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Abstract

Covalent cross-linking is an effective approach to enhance the hydrophilicity and water adsorption
properties of graphene oxide (GO). We studied moisture absorption in GO cross-linked with
poly(ethylene glycol) diamines. At relative humidity (RH) of 85%, the PEG-cross-linked GO
exhibited a significantly enhanced water uptake capacity of 0.59 g of water per gram of GO (gg '),
compared to 0.37 for unmodified GO. This is attributed to the presence of alkoxy groups via
cross-linking, resulting in the enhanced interaction between GO and water molecules. These
findings highlight the potential of PEG-based covalent functionalisation for efficient moisture

capture in GO-based materials.

1. Introduction

Traditional solid porous adsorbents such as silica gels
and zeolites are widely used as the desiccant materi-
als for water adsorption from the atmosphere [1, 2].
However, the limited surface area, high energy con-
sumption, and low hydrophilicity of these materials
offer constrained water adsorption efficiency. Porous
adsorbent material in desiccant applications, such
as metal-organic frameworks have shown high per-
formance in adsorption capacity. However, the low
commercial feasibility still highly limits the scalability
[3, 4]. Chemical adsorbents such as hygroscopic salts
have also exhibited great adsorption capacity; how-
ever, significant challenges such as deliquescence,
corrosion, and low cycling stability are still diffi-
cult to overcome [5]. As a two-dimensional (2D)
material, many studies have explored the interaction
between graphene oxide (GO) and water molecules
[6—12]. The abundant oxygen-containing functional
groups on GO act as active dipole sites [ 13—17], form-
ing an interfacial hydrogen bond network [18-21]
which significantly affects the diffusion rate of water
molecules [22, 23]. Moreover, the large surface area,
inherent porous networks, and tunable interlayer
spacing [24, 25] make GO a promising candidate
as a solid adsorbent for desiccant applications [26,

© 2025 The Author(s). Published by IOP Publishing Ltd

27]. Previous studies have shown multiple modifica-
tion approaches on GO-based materials for enhanced
atmospheric water capture applications. For instance,
Wang et al [28] used CaCl, to fabricate calcium
chloride (CaCl,)/GO/poly(N-isopropylacrylamide)
gel, exhibiting adsorption capacity of 3.6 gg—'.
Anjali et al[29] added lithium chloride (LiCl) into
GO/poly(vinyl alcohol) (GO/PVA) mixed hydro-
gel to fabricate a hygroscopic salt-embedded gel,
which performed water uptake of 1.2 gg~!. The
authors demonstrated that LiCl mainly adsorbs water
vapour, and PVA retains the collected water in the
gel [29]. There is still a knowledge gap in using
salt-free covalently cross-linked GO-based materials
for moisture adsorption. Among the abundant GO-
based covalent cross-linking strategies, polyethylene
glycol-diamine (PEGDA) is widely used as a hydro-
philic cross-linking reagent to bring new functions
to GO via covalent interactions, such as esterific-
ation and amidation [30]. Amidation is known as
the extensively used covalent cross-linking strategy
for PEG-GO functionalisation. This method typic-
ally requires the utilisation of coupling agents such
as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride and N-Hydroxysuccinimide [31-33].
However, for moisture adsorption applications, most
of the effective covalent cross-linking methods face
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challenges such as high energy consumption, large
financial costs, and toxicity. Interestingly, catalysts
are not necessary in the reaction between GO and
amine groups via epoxy ring openings due to the
high reactivity of epoxides towards amine derivatives
[34]. Hence, the innovation of PEG-GO fabricated
through the epoxy ring opening reaction is highly
promising for studying the role of covalent cross-
linking in moisture adsorption applications, which
have been employed to various biomedical applica-
tions as reported [35-38]. Zhao et al [39] fabricated
novel sodium alginate /PEGDA-GO composite mem-
branes via the covalent cross-linking between epoxy
groups on GO and the amino groups on PEGDA.
The authors demonstrated that the composite mem-
branes exhibited significantly improved hydrophili-
city due to the abundant ether bonds sourced from
PEGDA, and a brand-new C-N covalent bond effect-
ively controlled the interlayer d-spacing of GO [39].
Inspired by this and our previous works [40, 41],
we used PEGDA as the source of amino groups to
synthesise cross-linked PEG-GO aerogel PEG-GOA.
This work studies the effects of covalent cross-linking
on GO-based moisture adsorption, and the mech-
anisms behind the synergistic effects of polymer-
GO nanocomposites for enhanced water adsorption
applications.

