive, with a Q value
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of 0.59. According to the interaction factor analysis
(Fig. 12b), the spatial features in carbon storage in Danang
city were not merely affected by individual factors, but
rather shaped by the cumulative impact of dual-factor inter-
actions. In addition, most of the combined effects of the two
factors were unable to enhance the explanatory capability
compared to their individual effects, with the exception of
the synergy between elevation and soil. Thus, with a high
value of 0.9566, the combination of elevation and soil pro-
vided a robust interactive explanatory power for the spatial
differentiation of carbon storage in the study area.
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Table 7
Change in carbon storage of different LULC types in Danang city from 2023 to 2050 (Mt).
Year LULC type

Natural forest Plantation forest Cropland Grassland Wetlands Settlements Other land
2023 11.570 2.364 0.375 0.005 0.118 0.683 0.173
NTS2030 11.399 2.498 0.245 0.005 0.126 0.775 0.181
EPS2030 11.675 2.417 0.238 0.005 0.126 0.775 0.164
EDS2030 11.399 2.498 0.228 0.005 0.126 0.803 0.169
CPS2030 11.399 2.401 0.358 0.005 0.121 0.719 0.169
NTS2040 11.204 2.614 0.160 0.005 0.132 0.856 0.172
EPS2040 11.689 2.448 0.148 0.005 0.132 0.856 0.149
EDS2040 11.204 2.614 0.132 0.005 0.132 0.900 0.153
CPS2040 11.204 2.483 0.327 0.005 0.125 0.766 0.156
NTS2050 11.060 2.683 0.126 0.005 0.133 0.904 0.156
EPS2050 11.702 2.440 0.112 0.005 0.133 0.904 0.133
EDS2050 11.060 2.683 0.091 0.005 0.133 0.958 0.135
CPS2050 11.060 2.548 0.319 0.005 0.126 0.792 0.142
Change in NTS 2023-2050 —-0.510 0.319 —0.249 0.000 0.015 0.221 —-0.017
Change in EPS 2023-2050 0.132 0.076 —-0.263 0.000 0.015 0.221 —0.041
Change in EDS 2023-2050 -0.510 0.319 —-0.284 0.000 0.015 0.275 —-0.039
Change in CPS 2023-2050 -0.510 0.184 —0.056 0.000 0.007 0.109 —0.032

4. Discussion

4.1. Analyzing the historical LULC change and its impacts
on carbon storage

Maintaining carbon storage in terrestrial ecosystems has
been a long-standing area of interest, as it is essential for
elucidating the carbon cycle dynamics and developing effec-
tive policies to mitigate emissions (Ismail and Gaganis,
2024; Lei et al., 2024). Nevertheless, dramatic LULC
changes induced by anthropogenic factors have remark-
ably transformed landscape patterns and terrestrial carbon
sequestration in vegetation and soil, consequently leading
to fluctuations in ecosystem carbon storage (Yan et al.,
2024). Previous research indicates that the effect of LULC
change on ecosystem carbon storage is primarily deter-
mined by the carbon sequestration potential of different
LULC types and the patterns of land conversion (Zhu
et al., 2022). That is to say, carbon storage tends to accu-
mulate when LULC types with low carbon density are con-
verted to those with higher carbon density, and vice versa
(Houghton, 2018; Huang et al., 2023; Nilsson and
Schopfhauser, 1995; Ussiri and Lal, 2017). Therefore, ana-
lyzing the association between LULC changes and carbon
storage can effectively track its evolution (Nayak and
Mandal, 2019; Yan et al., 2024). Fig. 5 demonstrates that
in the period between 2007 and 2023, Danang city wit-
nessed dramatic back-and-forth LULC changes, with pre-
dominant transitions from natural forest to plantation
forest (6492.31 ha) and from cropland to settlements, plan-
tation forest, and other land (5483.05, 3763.66, and
2762.35 ha, respectively). Among these, only the transition
from cropland to plantation forest resulted in carbon
sequestration in Danang city, whereas all other transitions
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led to carbon loss, given the ranking order of carbon stor-
age capacity from high to low: natural forest, plantation
forest, cropland, and non-vegetation (settlements and other
land) as shown in Table 3. Consequently, a marked decline
in carbon storage was ineluctable in Danang city over the
course of 16 years. Moreover, plantation forest experienced
the greatest increase in land area, primarily at the expense
of natural forest (6492.31 ha) and cropland (3763.66 ha).
These LULC conversions were driven by two factors. First,
economic modernization, including agricultural intensifica-
tion on the productive lands, industrialization, and urban-
ization, resulted in the abandonment of less productive
farmlands, which then reverted to plantation forestry
(Cochard et al., 2017). Second, the scarcity of forests cat-
alyzed a socio-political transition toward enhanced invest-
ment in forest conservation and regeneration, largely
through forest policies and government-sponsored initia-
tives promoting monoculture plantations of non-native
species (Cochard et al., 2017). The key policy initiatives
included (i) FLA policy accelerated the conversion from
natural forests and arable land to acacia tree-dominated
plantation forestry for land improvement and economic
gains in Central Vietnam (Pham et al., 2023), and (ii) the
reforestation program (two billion hectares reforestation,
Prime Minister’s Decision 147/2007/QD-TTg) in an effort
to reduce natural forest degradation and enhance carbon
storage between 2007 and 2015 in the central region of
Vietnam invoked the conversion of degraded natural for-
ests to planted forests (Paudyal et al., 2020; Sdlek and
Vylupek, 2012). Besides, the conversion from cropland to
settlements and other land (5483.05 and 2762.35 ha) repre-
sented another major LULC change pattern in the research
site. The observed changes were largely driven by the large-
scale encroachment of agricultural land to accommodate
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Fig. 11. Spatial data discretization for driving variables.

