Dried blood spot proteome identifies subclinical interferon signature in neonates with type I interferonopathy

Hiroshi Nihira, MD, PhD, ab Daisuke Nakajima, PhD, Kazushi Izawa, MD, PhD, Yusuke Kawashima, PhD, Hirofumi Shibata, MD, PhD, Ryo Konno, PhD, Motoko Higashiguchi, MD, Takayuki Miyamoto, MD, PhD, Masahiko Nishitani-Isa, MD, PhD, Eitaro Hiejima, MD, PhD, Masahiko Nishitani-Isa, MD, PhD, Masahiko Nishitani-Isa, MD, PhD, Masahiko Nasahiko Nasahiko

Kurume, Kuse, Kyoto, Mibu, Obu, Okayama, Tokorozawa, and Tokyo, Japan

From athe Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto; bthe Department of Pediatrics, Kyoto Okamoto Memorial Hospital, Kuse; ^cthe Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu; dthe Department of Pediatrics, Seirei Hamamatsu General Hospital, Hamamatsu; ethe Department of Pediatrics, Nara Medical University, Kashihara; fthe Department of Pediatrics, Okayama University, Okayama; gthe Department of Infection and Immunology, Aichi Children's Health and Medical Center, Obu; hthe Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu; the Department of Neonatology, Kyoto University Graduate School of Medicine, Kyoto; ithe Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto; kthe Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu; 1the Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka; mthe Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima; "the Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO), Tokyo; othe Laboratory of Immunology and Molecular Medicine, Advanced Research Initiative, Institute of Science Tokyo (SCIENCE TOKYO), Tokyo; Pthe Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO), Tokyo; 4the Department of Pediatrics, National Defense Medical College, Tokorozawa; rthe Department of Human Genetics, National Center for Child Health and Development, Tokyo; sthe Division of Immunology, National Center for Child Health and Development, Tokyo; the Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume; and "the Japan Environment and Children's Study Kyoto Regional Center, Kyoto University Graduate School of Medicine, Kyoto,

The first 2 authors contributed equally to this article, and both should be considered first author.

Received for publication September 19, 2024; revised March 29, 2025; accepted for publication April 4, 2025.

Available online May 2, 2025.

Corresponding authors: Kazushi Izawa, MD, PhD, Department of Pediatrics, Faculty of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. E-mail: kizawa@kuhp.kyoto-u.ac.jp. Or: Yusuke Kawashima, PhD, Kazusa DNA Research Institute, 2-5-23 Kazusa-Kamatari, Kisarazu, 292-0818, Japan. E-mail: ykawashi@kazusa.or.jp.

The CrossMark symbol notifies online readers when updates have been made to the article such as errata or minor corrections

0091-6749

© 2025 The Authors. Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jaci.2025.04.025

Background: Type I interferonopathy is characterized by aberrant upregulation of type I interferon signaling. The mRNA interferon signature is a useful marker for activation of the interferon pathway and for diagnosis of type I interferonopathy; however, early diagnosis is challenging.

Objective: This study sought to identify the proteomic interferon signature in dried blood spot (DBS) samples. The aim was to evaluate the usefulness of the interferon signature for neonatal screening and to gain insight into presymptomatic state of neonates with inborn errors of immunity (IEIs). Methods: DBS samples from healthy newborns/adults, patients with type I interferonopathy or other IEIs as well as from neonates with viral infections, including some samples obtained during the presymptomatic neonatal period, were examined by nontargeted proteome analyses. Expression of interferon-stimulated genes (ISGs) was evaluated and a DBS-interferon signature was defined. Differential expression/pathway analysis was also performed.

Results: The ISG products IFIT5, ISG15, and OAS2 were detected. Expression of IFIT5 and ISG15 was upregulated significantly in individuals with type I interferonopathy. We defined the sum of the z scores for these as the DBS-interferon signature, and found that patients with IEIs other than type I interferonopathy, such as chronic granulomatous disease (CGD), also showed significant elevation. Additionally, neonatal samples of type I interferonopathy and CGD patients showed high interferon signatures. Pathway analysis of neonatal CGD samples revealed upregulation of systemic lupus erythematosus—like pathways.