2. Experimental methods

2.1. Materials

GO suspension (1.5 wt% suspension with a flake
size of 0.5 pum was supplied by NiSiNa Materials
Japan. Calcium chloride (CaCl,), magnesium chlor-
ide (MgCly), magnesium nitrate (Mg (NOs),),
sodium chloride (NaCl), potassium chloride (KCl),
and copper chloride (CuCl,) salt powders were pur-
chased from Sigma-Aldrich for making saturated
salt solutions. The cross-linking reagent PEGDA
(Mw = 3,000 g mol ') was also obtained from Sigma-
Aldrich.

2.2. Fabrication of cross-linked PEG-GOA

The cross-linked PEG-GO solution was prepared by
adding a predetermined mass of PEGDA powder to
the GO suspension. In detail, PEGDA powder was
weighed and added to the GO suspension in increas-
ing amounts from 5 to 30 mg, which corresponded
to 5% — 30% of mass fraction relative to the mass of
GO (100 mg). After the 1 h continuous magnetic stir-
ring, the obtained PEG-GO mixture was freeze-dried
to form the aerogel samples. The samples were tightly
sealed to control the moisture.

2.3. Characterisation
The Fourier transform infrared (FTIR) spectroscopy
(PerkinElmer Spectrum Two), x-ray photoelectron
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Table 1. Summary of partial pressures controlled by different
saturated salt solutions.

Saturated salt

solution Relative humidity Partial pressures
MgCl, 35% 1.11 kPa
Mg(NO3), 55% 1.74 kPa
CuCl, 65% 2.06 kPa
NaCl 75% 2.38 kPa
KCl 85% 2.69 kPa

spectroscopy (XPS), and liquid-state ' H nuclear mag-
netic resonance (NMR) were used to characterise
the chemical bonds and examine the immobilisa-
tion of PEG on GO. For XPS, we used the Shirley
method in Origin software to subtract the baseline,
and Gaussian was performed for the peak fitting using
284.5 eV as the reference for the Cls peak of graph-
ite. Scanning electron microscope (SEM) was used
to investigate the surface morphologies of aerogel
samples. In this study, SEM images were obtained
from NanoSEM 450 field-emission scanning elec-
tron microscope (FE-SEM). X-ray diffraction (XRD)
(PANalytical Empyrean I-Cu powder) was used to
measure the interlayer spacings of aerogel samples
with Cu K-alpha radiation at 45 kV and 40 mA based
on A = 0.1541 nm. The d-spacing is calculated based
on Bragg’s law, which is consistent with many pre-
vious studies [42—44]. Moreover, transmission elec-
tron microscope (TEM) with energy dispersive spec-
tra (EDS) was conducted to further study the mor-
phology of PEG-GO flake and investigate the ele-
mental distributions on the flake.

2.4. Measurements of water uptake
We used a highly sensitive electronic mass balance
in a controlled environment to measure the mass
changes to calculate the amount of adsorbed water.
The initial mass of the freeze-dried aerogel sample
(m;) was measured, and saturated salt solutions were
used to control the different relative humidity (RH).
Afterward, the aerogel sample was placed in a cleaned
petri dish, and the total mass before and after the
adsorption/desorption processes (g and myp) was
measured to calculate the water uptake.

We calculated partial pressures based on the con-
trolled RH using equation (1):

o= (1’”“) ¥100% (1)

Ws

where ¢ is the RH (%), py and pys represent the
vapour partial pressure (kPa) and saturated vapour
partial pressure (kPa). In this study, we used 3.17 kPa
as the p,,s value under ambient temperature (25 °C).
Table 1 below shows the calculated partial pressures
corresponding to the RH controlled by saturated salt
solutions [45, 46]. Particularly for the RH of 20%, we
used calcium chloride (CaCl,) powder to control.
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Table 1 below shows the calculated partial pres-
sures corresponding to the RH controlled by satur-
ated salt solutions. Particularly for the RH of 20%), we
used calcium chloride (CaCl,) powder to control.

