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Abstract
Background  Preventing oral infections, such as oral caries and periodontal disease, helps reduce the risks of various 
systemic diseases. In this study, the polysaccharide pullulan produced by the black yeast Aureobasidium pullulans was 
modified in combination with the cationic surfactant cetylpyridinium chloride (CPC) to create a local drug delivery 
system, and its antibacterial potential on oral bacteria was examined in vitro.

Methods  Pullulan was phosphorylated at the CH2OH residue of α6 in the maltotriose structure and mixed with 
CPC. Bacterial attachment of cariogenic Streptococcus mutans on hydroxyapatite plates (HAPs) treated with the 
phosphorylated pullulan (PP) and CPC compound (0.01% PP and 0.001– 0.03% CPC, and vice versa) was assessed 
by observing bacteria using a field emission scanning electron microscope (FE-SEM) and quantified through 16 S 
rRNA amplification via real-time polymerase chain reaction (PCR). Additionally, the quartz crystal microbalance (QCM) 
method was employed to evaluate the sustained release of CPC.

Results  PP-CPC compound maintained significant bactericidal activity even at 0.01%, which is one-fifth of the 
conventional applicable concentration of CPC. Additionally, a residual mixture was detected by the hydroxyapatite 
sensor of the crystal oscillator microbalance detector, suggesting an unknown molecular interaction that enables the 
sustained release of CPC after attachment to hydroxyapatite.

Conclusions  The combination of PP and CPC may contribute to the low concentration and effective prevention of 
oral infections, such as dental caries.
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Background
Biofilms composed of diverse bacterial flora within the 
oral cavity adhere to tooth surfaces and the gingival 
sulcus [1, 2]. These oral bacteria, such as Streptococcus 
mutans and Porphyromonas gingivalis, not only contrib-
ute to infections such as dental caries and periodontal 
disease, but they are also implicated in systemic condi-
tions, including atherosclerosis [3, 4] and aspiration 
pneumonia, which are particularly prevalent among the 
elderly [5, 6]. Thus, the prevention of oral infectious dis-
eases plays a crucial role in maintaining both oral and 
systemic health. Reducing attachment and growth of 
early colonizers of the oral microbiome may be an advan-
tage for healthcare providers in intervening in these 
patients less frequently.

Antibacterial agents effectively inhibit biofilm forma-
tion and prevent oral infections [7, 8]. Various dental 
materials and oral care products that incorporate anti-
bacterial agents have been investigated and developed. 
Among these, chlorhexidine gluconate (CHX), cetyl-
pyridinium chloride (CPC), and isopropylmethylphenol 
(IPMP) have been widely applied to dental materials. 
CHX and CPC are cationic compounds, while IPMP is 
a neutral compound. CHX-containing products are con-
sidered the gold standard for chemical plaque control 
in Europe and the United States [9–13]; however, high 
concentrations applied to oral mucosa have been associ-
ated with anaphylactic reactions [14, 15]. Although IPMP 
exhibits inferior antibacterial activity compared to CHX 
and CPC, it demonstrates superior biofilm permeability 
[16, 17]. CPC possesses potent bactericidal activity even 
at low concentrations and is commonly used not only in 
dentifrices and mouthwashes but also in throat lozenges. 
However, its limited adhesion to tooth surfaces restricts 
its efficacy [18, 19]. When used in mouthwashes, the 
bactericidal effect of CPC is transient, raising concerns 
regarding its sustainability. Additionally, in Japan, the 
Pharmaceutical Affairs Law mandates that the concentra-
tion of CPC in oral care products must not exceed 0.05%. 
Although this concentration is lower than that associated 
with anaphylactic reactions, achieving sufficient antibac-
terial activity at even low concentrations would be pref-
erable for long-term use. Therefore, the development of 
an antibacterial local drug delivery system (LDDS) that 
ensures sustained efficacy at low concentrations is essen-
tial for preventing oral infections.