Conclusion: Upregulation of the interferon pathway exists already at birth—not only in neonates with type I interferonopathy but also in other IEIs, including CGD. (J Allergy Clin Immunol 2025;156:473-9.)

Key words: Inborn errors of immunity, interferonopathy, signature, proteome, dried blood spot, CGD, WAS, newborn, neonate

474 NIHIRA ET AL J ALLERGY CLIN IMMUNOL

Abbreviations used

AGS: Aicardi-Goutières syndrome BTK: Bruton tyrosine kinase CGD: Chronic granulomatous disease

CHS: Chediak-Higashi syndrome

CMV: Cytomegalovirus

DADA2: Deficiency of adenosine deaminase 2

DBS: Dried blood spot HA20: A20 haploinsufficiency IEIs: Inborn errors of immunity IFN-I: Type I interferon

ISG: Interferon-stimulated gene

NADPH: Nicotinamide adenine dinucleotide phosphate PRAAS: Proteasome-associated autoinflammatory syndromes

ROS: Reactive oxygen species

SAAD: SAMD9L-associated autoinflammatory disease SAVI: STING-associated vasculopathy with onset in infancy

SCID: Severe combined immunodeficiency

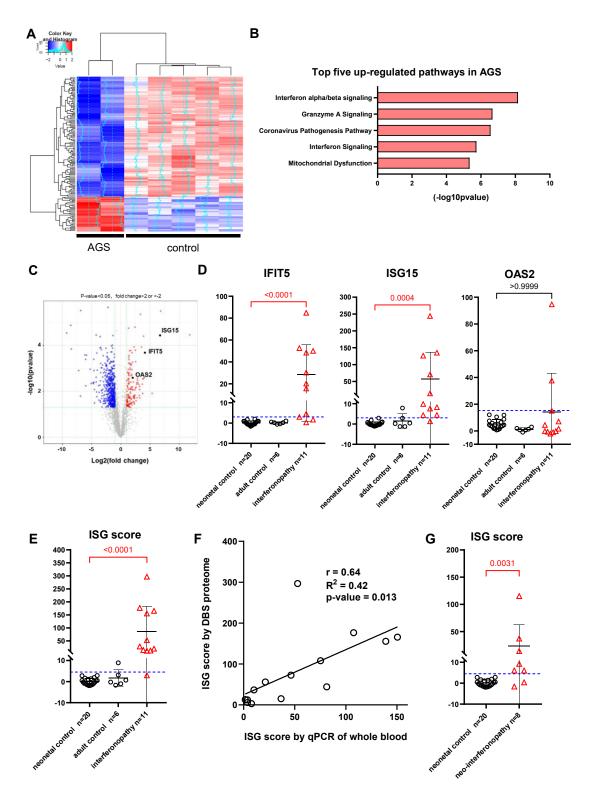
WAS: Wiskott-Aldrich syndrome

INTRODUCTION

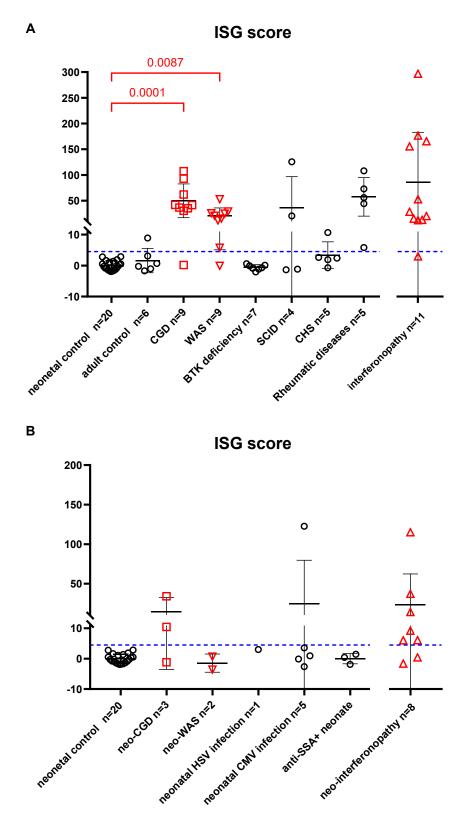
Type I interferonopathy is an autoinflammatory syndrome characterized by excessive production of type I interferons (IFN-I). Typically, it manifests during early infancy and follows a progressive course to cause permanent damage, although Janus kinase inhibitors appear to be an effective treatment. However, early diagnosis, ideally before symptoms emerge, is necessary to minimize damage.