3. Results and discussion

To study the covalent reaction between PEGDA and
GO, as schematically illustrated in figure 1(a), the
aerogel samples were first characterised by FTIR spec-
troscopy. As shown in figure 1(b), the bands at 3143,
1721, and 1629 cm™! are attributed to hydroxyl (-
OH), carboxyl (C=0), and aromatic C=C stretching
[47,48]. The peak at 1400 cm ! belongs to the bend-
ing vibration of hydroxyl (-OH) [49], and the two
bands at 1105 and 1067 cm ™~ were due to the stretch-
ing vibrations of epoxy (C-O-C) and alkoxy (C-
O) [50-52]. After cross-linking, three bands from
PEGDA powder can be clearly observed at 2870, 1349,
and 1248 cm™! on PEG-GOA, which are related to
the stretching band of C-H [50, 53, 54], —CH, groups
[55], and the C-N stretching vibration band [55-57].
Moreover, for the spectra of PEG-GOA (10%) and
PEG-GOA (30%), as the amount of PEGDA increases,
a gradual increase in the absorption intensity at
1076 cm™! can be observed. This indicates the intro-
duction of more alkoxy groups because of the cross-
linking [39]. Most importantly, PEG-GOA (10%) and
PEG-GOA (30%) also reveal a rising intensity of the
C-N vibration band at 1248 cm™!, strongly sug-
gesting the successful cross-linking between PEGDA
and GO [39]. Figures 1(c) and (d) display the XPS
high-resolution Cls spectra of PEG-GOA and pure
GOA samples, where three characteristic peaks can
be observed at binding energies of 284.5, 286.6, and
288.3 eV for pure GO, corresponding to C-C/C=C,
C-0O-C/C-0, and C=0, respectively [58—61]. For the
PEGDA modified PEG-GOA in figure 1(d), a dis-
tinct peak appears at the binding energy of 285.8 eV,
corresponding to the C-N bond [39]. This indicates
the reaction between amino groups on PEGDA and
epoxy groups on GO, suggesting that the cross-linking
is covalent. After the cross-linking, the introduction
of more hydrophilic functional groups supports the
increase in water adsorption ability of PEG-GOA.
Notably, figure 1(c) shows one peak at 291.3 eV,
which was possibly associated with the shake-up fea-
ture of aromatic structures or m—7* transition [62],
and another peak at about 289.6 eV. These two peaks
are not aligned with the characteristic peaks of GO
before or after the cross-linking; hence, we cannot
understand the origin of these peaks. The above
information demonstrates the epoxy ring opening
reaction [39, 63], further indicating that the cross-
linking between PEGDA and GO was covalent.
Liquid-state "H NMR was conducted in this study
to examine the successful immobilisation of PEG on
GO after the cross-linking. In figure 2, the charac-
teristic peak of PEG, which is located at ~3.62 ppm

3
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[64, 65], is negligible in the spectrum of PEG-GO.
Hence, the PEG is immobilised on GO within the
cross-linked PEG-GO composite.

We used XRD to observe the changes in the
interlayer structure after cross-linking. Figure 2(b)
displays the XRD patterns of pure GO and PEG-
GOA samples in the dry state, which highlights that
the introduction of a 10% mass fraction of PEGDA
enhanced the interlayer spacing of GO laminates from
8.9 A to 9.3 A. Subsequently, the interlayer spacing
of PEG-GOA (30%) was significantly increased from
9.3 A to 11.0 A. Therefore, the gradually increased
interlayer spacings in the dry state demonstrate the
presence of grafted PEG polymers in the interlayer
region of PEG-GOA after covalent cross-linking.
Furthermore, because of the nature of 2D materials,
this observed continuous improvement in the inter-
layer spacings after cross-linking also indicates the
developments in the porosity of GO [26, 40, 66, 67].
In figure 2(b), the interlayer spacing of wet pure GOA
increased by only 0.2 A, while the d-spacing of PEG-
GOA (10%) considerably increased from 9.3 A to
10.5 A. However, when the mass fraction of PEGDA
further increases to 30%, the d-spacing in the wet
state is slightly increased by 0.7 A. This suggests that
the increased amount of grafted PEGDA polymers in
the interlayer space of PEG-GOA limited the swelling.

Additionally, we conducted scanning electron
microscopy (SEM) to study the surface morphology
of cross-linked PEG-GOA. The surface morpholo-
gies of pure GOA and the PEG-GOA prepared with
mass fractions of 10% and 30% are displayed in
figures 3(a)—(f). The SEM images show that GOA
exhibited a porous structure before and after the
cross-linking. Additionally, compared to the relatively
smooth surface exhibited by pure GOA in figure 3(d),
the appearance of larger aggregated wrinkles on the
PEG-GOA (10%) (figure 3(e)) and PEG-GOA (30%)
(figure 3(f)) after cross-linking is noticeable. This
observation demonstrates the effects of cross-linking
on the surface morphology of GOA.