urban expansion and industrial development, reflecting the
broader trajectory of urbanization and industrialization in
Danang city (Tuan, 2021).

4.2. Carbon storage evolution under multiple LULC change
scenarios

The SVM-CA-Markov model and the InVEST model
were employed to assess the impact of LULC change
imposed on the storage of carbon in Danang city in four
scenarios (NTS, EPS, EDS, and CPS) from 2023 to 2050.
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Generally, under these simulated scenarios, the area of
plantation forest, settlements, and wetlands, along with
their respective carbon storage, will increase, while those
of the remaining LULC types will decrease (Fig. 7 and
Table 7). Additionally, these changes in carbon storage will
mostly occur in the mid-elevation regions of Danang city’s
central and lower areas (Fig. 8).

On the one hand, the simulated spatial distribution of
LULC types and associated carbon storage projections
for the next 27 years indicates that carbon storage in the
region of interest is inclined to decrease under NTS,
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EDS, and CPS. Under NTS, given the influences of LULC
change ratios and driving forces from the historical period,
anthropogenic LULC changes are anticipated to drive a
transition from high-carbon-density ecosystems to low-
carbon-density environments, such as the transition from
natural forest to plantation forest and from cropland to
settlements. Consequently, this shift will be responsible
for carbon storage reduction in the study area in the
absence of policy-based planning constraints. This result
is conformable to previous studies which also took place
in coastal areas. For example, Zhu et al. (2022) investigated
the influence of LULC change on ecosystem carbon stor-
age in Chinese coastal areas and discovered that a persis-
tently accelerated urbanization process would result in a
declining trend in carbon storage from 2020 to 2050.
Zheng and Zheng (2023)’s research on coastal regions of
Shandong Province (China) projected a noticeable decline
in carbon storage from 2020 to 2030, attributing it to the
expansion of built-up land and the corresponding reduc-
tion in cropland and forest area, without considering any
further interventions. Notably, EDS possesses a trend
and pace of carbon storage variation in Danang city from
2023 to 2050 that is forecast to be relatively consistent with
NTS, revealing that augmenting the transition from other
LULC categories to settlements for economic development
orientation will not significantly modify the inherent
decreasing trend of carbon storage. This finding is inconsis-
tent with other scholars’ conclusions (Li et al., 2023; Zhu
et al., 2023). Of the three scenarios with declining carbon
storage, the CPS will exhibit the most significant loss in
carbon storage in the next nearly three decades, stemming
from the transition from cultivated lands to acacia planta-
tion forestry at a crawl. This finding is not in accord with
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most previous studies in the literature. For instance, Zhu
et al. (2023) promulgated that if strict adherences are taken
to protect arable land, the projected reduction in carbon
storage would be only half of that predicted under an
urban development scenario. Lei et al. (2024) also con-
firmed that although the CPS would scale down the carbon
storage in Hainan Island from 2020 to 2050, the pace of the
downward trend would be less pronounced than under the
natural development scenario. The strongest carbon stor-
age reduction driven by CPS in our study indicates that
limiting the controlled conversion of cropland to other
LULC classes can adversely impact carbon storage,
although descending the pressure on Danang city’s food
security. Thus, instead of imposing restrictions on arbitrary
conversion in arable land in the context of accelerated
urbanization and industrialization in the study area, alter-
native solutions such as agricultural intensification, agricul-
tural specialization, market liberalization, and technical
innovations should be taken into consideration to boost
productivity (Huyen and Giang, 2024), while concurrently
still lower reduction of carbon storage through the change-
over of ineffective cropland to plantation forestry.