Analysis of expression of interferon-stimulated genes (ISGs)—that is, the interferon signature—at the mRNA level is useful for diagnosis and evaluation of disease activity in those with type I interferonopathy. Excessive production of interferon has been reported in cases of inborn errors of immunity (IEIs) other than classical type I interferonopathy, and we have shown that the interferon signature is useful for assessing pathophysiology in patients with unknown inflammatory conditions; however, early diagnosis of type I interferonopathy remains challenging as a result of mRNA instability, which can cause difficulties with respect to sample collection and shipping; such restrictions preclude implementation of interferon signature analysis on a large scale.

Recently, we reported that proteomic analysis of dried blood spot (DBS) samples allows semiquantitative analysis of thousands of blood proteins. By DBS is used as part of national newborn screening programs around the world because it is inexpensive, dried blood is easy to handle, and sampling is minimally invasive. DBS samples also provide a valuable resource that allows evaluation of a patient's central pathology soon after birth, with minimum interference by infection, secondary inflammation, and treatment regimens. This is important because the immune status, especially inflammatory status, of IEI patients can change rapidly after birth.


Here, we investigated whether levels of interferon-stimulated proteins in DBS samples could be evaluated and used to identify individuals with type I interferonopathies. We also analyzed DBS samples from patients with other IEI, which were also obtained soon after birth, to evaluate the activity of the interferon pathway

and to gain insight into their immune conditions at the presymptomatic stage.


RESULTS AND DISCUSSION

In this report, we used a previously described method based on data-independent acquisition liquid chromatography-coupled mass spectrometry^{8,9} to perform nontargeted proteome analysis of DBS samples from healthy controls (20 neonates and 6 adults), disease controls (congenital cytomegalovirus [CMV] infection, n = 5; neonatal herpes simplex virus infection, n = 1; and neonates with maternal anti-Ro/SSA antibodies, n = 3), patients with rheumatic diseases (systemic lupus erythematosus, n = 3; juvenile dermatomyositis, n = 1; and Sjögren syndrome, n = 1), and IEI patients with Aicardi-Goutières syndrome (AGS; n = 2), STING-associated vasculopathy with onset in infancy (SAVI; n = 3), proteasome-associated autoinflammatory syndromes (PRAAS; n = 2), deficiency of adenosine deaminase 2 (DADA2; n = 4), SAMD9L-associated autoinflammatory disease (SAAD; n = 1), A20 haploinsufficiency (HA20; n = 2), chronic granulomatous disease (CGD; n = 9), Wiskott-Aldrich syndrome (WAS; n = 9), Bruton tyrosine kinase (BTK) deficiency (n = 7), severe combined immunodeficiency (SCID: adenosine deaminase deficiency, n = 2; and X-linked SCID, n = 2), and Chediak-Higashi syndrome (CHS; n = 5). These samples included neonatal samples from 3 patients with CGD, 2 each with SAVI, PRAAS, HA20, and WAS, and 1 each with DADA2 and SAAD. The classification of IEIs by the International Union of Immunological Societies includes only a limited number of diseases (ie, AGS, SAVI, and DADA2) that are classified as type I interferonopathies;¹ however, because significant enhancement of interferon signaling is also observed in patients with diseases such as PRAAS, HA20, and SAAD, the applicable range is expanding. ¹⁻³,13,14 In the present study, these IEIs were also included as type I interferonopathies.