We investigated the morphology of PEG-GO
flakes using TEM with EDS. The results are shown in
figure 4, which contrasts with the flat sheet morpho-
logy of pure GO observed in our previous work [42].
By comparison, the formation of nano-scale wrinkles
upon the cross-linking is observable on the PEG-GO
flake as displayed in figure 4(a). In figures 4(d)—(f),
the EDS analysis shows the existence of carbon, nitro-
gen, and oxygen on the PEG-GO flake. Notably, since
nitrogen is not the elemental composition of pure
GO, the significant distribution of nitrogen observed
in figure 4(e) further supports the successful interac-
tion between GO and PEGDA.

The water uptake (gg~!) at different RH was cal-
culated to measure the water adsorption behaviours
of pure GOA and cross-linked PEG-GOA. Figure 5(a)
clearly shows that when the PEGDA mass fraction
was increased by 10%, the water uptake significantly
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Figure 1. (a) Schematic graph of cross-linking between PEGDA and graphene oxide (epoxy groups are highlighted in purple). (b)
Fourier transform infrared (FT-IR) spectrum of PEGDA powder, pure GOA, PEG-GOA (10%), and PEG-GOA (30%). Cls x-ray
photoelectron spectroscopy (XPS) of (c) pure GOA, and (d) PEG-GOA.

276 282 288 294
Binding Energy (eV)

increased from 0.362 gg~! to 0.605 gg~'. After exhib-
iting the highest water uptake of PEG-GOA, when
the mass fraction of PEGDA exceeded 15%, the water
uptake gradually declined, remaining at 0.435 gg~!
when the content reached 30%. This finding suggests

that the higher addition of PEGDA may restrain the
swelling of PEG-GOA, thereby limiting the water
adsorption capacity in the interlayer space. This res-
ult is also supported by the obtained XRD patterns
of PEG-GOA (10%) and PEG-GOA (30%) treated
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Figure 2. (a) Liquid-state 'H nuclear magnetic resonance (NMR) spectra of PEGDA solution (black curve) in D,0, and PEG-GO
solution (red curve) in D,0. (b) X-ray diffraction (XRD) patterns of the (001) peak of dried pure and cross-linked PEG-GOA
samples and water adsorbed pure and cross-linked PEG-GOA samples at a relative humidity of 85%.
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at the same RH as discussed above. As shown in
figure 5(b), the adsorption capacities of pure GOA
and PEG-GOA were determined by measuring the
water uptake after 24 h at different partial pressures.
After cross-linking, PEG-GOA (10%) and PEG-GOA
(30%) exhibited consistently higher adsorption capa-
cities than pure GOA. Particularly at a partial pressure
of 2.69 kPa, PEG-GOA (10%) achieved a water uptake
of 0.59 gg~ !, significantly higher than the 0.37 gg~! of
pure GOA, suggesting that the introduction of abund-
ant alkoxy groups through cross-linking remarkably
enhanced the adsorption capacity.

Figures 5(c)—(f) display the continuous water
uptake within 5 h at different RH. Cross-linked PEG-
GOA obtained consistently greater water uptake than

that of pure GOA. In detail, at RH of 55%, PEG-GOA
(10%) exhibited a water uptake ~2 times that of pure
GOA. Furthermore, at RH of 65%, 75%, and 85%,
PEG-GOA (10%) all performed over 87% improve-
ments in water uptake compared to pure GOA.

To further understand the interaction with water
molecules after cross-linking, the desorption beha-
viours of moisture-adsorbed pure GOA and cross-
linked PEG-GOA were tested at RH of 35% and
20%. As shown in figures 6(a) and (b), pure
GOA required ~80 min to desorb the captured
water. In contrast, PEG-GOA (10%) and PEG-GOA
(30%) exhibited continuous reductions of water
uptake in the following 100 min. We performed 13
adsorption—desorption cycles to measure the stability
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(30%) (c), (D).