To address this issue, we focused on pullulan as a deliv-
ery material. Pullulan is a polysaccharide with the general 
formula {[C6H10O5]n}m, composed of maltotriose units 
(degree of polymerization: 100-5,000), linked via α−1,6 
glycosidic bonds. It is synthesized by Aureobasidium 
pullulans (A. pullulans) using starch as a substrate. In 
Japan, pullulan has been widely utilized as a food addi-
tive for over 20 years, serving as a thickener, stabilizer, 

glue, and adhesive. Additionally, it is classified as gener-
ally recognized as safe (GRAS) in the United States [20]. 
The functionality of pullulan can be further enhanced 
by introducing charged or reactive groups, enabling its 
application in various fields such as food, cosmetics [21, 
22], and multifunctional drug delivery systems [23, 24]. 
Among these modifications, negatively charged phos-
phorylated pullulan (PP), particularly its sodium salt 
(sodium PP) [25–27], has been reported to adhere to 
hydroxyapatite, the primary component of teeth (Fig. 1), 
and undergo gradual autolysis, thereby releasing the 
encapsulated compounds [28, 29]. Based on these prop-
erties, we hypothesized that pullulan could serve as a car-
rier for antibacterial agents in LDDS. This study aimed to 
evaluate the potential of the PP-CPC complex as LDDS 
by analyzing the sustained release of CPC and its inhibi-
tory effect on the growth of Streptococcus mutans (S. 
mutans), a key cariogenic bacterium.

Materials and methods
Preparation of phosphorylated pullulan (PP) and starches
The synthesis of phosphorylated polysaccharides was 
performed according to the report by Yonehiro et al. [25]. 
8.5 g of pullulan 21 {[C6H10O5]n}m, extracted from A. pul-
lulans (Hayashihara Co., Ltd., Okayama, Japan), was dis-
solved in 38 mL of distilled water. Two hundred mL of 
a 1 mol/L aqueous solution of phosphoric acid was then 
added, and the reaction was carried out at 170 ˚C for 5 h. 
The phosphorylated compound was recovered by etha-
nol precipitation [25, 30]. As previously reported [25], 
chemical phosphorylation occurred at the CH2OH resi-
dues at the α−6 position of the maltotriose units within 
the pullulan structure, yielding sodium PP (Fig.  1). For 
comparison, additional phosphorylated polysaccharides 
were examined as control materials, including phosphor-
ylated polysaccharide Sunus 514 (derived from the tapi-
oca starch family) and Trecomex AET4 (derived from the 
potato starch family), both obtained from Nihon Den-
pun Kogyo KK (Kagoshima, Japan). Additionally, glucose 
6-phosphate (Merck, Darmstadt, Germany), a metabolite 
involved in glycolysis in vivo, was evaluated. All phos-
phorylated polysaccharides were stored in sealed con-
tainers under cool and dry conditions and were dissolved 
in double-distilled water prior to use.

Inorganic materials
The cationic cetylpyridinium chloride (CPC: SIGMA) 
(Fig.  1) was employed as a bactericidal agent and dis-
solved in double-distilled water for use. Synthetic sin-
tered hydroxyapatite plates (HAPs: 10 × 10 × 2  mm) 
polished to a mirror finish (Apatite: APP-101, Pentax, 
Tokyo, Japan) were used as an artificial model for tooth 
enamel surfaces.
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Microbial cultures
The procedures were conducted following the method 
described in our previous study [31]. S. mutans 854  S, 
cariogenic gram-positive anaerobic bacteria, was cul-
tured in tryptic soy broth medium (TSBY: Becton, Dick-
inson and Company, Sparks, MD, USA) with 0.5% yeast 
extract (Becton, Dickinson and Company) and 10 µg/mL 
erythromycin (SIGMA, St. Louis, MO, USA) [32]. TSBY 
with 5% sucrose was used as the culture medium for 
the biofilm formation test. The bacterial suspension was 
cultured until it reached the logarithmic growth phase 
and then suspended in the medium to achieve 1.0 × 105 
CFU/mL by measuring the absorbance at a wavelength 
of 570 nm (SPECTRONIC 20 A: Shimadzu Corporation, 
Kyoto, Japan).