On the other hand, the carbon storage is prone to
expand under EPS due to the constraints in refraining from
encroachment on forest land by other LULC categories. In
other words, the implementation of ecological protection
policies is observed to be favorable for constraining the
conversion of high-carbon density LULC types to low-
carbon density LULC types, fostering the stable develop-
ment of LULC types with high carbon sequestration capac-
ity and augmenting the overall carbon storage capacity in
Danang city. The result is consistent with the findings of
Yan et al. (2024), Zhu et al. (2023), Yang et al. (2024),
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and Lei et al. (2024), who reported that the scenario with
ecological conservation policies will be able to either esca-
late or mitigate the substantial dwindling in carbon storage
under the scenario of without any ecological conservation
policies. The study results reveal that EPS, with its possibil-
ity of facilitating carbon sequestration, can partially con-
tribute to realizing the country’s commitment to
achieving the net-zero carbon emission target by 2050
through carbon neutrality with removals from LULC
change, and forestry, which is heralded in the Vietnamese
Prime Minister’s Decision No0.896/QD-TTg.

4.3. Driving factors of spatial distribution of carbon storage

Relevant research indicates that the spatial distribution
of carbon storage in terrestrial ecosystems is influenced
by a combination of natural and anthropogenic factors,
including topography, climate conditions, and vegetation
characteristics (Lei et al., 2024; C. Wang et al., 2022; Yan
et al., 2024). However, the possible carbon storage-driven
factors are likely to be locally unique, leading to variations
in the relationships between carbon storage and its driving
variables across different geographical regions (Fryer and
Williams, 2021; Nie et al., 2024; Pereira et al., 2015). Our
study identified that the driving factors used in OPGD
model analysis (including elevation, slope, soil, MAT,
MAP, PD, and NDVI) had a strong impact on the spatial
distribution of carbon storage, with each factor’s Q value
surpassing 0.5 (p-values < 0.05, Fig. 12a). Among these,
elevation and MAT were the most influential on the distri-
bution characteristics of carbon storage in Danang city,
with Q wvalues achieving 0.88 and 0.86, respectively.
According to the literature, higher elevations generally har-
bor more diverse and dense vegetation due to cooler tem-
peratures and distinct microclimates, which facilitate
greater biomass accumulation and carbon sequestration.
Furthermore, these areas are often less accessible and thus
less impacted by deforestation and other human activities,
enabling natural vegetation to flourish (Li et al., 2023; Nie
et al., 2024). This is the reason why Danang city exhibits a
pattern of carbon storage that was highly in line with the
distribution characteristics of elevation and MAT. Specifi-
cally, high carbon storage values were concentrated in the
Ba Na — Nui Chua Nature Reserve situated in the western
high-altitude mountainous regions, characterized by low
temperatures and dominated by evergreen tropical vegeta-
tion. In contrast, low carbon storage values were primarily
distributed in the eastern areas with lower elevations and
higher temperatures, predominantly encompassing crop-
land and settlements. The powerful impact of elevation
on ecosystem carbon storage conforms to the conclusions
of previous studies. Lei et al. (2024) proclaimed that eleva-
tion, along with LULC intensity and slope, was the major
factor influencing the spatial variability of carbon storage
on Hainan Island, China. Similarly, Nie et al. (2024) in
the research about providing insights into the direction
and intensity effects of independent variables on carbon
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storage distribution in Fujian Province (China) claimed
that factors such as elevation, slope, and annual precipita-
tion were identified as the most influential variables gov-
erning the spatial and temporal variation in carbon
storage distribution within Fujian Province, with each fac-
tor accounting for over 50 % of the explanatory power.
Regarding MAT, its strong influence on the spatial distri-
bution of ecosystem carbon storage as in our study’s find-
ing is consistent with Xu et al. (2018), who affirmed that
MAT exerted obvious impacts on the spatial patterns of
carbon storage in China’s terrestrial ecosystems. Whereas,
Lei et al. (2024), Yan et al. (2024), and Nie et al. (2024) had
an opposite perspective when they argued that MAT was
the minor factor for the spatial variance of carbon storage.