First, to obtain the proteomic interferon signature from DBS samples, we compared postdiagnosis samples (obtained after disease onset) from 2 AGS patients with those obtained from 5 healthy newborns (Fig 1, A). Canonical pathway analysis of upregulated genes in AGS patients using Ingenuity Pathway Analysis (Qiagen, Hilden, Germany) revealed upregulation of IFN-α/β signaling pathways (Fig 1, B). These results were compatible with the pathophysiology of AGS.^{1,2} Next, we focused on ISGs: 28 representative genes were reported as ISGs, including 6 genes belonging to the interferon signature.^{4,5} Among the 28 ISGs, we detected expression of 3 genes in DBS samples, namely IFIT5, ISG15, and OAS2. The distribution of each of the 3 gene products is shown in a volcano plot comparing AGS patients with normal controls in Fig 1, C. To develop a quantitative index for the proteomic interferon signature, expression of the 3 proteins was normalized to that of β-actin (internal control); the levels of IFIT5 and ISG15 were significantly higher in samples from individuals with type I interferonopathy (ie, AGS, SAVI, PRAAS, DADA2, and SAAD), while levels of OAS2 did not differ significantly (Fig 1, D). Therefore, we defined the sum of the z scores for IFIT5 and ISG15 levels as the proteomic interferon signature—that is, the ISG score. The ISG scores for type I interferonopathy samples were significantly higher than those for the controls (neonatal control, mean score = 0.00; type I interferonopathy, mean score = 85.36; P < .0001; Fig 1, E). The same tendency was apparent when we compared the same samples with adult control samples, although the difference was not significant. In addition, we analyzed the mRNA interferon signature of

FIG 1. Comparison of AGS patients with controls and expression of ISGs in patients with type I interferonopathy. Comparison of 2 AGS patients with 5 neonatal controls (A-C). Heat map (A), top 5 upregulated canonical pathways in AGS (B), and volcano plot showing distribution of ISGs (C). Expression of ISGs in patients with type I interferonopathy (AGS, SAVI, PRAAS, DADA2, and SAAD) (**D-G**). Z scores for IFIT5, ISG15, and OAS2 (D). Sum of z scores for IFIT5 and ISG15 is defined as ISG score (E). Correlation between ISG score for DBS proteome and results of real-time quantitative PCR (F). ISG score for samples from neonates with type I interferonopathy (SAVI, PRAAS, DADA2, SAAD, and HA20) (G).

FIG 2. ISG score for various IEIs. ISG scores for other IEI, including CGD, WAS, BTK deficiency, SCID, and CHS. Patients with CGD and WAS have significantly higher values than normal controls **(A)**, and samples from neonates with CGD tend to have higher ISG scores **(B)**.

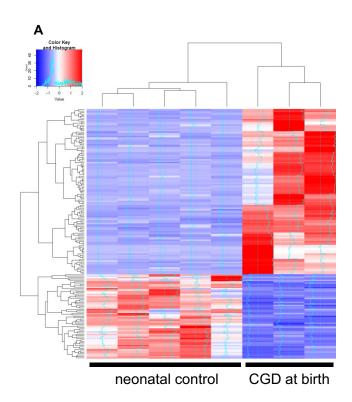
TABLE I. Samples used in this study

Characteristic	Total no. of samples	Sample type	No. with positive score	No. with negative score
Neonatal control	20		0	20
			0	20
Adult control	6		1	3
Interferonopathy	11	AGS = 2; $SAVI = 2$; $PRAAS = 2$; $DADA2 = 4$; $SAAD = 1$	10	1 (DADA2 = 1)
CGD	9	(CYBB = 7; CYBA = 1; NCF1 = 1)	8	1
WAS	9		8	1
BTK deficiency	7		0	7
SCID	4	ADA deficiency = 2 ; X-linked SCID = 2	1	3
CHS	5		0	5
Rheumatic diseases	5	SLE = 3, JDM = 1; SjS = 1	5	0
Neointerferonopathy	8	SAVI = 2; $PRAAS = 2$; $DADA2 = 1$; $SAAD = 1$; $HA20 = 2$	6	2 (SAVI = 1; HA20 = 1)
Neo-CGD	3	(CYBB = 2; CYBA = 1)	2	1
Neo-WAS	2		0	2
Neo-HSV infection	1		0	1
Neo-CMV infection	5		1	4
Anti-Ro/SSA ⁺ neonate	3		0	3

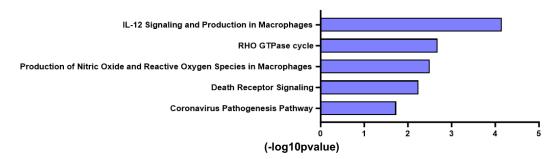
Neonatal average cutoff, +3SD = 4.49.