Human saliva
Fifteen mL aliquots of human saliva were collected from 
three healthy volunteers without brushing or dietary 
changes over a period of two hours (Ethics Committee 
Approval #1089). The saliva supernatant was centrifuged 
at 1,710 × g for 20 min at 4 ˚C to reduce saliva-derived 
microorganisms. The saliva samples from individuals 
were pooled after centrifugation to reduce individual dif-
ferences, and the mixture was used in this study.

Procedure for bactericidal test
The procedures were conducted following the method 
described in our previous study [31]. HAPs were 
immersed in 4 mL of PP-CPC solution and incubated at 
37 ˚C for up to 12 h in the wells of 12-well culture plates 
(Costar, Corning Inc., Corning, NY, USA). The HAPs 
were rinsed twice in distilled water and dried using gentle 
air blows. Subsequently, the HAP samples were exposed 
to S. mutans by adding 4 mL of microbial suspension (1.0 
×× 105 CFU/mL) in new 12-well culture plates. The cul-
ture plates were incubated at 37 ˚C for up to 12 h to allow 
bacterial growth. Following incubation, the HAPs were 
removed from the wells and subjected to further analysis 
as described in the next sections.

The bacterial growth on PP-CPC-coated HAPs in 
the presence of a salivary pellicle was also evaluated. 
After coating the HAPs with PP-CPC, the samples 
were immersed in 4 mL of human saliva (collected as 
described above) and incubated overnight at 4 ˚C to 
allow pellicle formation in new 12-well culture plates. 
Subsequently, the HAPs were gently rinsed by pipetting 
with phosphate-buffered saline (PBS: pH 7.2) in the same 
plates by changing solution in wells, then immersed in an 
S. mutans suspension (1.0 × 105 CFU/mL) and incubated 
at 37 ˚C for 12 h in new 12-well culture plates.

Fig. 1  Schematic representation of the proposed ionic interaction between PP-CPC and hydroxyapatite. CPC bound to the sulfate groups of PP is hypoth-
esized to attach to the hydroxyapatite surface through ionic interactions between the sulfate groups of PP and the calcium ions present in hydroxyapatite
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Observation using field emission scanning electron 
microscopy
The procedures were conducted following the method 
described in our previous study [31]. Bacterial growth 
and morphology on the tested HAPs were observed 
using a field emission scanning electron microscope (FE-
SEM: Topcon DS-720, Tokyo, Japan). The HAPs were 
washed twice with a 0.15  mol/L NaCl solution contain-
ing 0.01 mol/L cacodylate buffer (pH 7.0) and then fixed 
with 1% glutaraldehyde. The sample HAPs were subse-
quently washed twice with the same buffer solution and 
dehydrated using an ascending ethanol series (50, 70, 90, 
95%, and absolute ethanol). The HAPs were immersed 
in 3-methylbutyl acetate for 1 h to facilitate substitution, 
followed by critical point drying (JCPD-5, JEOL, Tokyo, 
Japan). Finally, a platinum-palladium coating was applied 
to the surfaces of the HAPs (Eiko IB-3 Ion Coater, Eiko 
Engineering, Ibaraki, Japan), and the HAP samples were 
observed under FE-SEM at an acceleration voltage of 
15 kV.

