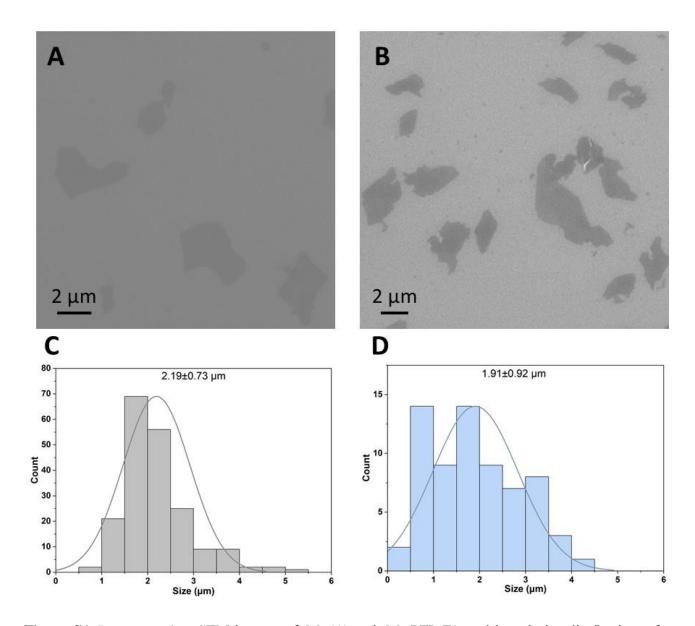
Supporting Information

RNA Delivery Using a Graphene Oxide-Polyethyleneimine Hybrid Inhibiting Myotube Differentiation

Koji Matsuura^{1, 2, *}, Giacomo Reina^{1, †}, Zhengfeng Gao, ¹ Yuta Nishina³, Alberto Bianco^{1, *}

¹CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France


²Department of Bioscience, Faculty of Life Science, Okayama University of Science, 700-0005

Okayama, Japan

³Research Institute for Interdisciplinary Science, Okayama University, 700-8530 Okayama, Japan

* Corresponding author: kmatsuura@ous.ac.jp; a.bianco@ibmc-cnrs.unistra.fr

[†]Current address: Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland

Figure S1. Representative SEM images of GO (A) and GO-PEI (B), and lateral size distribution of GO (C) and GO-PEI (D), measuring 67 and 198 sheets respectively.

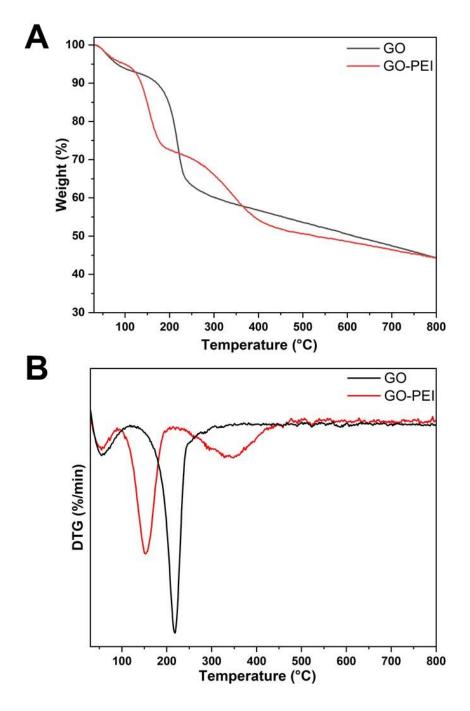


Figure S2. TGA (A) and DTG (B) curves of GO and GO-PEI.

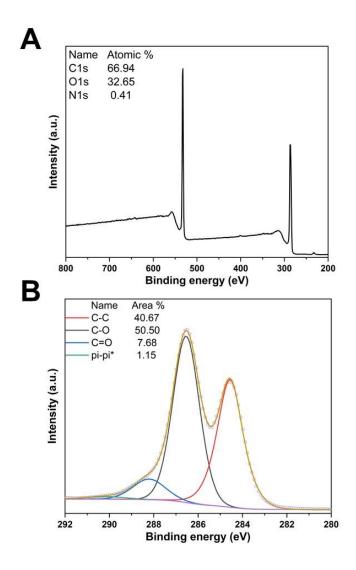
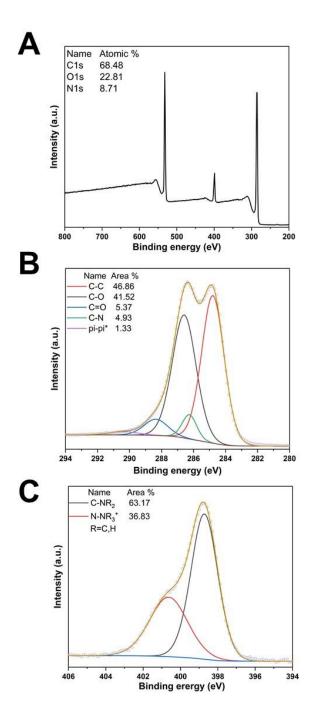
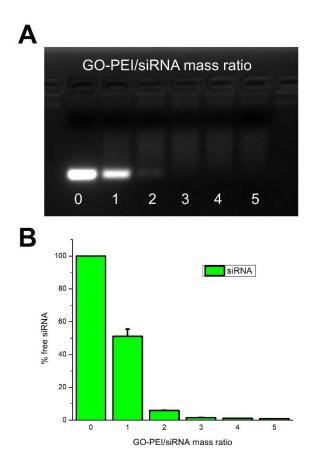




Figure S3. XPS survey spectrum of GO (A), and high-resolution C1s spectrum of GO (B).

Figure S4. XPS survey spectrum of GO-PEI (**A**), high-resolution C 1s spectrum of GO-PEI (**B**), and high-resolution N 1s spectrum of GO-PEI (**C**).