ADA, Adenosine deaminase; HSV, herpes simplex virus; JDM, juvenile dermatomyositis; neo-, neonatal sample; SD, standard deviation; SjS, Sjögren syndrome; SLE, systemic lupus erythematosus.

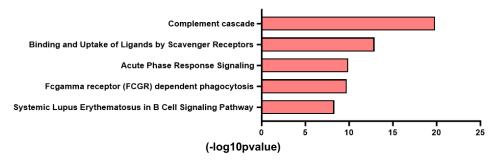
several patients, including those with type I interferonopathy,⁷ and found a significant positive correlation between the proteomic and mRNA ISG scores (Fig 1, F).


Type I interferonopathy often manifests as autoinflammatory symptoms that develop during early infancy; such symptoms include chilblains and recurrent fever. To evaluate whether the ISG score is upregulated at birth in patients with type I interferonopathy and whether it will be useful for early detection, we analyzed neonatal DBS samples that had been used for public newborn screening of metabolic disorders. Although the number of samples available was small (Fig 1, G), we found that the ISG scores for neonatal samples from patients with type I interferonopathy (ie, SAVI, PRAAS, DADA2, SAAD, and HA20) were significantly higher than those for healthy neonates (samples from neonates with type I interferonopathy, mean score = 23.35, P = .0031). This suggests that interferon signaling is upregulated at birth in patients with type I interferonopathy, demonstrating the usefulness of the DBS ISG score for neonatal screening of these disorders.

Some IEIs possess both immunodeficiency and inflammatory pathologies. CGD patients often exhibit autoinflammatory symptoms such as arthritis, inflammatory bowel disease, and nephritis; 15,16 WAS is complicated by various autoimmune phenotypes, including enhancement of IFN-I signaling and production of autoantibodies. 4,17 Some studies of CGD mouse models suggest a relationship between autoinflammatory features or upregulation of the IFN-I pathway along with decreased production of reactive oxygen species (ROS) production, which is associated with nicotinamide adenine dinucleotide phosphate (NADPH) dysfunction. 18-20 Little is known about the role of IFN-I in human CGD, although a few reports have shown enhanced interferon signaling at the mRNA level.^{7,21} Therefore, we next analyzed the ISG score of IEI samples other than type I interferonopathies; these included CGD, WAS, BTK deficiency, SCID, and CHS (Fig 2, A). We found that patients with CGD and WAS also had significantly higher ISG scores than controls (CGD, mean score = 49.74, P = .0001; WAS, mean score = 20.51, P = .0087).


Unexpectedly, 2 of 3 neonatal CGD samples showed a very high ISG score compared to neonatal controls (Fig 2, B). There was no apparent increase in the ISG score for samples obtained from controls, except for one individual with congenital CMV infection who experienced moderate hearing loss in the right ear from birth, who was diagnosed via a CMV-DNA-positive urine sample; however, the patient has not manifested any other apparent symptoms or features associated with congenital CMV infection at 5 months of age. Table I summarizes the sample set and the results of DBS-interferon signature analysis. These results indicate that increased interferon signaling occurs in CGD patients before they show infectious symptoms, suggesting that the DBS ISG score may identify patients with interferonopathy in a broad sense, including not only classical type I interferonopathy but also other IEIs with activation of the interferon pathway.

To gain further insight into the autoinflammatory mechanism of CGD, we compared expression of genes in neonatal CGD samples with that in healthy neonates. We found 119 upregulated and 61 downregulated differentially expressed genes (Fig 3, A). The results of canonical pathway analysis are shown in Fig 3, B. The downregulated differentially expressed genes in CGD patients included those related to ROS and IL-12 production pathways. These results seem compatible with CGD pathogenesis, which is associated with a defect in ROS production caused by loss of NADPH function.²² Also, ROS production via NADPH is essential for production of IL-12. ^{23,24} In contrast, pathway analysis revealed upregulation of complement cascade, binding and uptake of ligands by scavenger receptors, acute phase response signaling, Fc-gamma receptor-dependent phagocytosis, and systemic lupus erythematosus in B-cell signaling pathways. Although direct upregulation of interferon pathways could not be detected, these results suggest that activation of interferon signaling, as in systemic lupus erythematosus, might potentially exist in CGD patients soon after birth.