Quantification of microbial 16 S rRNA using real-time PCR
Viable bacterial amounts on the HAP surfaces were 
evaluated by quantifying 16  S ribosomal ribonucleic 
acid (rRNA) [33]. The quantification of the bacterial 16 S 
rRNA was performed as previously described [34] using 
the quantitative reverse transcription polymerase chain 
reaction (RT-PCR) protocol (SYBER® Green; PE Applied 
Biosystems, Foster City, CA, USA). Prior to RNA extrac-
tion, the HAPs were washed twice with PBS. Total RNA 
was then extracted using TRIZOL LS Reagent® (Invitro-
gen, Carlsbad, CA, USA). To remove genomic deoxyri-
bonucleic acid (DNA) contamination, the extracted RNA 
was treated with 0.2 unit/µL of DNase I (Takara Bio, 
Shiga, Japan) and 0.4 unit/µL of RNase Inhibitor (Invit-
rogen) in the presence of the associated enzyme reac-
tion buffer (total volume: 50 µL) and incubated at 37 ˚C 
for 30 min. Complementary DNA (cDNA) synthesis was 
performed via reverse transcription at 42 ˚C for 50 min 
using 50 ng of random primers, 1 unit/µL reverse tran-
scriptase, and 2 nmol/L dithiothreitol in the presence of 
0.2 mmol/L dNTP mix (all reagents from Invitrogen), in 
a total reaction volume of 20 µL. The quantification of 
the 16  S rRNA gene was conducted via real-time PCR 
using GeneAmp® 5700 Sequence Detection System (PE 
Applied Biosystems). A 25 µL mixture was prepared, 
containing 20 pmol of each universal primer (forward: 
5’-GTGSTGCAYGGYTGTCGTCA-3’, reverse: 5’-ACGT-
CRTCCMCACCTTCCTC-3’) and 2 × SYBR® Green. PCR 
amplification was carried out for 40 cycles, consisting of 
denaturation at 95 ˚C for 15 s, followed by annealing and 
extension at 60 ˚C for 60 s. Fluorescence emission from 
the PCR product was measured using GeneAmp® 5700 
SDS software (PE Applied Biosystems).

Evaluation of sustained CPC release via quartz crystal 
microbalance
The delivery of CPC to HAP surfaces by PP and its sus-
tained release from the surface were evaluated using the 
quartz crystal microbalance (QCM) method. A QCM 
apparatus (QCM-D300, Q-Sense, Sweden) equipped with 
an HAP-coated sensor was employed for these measure-
ments. The pellicle layer on the HAP surface was formed 
using synthetic saliva (50 mmol/L HEPES buffer, 1.09 
mml/L CaCl2, 0.68 mml/L KH2PO4, 30 mmol/L KCl, and 
2.6 µmol/L F) prepared according to the method reported 
by Sieck et al. [35]. The measurement protocol involved 
the sequential flow of different solutions through the 
sample chamber: distilled water for 5 min (0–5 min), the 
test solution for 60 min (5–65 min), followed by another 
wash with distilled water for 70 min (65–135 min). Real-
time analysis of CPC absorption and dissociation, as well 
as its interactions with the carrier and composite, was 
performed based on the frequency shifts of the crystal 
oscillator.

Statistical analysis
The statistical analysis of the results from the real-time 
PCR method was conducted using one-way ANOVA and 
Scheffe’s F-test. The software used for analysis was Stat-
View (Version J-4.5, Abacus Concepts, Berkeley, CA), 
and the statistical significance level set was p < 0.05.

Results
PP-CPC decreased bacterial growth on HAPs
The effects of a mixed solution of PP and CPC at various 
concentration ratios on S. mutans were observed using 
FE-SEM (Fig.  2A and B). The CPC concentration was 
maintained below 0.05%, in accordance with the upper 
limit stipulated by the Japanese Pharmaceutical Affairs 
Law, to ensure suitability for long-term use, consider-
ing cytotoxicity concerns. FE-SEM analysis revealed an 
inhibitory effect on S. mutans biofilm formation when 
treated with a combination of 0.01% PP and 0.01% CPC 
or 0.02% PP and 0.01% CPC (Fig.  2A and B). Based on 
these findings, subsequent experiments were conducted 
using a CPC concentration of 0.01% or lower.