Similar to the findings of previous studies (Lei et al.,
2024; C. Wang et al., 2022; Yan et al., 2024), our study’s
interaction detection results indicate that the combined
impact of two driving factors could surpass the effect of a
single factor in spatially differentiating carbon storage.
Among all pairwise interactions of seven factors, only the
combination of elevation and soil had a synergistic
enhancement effect on the spatial partitioning of carbon
storage in the study site.

5. Conclusion

The study employed the SVM-CA-Markov model to
simulate LULC dynamics in Danang city, considering four
scenarios, including NTS, EPS, EDS, and CPS. The
InVEST model was subsequently utilized to analyze the
spatiotemporal patterns of carbon storage evolution.
Finally, the driving factors of the spatial differentiation of
carbon storage were evaluated by using the OPGD model.
The following conclusions were obtained:

(i) During the period from 2007 to 2023, Danang city
witnessed a substantially mutual transformation
between LULC types, with the transitions from natu-
ral forest to plantation forest, and from cropland to
settlements, plantation forest, and other land being
predominant.

(i1) Compared with 2023, the carbon storage of Danang
city in 2050 will shrink by 0.221 Mt, 0.223 Mt, and
0.298 Mt under NTS, EDS, and CPS, respectively,
while enhancing by 0.141 Mt under EPS. Spatially,
the higher-elevation mountainous regions in the west
are projected to have the greatest carbon storage val-
ues, whereas the lower-lying eastern areas are
expected to exhibit the lowest values.

(iii) Elevation and MAT were identified as the most influ-
ential individual factors driving the spatial distribu-
tion of carbon storage. However, the interaction
between elevation and soil properties exhibited a
mutually reinforcing effect.

The findings of this study demonstrate the potential of
integrating the SVM-CA-Markov and InVEST models as
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a robust framework for simulating the evolution of ecosys-
tem carbon storage under the influence of LULC dynam-
ics. Practically, the scenario-based projections of carbon
storage presented in this study offer valuable support for
local authorities and urban planners in making informed
LULC decisions that balance socioeconomic development
with ecological conservation. Furthermore, the study pro-
vides a scientific foundation for national policymakers to
develop tailored strategies that promote sustainable devel-
opment and enhance carbon sequestration in Vietnam’s
Central Coastal region, thereby contributing to the
achievement of national carbon neutrality commitments.

Although the linked SVM-CA-Markov and InVEST
models effectively simulate the impacts of LULC change
on ecosystem carbon storage, several key limitations
should be acknowledged. First, the SVM-CA-Markov
model does not explicitly account for planning and policy
interventions in simulating past LULC transitions and spa-
tial neighborhood rules, even though regional LULC pat-
terns are also shaped by local policies and governance
structures (Yan et al., 2024). This drawback may reduce
the realism and predictive accuracy of LULC simulations
in policy-sensitive regions like Danang city. Second, the
InVEST model is primarily designed for large-scale assess-
ments and focuses on differences in carbon density between
LULC types, while overlooking key ecological processes
such as vegetation age, photosynthetic capacity, and micro-
bial activity (Li et al., 2023; K. Wang et al., 2022). These
processes significantly influence carbon sequestration
potential over time, and their omission may compromise
the accuracy of long-term carbon storage estimates. To
address these limitations, future research should determine
how institutional and policy-related drivers can be incorpo-
rated into the LCM to improve the comprehensiveness and
realism of LULC simulations. Additionally, the integration
of dynamic carbon models that account for vegetation suc-
cession and ecosystem processes would improve the tempo-
ral and spatial accuracy of carbon storage estimates in the
InVEST model.
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