In conclusion, we identified a proteomic interferon signature in DBS samples and showed its usefulness for early screening of type I interferonopathy. Combined with genetic analysis, the

B Top five down-regulated pathways

Top five up-regulated pathways

FIG 3. Gene expression analysis comparing neonatal CGD and neonatal control samples. Heat map showing expression in neonatal CGD samples and in neonatal controls **(A)**, and top 5 downregulated and upregulated canonical pathways in neonatal CGD samples **(B)**.

proteomic interferon signature may be helpful for diagnosis of not only type I interferonopathies but also for other IEIs associated with enhancement of the interferon pathway, including CGD, at an early stage. Like the mRNA interferon signature, the

proteomic interferon signature might reflect disease activity in patients with type I interferonopathy; however, further analysis is needed. These data also suggest that differential expression analysis of the DBS proteome is useful for analysis of the

pathophysiology of IEIs at the neonatal stage, with little susceptibility to secondary modification.

DISCLOSURE STATEMENT

Supported by the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (grants 19K17328, 21K07795, 22K07867, 22K15939, and 24K18855); by Health and Labour Sciences Research Grant JPMH23FC1016; by the Agency for Medical Research and Development (grant JP24ek0109586); and by the "Research on Measures for Intractable Diseases" project from the Japanese Ministry of Health, Labor, and Welfare (grant 23809798).

Disclosure of potential conflict of interest: The authors declare that they have no relevant conflicts of interest.

Clinical implication: The DBS-interferon signature reflects upregulation of the interferon pathway, showing that patients with IEIs such as CGD other than type I interferonopathy also exhibit high ISG scores at birth.

REFERENCES

- Crow YJ, Stetson DB. The type I interferonopathies; 10 years on. Nat Rev Immunol 2022;22:471-83.
- Crow YJ, Casanova JL. Human life within a narrow range: the lethal ups and downs of type I interferons. Sci Immunol 2024;9:eadm8185.
- Crow YJ, Neven B, Fremond ML. JAK inhibition in the type I interferonopathies. J Allergy Clin Immunol 2021;148:991-3.
- 4. Rice GI, Forte GMA, Szynkiewicz M, Chase DS, Aeby A, Abdel-Hamid MS, et al. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREXI, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case–control study. Lancet Neurol 2013;12:1159-69.
- Kim H, de Jesus AA, Brooks SR, Liu Y, Huang Y, VanTries R, et al. Development of a validated interferon score using NanoString technology. J Interferon Cytokine Res 2018;38:171-85.
- Cervantes-Luevano KE, Caronni N, Castiello MC, Fontana E, Piperno GM, Naseem A, et al. Neutrophils drive type I interferon production and autoantibodies in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2018;142: 1605-17.
- Miyamoto T, Honda Y, Izawa K, Kanazawa N, Kadowaki S, Ohnishi H, et al. Assessment of type I interferon signatures in undiffe;rentiated inflammatory diseases: a Japanese multicenter experience. Front Immunol 2022;13:905960.