Polysaccharides from other foods did not inhibit bacterial 
growth
As comparative polysaccharides, tapioca starch and 
potato starch were phosphorylated using the same 
method as for pullulan. Additionally, glucose-6-phos-
phate was employed as a monomeric control, and native 
pullulan was used as a negative control. Each of these 
polysaccharides and glucose-6-phosphate was mixed 
with 0.01% CPC, and their effects on S. mutans growth 
were evaluated using FE-SEM as previously described 
(Fig.  2C). Among the tested combinations, only the PP 
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and CPC mixture demonstrated an inhibitory effect on 
biofilm formation.

PP-CPC decreased bacterial 16 S rRNA on HAPs
Bactericidal activity was assessed by quantifying bacterial 
16 S rRNA levels (Fig. 3A). The results showed a signifi-
cant reduction in 16 S rRNA levels (approximately 1/10⁴) 
following treatment with 0.01% PP and 0.01% CPC, com-
pared to the untreated control plate (negative control) 
(Fig. 3A). Furthermore, FE-SEM imaging revealed a mini-
mal presence of S. mutans on HAP surfaces treated with 
0.01% PP and 0.01% CPC, whereas extensive bacterial 
colonization was observed on HAP treated with 0.01% PP 
alone, which was comparable to that on untreated HAP 
(Fig.  3B). Although treatment with 0.01% CPC alone 
resulted in a slight reduction in S. mutans growth com-
pared to untreated HAP, the combined treatment with 
0.01% PP and 0.01% CPC exhibited markedly enhanced 
antibacterial efficacy effects.

PP-CPC reduced bacterial growth on HAPs with pellicle
Salivary deposits were observed on HAP surfaces follow-
ing saliva treatment (saliva-treated HAP in Fig.  4), and 
S. mutans colonization was evident on these surfaces in 
the absence of antimicrobial agents (Control in Fig.  4). 
However, treating saliva-coated HAP with a combina-
tion of 0.01% PP and 0.01% CPC (PP + CPC in Fig. 4) sig-
nificantly reduced bacterial growth. Bacteria were still 
detectable on the salivary deposits, but at considerably 
lower levels.

PP-CPC coating enabled the sustained release of CPC from 
the HAPs
To investigate the bonding and releasing mechanism of 
CPC on HAPs, QCM analysis was performed to moni-
tor frequency changes associated with the adhesion of 
test materials to the HAP sensor surface. Injecting 0.01% 
CPC only onto untreated HAP resulted in minimal fre-
quency changes before and after washing (Fig.  5; green 
line). In contrast, injecting a mixed solution containing 

Fig. 2  Bacterial growth on HAPs treated with PP-CPC and other phosphorylated starches. A HAP samples were treated with a mixture of PP and CPC 
for 2 h, washed twice with distilled water, slightly dried, and then incubated in a bacterial solution at 37 ˚C for 12 h. The FE-SEM image shows S. mutans 
colonization on HAP treated with 0.01% PP and 0.001–0.03% CPC. Scale bar: 100 μm. B HAP samples were treated as described in (A), but with varying 
concentrations of PP (0.001–0.03%) and a fixed concentration of CPC (0.01%). The FE-SEM image illustrates the adherence of S. mutans under these condi-
tions. Scale bar: 100 μm. C Two types of starch, derived from tapioca and potato, were phosphorylated using the same procedure applied to pullulan. The 
antibacterial activities of these phosphorylated starches, combined with CPC at 0.01% vs. 0.01%, were assessed against S. mutans. Similar to native pul-
lulan and glucose-6-phosphate, the phosphorylated starches showed no antibacterial effect (Starch: CPC = 0.01%:0.01%). Scale bars: upper panel, 200 μm; 
lower panel, 5 μm. These experiments were conducted in duplicate, involving at least three independent trials. Typical results are presented
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0.01% PP and 0.01% CPC into untreated HAP led to a 
decrease in frequency, indicating the adsorption of the 
PP-CPC mixture onto the HAP sensor surface (Fig.  5; 
blue line, before washing). Following washing, the fre-
quency partially recovered, suggesting that while some of 
the adsorbed mixture was desorbed, a significant portion 
remained attached to the surface (Fig. 5; blue line, after 
washing). Similar trends were observed when the same 
mixed solution was injected onto HAP pretreated with 
synthetic saliva to form a pellicle; however, a greater fre-
quency shift was recorded (Fig. 5; red line).