Figure S5. Complexation of GO-PEI with siRNA. (**A**) Image of agarose gel electrophoresis of GO-PEI/siRNA. (**B**), Histograms showing the free siRNA signal intensity at different GO-PEI/siRNA mass ratios.

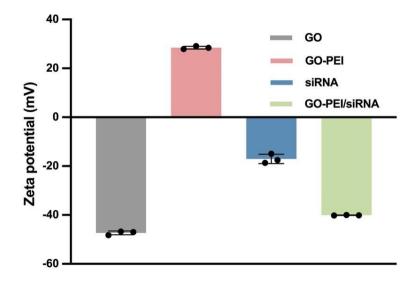


Figure S6. Zeta potential of GO, GO-PEI, siRNA and GO-PEI/siRNA (1:1).

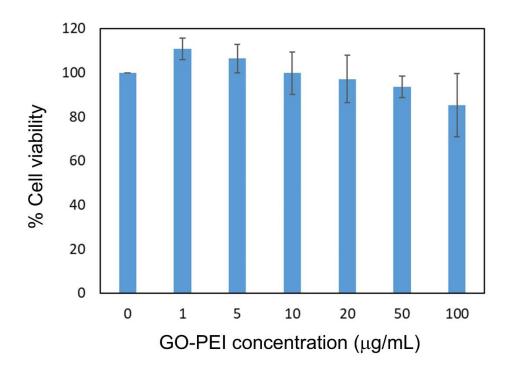


Figure S7. C2C12 cell viability analysis using AlamarBlue assay at different GO-PEI concentration. Error bars are standard deviation (S.D.) of independent experiments (N=3 \sim 5). Significant difference with the averages was analyzed by one-way ANOVA (*P<0.05). The Dunnett method compares each group with the control group (0 μ g/mL). No significant difference between all other groups with the control was found.

Table \$1. dsRNA sequences used on the siRNA experiments.

dsRNA code	RNA sequences (sense strand only)	CDS position						
RNAi positive								
1	AGGUGUGUAAGAGGAAGUC	264-282						
2	ACCAUGCCCAACUGAGAUU	713-731						
	Scrambled negative control							
S1	GUUAAGGCGGUGAAUGAGA							
S2	GAAUCAGUUCCGAUCCACA							

Table S2. Primer sequences for the qPCR experiments.

Myogenin				
Forward	CATCCAGTACATTGAGCGCCTA			
Reverse	GAGCAAATGATCTCCTGGGTTG			
Beta-actin (house keeper-gene)				
Forward	TTGCTGACAGGATGCAGAAG			
Reverse	se GTACTTGCGCTCAGGAGGAG			

Table S3. Comparison of our and previous GO-PEI hybrids as RNA transfection materials.

Type of RNA	Type of GO functionalization	Average size (nm)	ζ-potential (mV)	Cell types or animals	Purpose of the transfection	Ref.*
mRNA	Non-covalent interaction	205	+26.7	Adipose tissue-derived fibroblasts	Induction of pluripotent stem cells	1 (22)
mRNA	Non-covalent interaction	220	-	DC2.4, RAW264.7, B16-OVA cells/mice	Release of ovalbumin encoding mRNA	2 (23)
siRNA	Amide bond formation	~200	+55.5	HeLa cells	Anticancer drug transfection	3 (24)
siRNA	Amide bond formation	~200	+27.4	Human blast carcinoma	Suppression of breast cancer	4 (25)
miRNA	Amide bond formation	174	-	HuCCT1/mice	Inhibition of intrahepatic cholangial carcinoma	5 (26)
siRNA	Epoxide ring opening reaction	1910	+28.5	C2C12	Myogenic silencing	This work

^{*}The numbers in parentheses indicate the number of the reference in the main manuscript.

References

- (1) Choi, H.; Lee, T.; Yang, G.; Oh, J.; Won, J.; Han, J.; Jeong, G.; Kim, J.; Kim, J.; Kim, B.; Cho, S.; Efficient mRNA Delivery with Graphene Oxide-Polyethylenimine for Generation of Footprint-free Human Induced Pluripotent Stem Cells. *J. Control. Release*, **2016**, 235, 222-235.
- (2) Yin, Y.; Li, X.; Ma, H.; Zhang, J.; Yu, D.; Zhao, R.; Yu, S.; Nie1 G.; Wang, H.; In Situ Transforming RNA Nanovaccines from Polyethylenimine Functionalized Graphene Oxide Hydrogel for Durable Cancer Immunotherapy. *Nano Lett.*, **2021**, 21, 2224-2231.
- (3) Zhang, L.; Lu, Z.; Zhao, Q.; Huang, J.; Shen, H.; Zhang, Z.; Enhanced Chemotherapy Efficacy by Sequential Delivery of siRNA and Anticancer Drugs Using PEI-Grafted Graphene Oxide. *Small*, **2011**, 7, 460-464.
- (4) Huang, Y.; Hung, C.; Hsu, Y.; Zhong, C.; Wang, W.; Chang, C.; Lee, M.; Suppression of Breast Cancer Cell Migration by Small Interfering RNA Delivered by Polyethylenimine-Functionalized Graphene Oxide. *Nanoscale Res. Lett.*, **2016**, 11, 247.
- (5) Yang, H.; Shi, G.; Ge, C.; Huang, J.; Wan, L.; Wang, Z.; Liu, Y.; Jia, R.; Wang, M.; Zhang, L.; et al. Functionalized Graphene Oxide as a Nanocarrier for Multiple Suppressive miRNAs to Inhibit Human Intrahepatic Cholangiocarcinoma. *Nano Sel.*, **2021**, 2, 1372–1384.