- Nakajima D, Kawashima Y, Shibata H, Yasumi T, Isa M, Izawa K, et al. Simple and sensitive analysis for dried blood spot proteins by sodium carbonate precipitation for clinical proteomics. J Proteome Res 2020;19:2821-7.
- Shibata H, Nakajima D, Konno R, Hijikata A, Higashiguchi M, Nihira H, et al. A non-targeted proteomics newborn screening platform for genetic disorders. J Clin Immunol 2024:45:33
- Demirev PA. Dried blood spots: analysis and applications. Anal Chem 2013;85: 779-89.
- Gelb MH, Turecek F, Scott R, Chamoles NA. Direct multiplex assay of enzymes in dried blood spots by tandem mass spectrometry for the newborn screening of lysosomal storage disorders. J Inherit Metab Dis 2006;29:397-404.
- Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, Al-Hert W, et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J Clin Immunol 2022;42:1508-20.
- de Jesus AA, Hou Y, Brooks S, Malle L, Biancotto A, Huang Y, et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest 2020;130:1669-82.
- Lin B, Goldbach-Mansky R. Pathogenic insights from genetic causes of autoinflammatory inflammasomopathies and interferonopathies. J Allergy Clin Immunol 2022;149:819-32.
- Magnani A, Brosselin P, Beaute J, de Vergnes N, Mouy R, Debre M, et al. Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. J Allergy Clin Immunol 2014;134:655-62.
- Rosenzweig SD. Inflammatory manifestations in chronic granulomatous disease (CGD). J Clin Immunol 2008;28(suppl 1):S67-72.
- Ochs HD, Thrasher AJ. The Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2006;117:725-38.
- Bagaitkar J, Pech NK, Ivanov S, Austin A, Zeng MY, Pallat S, et al. NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1a/G-CSF axis. Blood 2015;126:2724-33.
- Segal BH, Han W, Bushey JJ, Joo M, Bhatti Z, Feminella J, et al. NADPH oxidase limits innate immune responses in the lungs in mice. PLoS One 2010;5:e9631.
- Seyedmousavi S, Davis MJ, Sugui JA, Pinkhasov T, Moyer S, Salazar AM, et al. Exogenous stimulation of type I interferon protects mice with chronic granulomatous disease from aspergillosis through early recruitment of host-protective neutrophils into the lung, mBio 2018;9:e00422-18.
- Kelkka T, Kienhofer D, Hoffmann M, Linja M, Wing K, Sareila O, et al. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxid Redox Signal 2014;21:2231-45.
- Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 2000;79: 170,200
- Ichikawa S, Miyake M, Fujii R, Konishi Y. MyD88 associated ROS generation is crucial for *Lactobacillus* induced IL-12 production in macrophage. PLoS one 2012;7:e35880.
- Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: a comprehensive review on its role in immune regulation. Redox Biol 2023;64: 102795.

479.e1 NIHIRA ET AL

J ALLERGY CLIN IMMUNOL

AUGUST 2025

METHODS

Preparation and digestion of insoluble protein fraction

Soluble fractions were reduced and the proteins in DBS digested as previously described, E1 with a slight modification. Briefly, a disc (3.2 mm diameter) punched from a DBS was suspended in 1 mL of Na₂CO₃ solution and shaken vigorously for 5 minutes at room temperature in the presence of a 5 mm zirconia bead (Tomy Seiko, Tokyo, Japan) using a Tissue Lyser (Qiagen) oscillating at 25 Hz. The remaining disc was removed by centrifugation $(3,000 \times g, 3 \text{ mi-}$ nutes, 4°C), the supernatant (approximately 850 µL) centrifuged $(17,400 \times g, 15 \text{ minutes}, 4^{\circ}\text{C})$, and the precipitate resuspended in 200 µL of 100 mmol sodium carbonate aqueous solution by vigorous vortexing at room temperature. After centrifugation $(17,400 \times g, 5 \text{ minutes}, 4^{\circ}\text{C})$, the supernatant was removed completely and the precipitate dissolved in 100 µL of 12 mmol sodium deoxycholate, 12 mmol *N*-lauroylsarcosine, 100 mmol Tris-Cl pH 8.0 by vigorous vortexing for 1 minute, followed by sonication for 10 minutes using Bioruptor II (Cosmo-Bio, Tokyo, Japan) in high-power mode (cycles of 30 seconds on/ 30 seconds off). A 500 ng aliquot of trypsin/lys-C mix (Promega, Madison, Wis) was added to each protein extract, and the samples were digested overnight at 37°C. After precipitation, the detergent was removed by acidification with 30 µL 5% trifluoroacetic acid, followed by sonication with a Bioruptor II in high-power mode (5 minutes; 30 seconds on/30 seconds off). The mixture was then shaken for 5 minutes and centrifuged (15,000 \times g, 5 minutes). The supernatant was desalted using GL-Tip SDB (GL Sciences, Tokyo, Japan) according to the manufacturer's instructions, then dried using a centrifugal evaporator (miVac Duo concentrator; Genevac, Ipswich, United Kingdom). Dried peptides were redissolved in 3% ACN/0.1% formic acid.