Discussion
FE-SEM observations revealed that the PP-CPC com-
plex effectively inhibited the development of S. mutans 
on HAP surfaces at a CPC concentration of 0.01%. 
Quantitative analysis using bacterial 16  S rRNA mea-
surements, alongside FE-SEM observations, further con-
firmed that the combination of 0.01% PP and 0.01% CPC 
most effectively suppressed bacterial growth (Figs. 2AB, 
3). Moreover, although PP-treated and CPC-treated 
hydroxyapatite plates (HAPs) did not show bacteri-
cidal activity (Fig. 3), the mixture of 0.01% PP and 0.01% 
CPC could inhibit the growth of S. mutans even in the 
presence of saliva-derived pellicles on the HAP surface 
(Fig.  4). These observations suggest that CPC alone is 
easily washed off the HAP surface, and that PP alone, 
without bactericidal reagents, does not inhibit bacterial 
attachment. However, PP may persist on the HAP sur-
face. The required concentration of CPC for antibacterial 

Fig. 4  Bacterial growth on HAP coated with saliva and treated with PP-CPC. HAP samples were pre-treated with human saliva for 1 h at room temperature 
to simulate oral conditions. Subsequently, the samples were treated with a mixture of PP and CPC for 2 h, rinsed twice with distilled water, slightly dried, 
and incubated in a bacterial suspension at 37 ˚C for 12 h. The FE-SEM images revealed extensive colonization of S. mutans on saliva-coated HAP; however, 
significantly fewer bacteria were observed in areas corresponding to saliva deposits on HAP samples treated with PP-CPC. These experiments were con-
ducted in duplicate, involving at least three independent trials. Typical results are presented. Bar in the upper panel, 20 μm; bar in the lower panel, 2 μm

 

Fig. 3  Antibacterial activity of PP-CPC evaluated by quantifying S. mutans 
16 S rRNA copies. HAP samples were treated with a mixture of PP and CPC 
for 2 h, washed twice with distilled water, slightly dried, and then incu-
bated in a bacterial suspension at 37 °C for 12 h. These experiments were 
conducted in duplicate, involving at least three independent trials. A Total 
bacterial RNA was extracted from the HAP surface, and quantitative re-
verse transcription PCR (qRT-PCR) was conducted to measure the levels of 
S. mutans 16 S rRNA. The vertical axis indicates the quantity of 16 S rRNA, 
while the horizontal axis represents each treatment group. n = 6, *: P < 0.05. 
B Representative FE-SEM image of the HAP surface after treatment. Typical 
results are presented. Scale bar: 100 μm
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efficacy was reduced to one-fifth when combined with PP. 
These findings suggest that the PP-CPC mixture may be 
suitable for long-term use without substantially disrupt-
ing the oral microbiota, as it demonstrates antimicrobial 
efficacy at concentrations lower than those convention-
ally employed.

As comparative polysaccharides, phosphorylated tapi-
oca starch and potato starch were evaluated for their 
antimicrobial properties; however, they exhibited no 
inhibitory effect on bacterial growth (Fig. 2C). Given that 
glucose-6-phosphate contains a single phosphate group, 
it can interact only with either CPC or HAP surfaces, 
which likely explains its lack of antibacterial activity in 
this assay involving phosphorylated tapioca starch and 
potato starch. Tapioca starch comprises amylose, a linear 
α−1,4-linked glucose polymer, and amylopectin, a highly 
branched α−1,6-linked glucose polymer [36]. Potato 
starch contains linear amylose with approximately 1,000 
glycosidic linkages and amylopectin with around 10,000 
glycosidic linkages, exhibiting a more complex, luster-like 
branched structure [37]. In this study, basic characteriza-
tion of the phosphorylated starches, such as the degree 
of phosphorylation, was not performed. Therefore, it is 
currently difficult to elucidate the reason for their lack of 
antibacterial activity. Further investigation will be neces-
sary to address this issue.