Figure 3. (a)—(f) Scanning electron microscope (SEM) images of pure GOA (a), (d), PEG-GOA (10%) (b), (e), and PEG-GOA

PEG-GOA (30%)

—_—
& 3(_)0 pn’f’

! PEG-GOA (30%)

~

Figure 4. (a)—(c) High-resolution transmission electron microscope (HR-TEM) images of PEG-GO (a), bright-field (b), and
dark-field images (c). (d)—(f) energy dispersive spectroscopy (EDS)-based elemental images of carbon (d), nitrogen (e), and

oxygen (f).

of cross-linked PEG-GOA. In each cycle, pure GOA
and PEG-GOA were first exposed to an RH of 85%
to adsorb moisture for 24 h, followed by water
desorption at a RH of 20% for 1 h. As shown in
figure 6(c), after 13 cycles, the water uptake of pure
GOA decreased by 0.13 gg~!, while the water uptake

of PEG-GOA (10%) and PEG-GOA (30%) showed
slight decreases of 0.09 gg~! and 0.06 gg~*, respect-
ively. Hence, the increased cross-linking effectively
promotes the stability of PEG-GOA. As shown in
figure 6(d), in desorption cycles, the mass of pure
GOA decreased from 106.45-103.55 mg. In contrast,
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Figure 5. (a) Variations of water uptake of pure GOA and PEG-GOA after 24 h with improved mass fractions at a controlled RH
of 85%. (b) Adsorption capacity of pure GOA and cross-linked PEG-GOA in different partial pressures. Adsorption
measurements for pure GOA, PEG-GOA (10%), and PEG-GOA (30%) over five hours at RH of (¢) 55%; (d) 65%; (e) 75%, and
(f) 85%. Freeze-dried PEGDA powder marked in green curve in (f) shows low water uptake.

the mass reduction of PEG-GOA (10%) and PEG-
GOA (30%) was 11.34 mg and 12.84 mg after 13
cycles. This suggests that the covalent cross-linking
significantly improved the water retention over cycles.
Furthermore, in figure 6(e), we conducted FTIR spec-
troscopy after the adsorption—desorption cycle to see
the stability of the surface chemistry of PEG-GOA
samples. The result shows that the surface chemistry
of PEG-GOA (10%) and PEG-GOA (30%) remained
unchanged after the adsorption—desorption cycle

because the characteristic peaks corresponding to
CH, CH,, and C-N bonds are located highly consist-
ent with the FTIR spectra of unused PEG-GOA (10%)
and PEG-GOA (30%).

In bulk powder form, as shown in figure 5(f),
PEGDA exhibits low water uptake at the RH of
85%. As schematically illustrated in figures 7(a)-
(d), this can be attributed to the internal entangle-
ment of polymer chains in bulk powder form. Hence,
the interaction with the internal polymer chains is

7
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Figure 6. Desorption behaviours of pure GOA and PEG-GOA in RH of (a) 35% and (b) 20% within 180 min; (c) cycles
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PEG-GOA (10% ac, blue curve) and PEG-GOA (30% ac, green-curve), ac for after adsorption—desorption cycle.

1400 700

limited, making the water molecules primarily attach
to the surface of PEGDA powder. Upon the cova-
lent cross-linking with GO, the abundant alkoxy
groups on dispersed PEGDA are exposed to water
molecules due to the swelling-induced stretching of
chains. Therefore, the greater number of exposed
hydrophilic functional groups and the swollen inter-
layer space caused by this synergistic effect signi-
ficantly facilitated the water uptake in PEG-GOA

(10%). However, excessive PEGDA chains lead to
the accumulation of polymers in the interlayer space
of GO, limiting the moisture interaction with the
polymer chains. Despite this, the dispersed PEGDA
in the GOA framework still has a greater specific
surface area than the bulk PEGDA powder, mak-
ing PEG-GOA (30%) exhibit enhanced water uptake,
while is relatively lower than that of PEG-GOA
(10%).
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Figure 7. Schematic graphs of the mechanism hypothesis of moisture adsorption of (a) bulk PEGDA powder, (b) pure GOA, (c)
cross-linked PEG-GOA (10%), and (d) cross-linked PEG-GOA (30%).

4, Conclusion

In summary, this work highlights the potential of
hygroscopic covalent cross-linking in GO-based
moisture adsorption and further discusses the role
of PEG-based cross-linking in moisture interac-
tion. Covalently cross-linked PEG-GOA effect-
ively improves moisture adsorption behaviours.
Compared to pure GOA, introducing abundant
hydrophilic alkoxy groups from PEGDA improves the
water uptake of PEG-GOA at different RH. Moreover,
the covalent cross-linked PEG polymers not only lead
to a stronger interaction with water molecules but
also develop the stability and water retention of PEG-
GOA. Based on the discussed synergistic effect behind
PEG-GO, we believe that the covalent cross-linking
strategies may provide insights for future design in
GO-based atmospheric water capture applications.
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