Liquid chromatography-tandem mass spectrometry

Digested peptides were injected directly onto a 75 μ m \times 20 cm PicoFrit emitter (New Objective, Woburn, Mass) packed in house with C₁₈ core-shell particles (Capcell Core MP; 2.7 μm, 160 Å material; Osaka Soda, Osaka, Japan) at 50°C, and the peptides were separated using an UltiMate 3000 RSLCnano LC system (Thermo Fisher Scientific, Waltham, Mass), with an 80-minute gradient and a flow rate of 100 nL/min. Peptides eluted from the column were analyzed on an Orbitrap Exploris 480 Mass Spectrometer (Thermo Fisher Scientific) with overlapping window DIA-MS. E2,E3 MS1 spectra were collected at 30,000 resolution in the range of 495 to 785 m/z, with an automatic gain control target of 3×10^6 and the maximum injection time set to auto. MS2 spectra were collected at 30,000 resolution in the range 200-1800 m/z, with an automatic gain control target of 3×10^6 , the maximum injection time set to auto, and stepped normalized collision energies of 22%, 26%, and 30%. The MS2 isolation width was set to 4 m/z, and overlapping window patterns of 500-780 m/z were used for window placements optimized by Skyline v20.2.0.34 (University of Washington, Seattle). E4

MS data analysis

MS files were compared with human spectral libraries using Scaffold DIA v2.2.1 (Proteome Software, Portland, Ore). Human spectral libraries were generated from the human protein sequence database (UniProt ID UP000005640, reviewed, canonical) using Prosit. $^{\rm E5,E6}$ The scaffold DIA search parameters were as follows: experimental data search enzyme, trypsin; maximum missed cleavage sites, 1; precursor mass tolerance, 9 ppm; and fragment mass tolerance, 9 ppm. The protein identification threshold was set at <1% for both peptides and protein false discovery rates. Proteins and peptides were quantified using the EncyclopeDIA algorithm in Scaffold DIA. $^{\rm E7}$

ISG scoring of DBS proteome

There are 28 representative interferon-related genes that are useful for evaluating the activity of the interferon pathway: CXCL10, DDX60, EPST11, GBP1, HERC5, HERC6, IF127, IF144, IF144L, IF16, IF17, IF17, IF17, IF173, IF175, ISG15, LAMP3, LY6E, MX1, OAS1, OAS2, OAS3, OASL, RSAD2, RTP4, SIGLEC1, SOCS1, SPATS2L, and USP18. E8 Among these, the expression levels of 3 genes—IF175, ISG15, and OAS2, which can be measured by DBS proteome analysis —were normalized to the expression level of β -actin. E9 The z score was calculated on the basis of 20 samples from healthy newborns, and the sum of the z scores for IF175 and ISG15 was defined as the ISG score.

ISG scoring by real-time quantitative PCR of whole blood

Total RNA was extracted from human blood samples collected in PAX gene Blood RNA tubes (PreAnalytix, Hombrechtikon, Switzerland), and real-time quantitative PCR was performed with TaqMan Gene Expression Master Mix and probes, and a Step One Plus Real Time PCR system as previously described. The expression levels of each gene were measured in triplicate and normalized to the level of β -actin. The results are expressed relative to a single control calibrator. The median relative quantity of 6 ISGs (SIGLEC1, IF127, RSAD2, ISG15, IF1T1, and IF144L) was defined as the ISG score for each patient.

Statistical analysis

The levels of expression of genes identified in the DBS proteome were normalized by Perseus software platform (maxquant.net/perseus/). Differentially expressed genes between 2 groups were selected as those with a P < .01 and fold change ≥ 4 cutoff, and pathway analysis was performed by Ingenuity Pathway Analysis with these differentially expressed genes. Statistical differences among 3 or more groups were analyzed by 1-way ANOVA on ranks (ie, Kruskal-Wallis test), followed by Dunn multiple comparisons test. Significant differences between 2 groups were assessed by the Mann-Whitney test. Correlation analysis was performed by simple linear regression. Statistical significance was defined as a P < .05 by GraphPad Prism v10.2.3 software (GraphPad Software, La Jolla, Calif).