Although several studies have reported on the preser-
vation of dental pulp [25, 38, 39] and the promotion of 

bone formation [30, 40–43], the detailed mechanism 
by which PP adheres to HAP and facilitates the release 
of CPC remains unclear. The results of QCM analysis in 
this study suggest that CPC adheres to the hydroxyapa-
tite surface via ionic interactions mediated by PP and is 
subsequently released in a sustained manner to exert its 
antibacterial effects (Fig.  1, “Ionic bonds”). Moreover, 
the findings of this analysis indicate that the presence of 
a pellicle on the HAP surface enhances the adsorption 
of the PP-CPC complex, followed by partial desorption 
upon washing. Since untreated HAP exhibits stronger 
chemical binding of the PP-CPC complex compared to 
saliva-treated HAP, it is necessary to consider strategies 
such as applying the PP-CPC mixture after thoroughly 
cleaning and drying the tooth surface from a clinical 
perspective.

Hydrophobic polysaccharides modified with long-
chain alkyl or cholesterol groups are known to self-
assemble into nanoparticles with diameters of several 
tens of nanometers in dilute aqueous solutions [44–47]. 
A comparison of PP-CPC solutions at concentrations of 
0.1%, 0.02%, and 0.01% showed that turbidity increased 
at both 0.1% and 0.01%, despite the solutions appearing 
transparent prior to mixing (Supplementary Fig. 1). It is 
known that such nanoparticles can be disassembled by 
dextrin, a feature that has drawn interest in drug deliv-
ery systems (DDS) for nanogel control [48–50]. These 
reports suggest that PP could form nanoparticles through 

Fig. 5  Adsorption of PP-CPC on HAP surfaces. The adsorption and sustained release behavior of PP-CPC on HAP surfaces was evaluated using a QCM 
method. Upon injecting CPC or PP-CPC solutions onto the HAP surface, a notable decrease in frequency was observed with PP-CPC, while the decrease 
was less pronounced with CPC alone. After three rinses with distilled water, the frequency partially recovered but remained below the baseline, indicating 
that both CPC and PP-CPC stayed adsorbed on the HAP surface. In experiments using saliva-coated HAP, the frequency response differed significantly 
between CPC and PP-CPC treatments. The injection of CPC resulted in an increase in frequency above the baseline, suggesting a surfactant-like effect. 
In contrast, the injection of PP-CPC caused a substantial decrease in frequency, even greater than that observed with non-saliva-treated HAP, indicating 
stronger adsorption. Following rinsing, the frequency for both treatments rose noticeably above the baseline, which may reflect the removal of saliva-
derived deposits from the HAP surface due to the surfactant effect of CPC. The y-axis represents frequency (Hz), and the x-axis represents time (minutes). 
These experiments were conducted in duplicate, involving at least three independent trials. Typical results are presented
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interactions with CPC. PP-CPCs exhibit potential as 
drug delivery carriers and represent promising materials 
for clinical applications. In this study, the antimicrobial 
efficacy was evaluated exclusively against one of the early 
colonizers, S. mutans. Future investigations should assess 
the antimicrobial activity against a broader range of early 
colonizers. Additionally, in vivo safety assessments using 
animal models and clinical trials are warranted to evalu-
ate the feasibility of clinical application.

Conclusions
This study demonstrated that the effective concentration 
of CPC can be significantly reduced when PP is employed 
as a DDS carrier, compared to when CPC is used alone. 
QCM analysis further indicated that the PP-CPC mix-
ture was adsorbed onto the surface of the apatite plate 
via interactions mediated by PP. These findings suggest 
that PP serves as an effective DDS carrier for the con-
trolled delivery of antibacterial agents in the oral cavity. 
Moreover, since PP is expected to adhere to surfaces with 
a positive charge, its application as a DDS carrier may 
extend beyond dentistry to a broad range of biomedical 
fields.
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