Supplementary Materials and Methods
Plant materials and DNA extraction
	Tetraploid southern highbush blueberry (Vaccinium corymbosum L. interspecific hybrids) ‘Blue Muffin’ was self-pollinated to create a selfing population. Seeds harvested from self-pollinated fruit were thawed and planted in pots in 2020. In 2021, total DNA was extracted from the parental cultivar and seven individuals from the selfing population using a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany).

MIG-seq and dpMIG-seq library construction, and sequencing
	Sequencing libraries for multiplexed inter-simple sequence repeat (ISSR) genotyping by sequencing (MIG-seq) [1, 2] and degenerate oligonucleotide MIG-seq (dpMIG-seq) [3] were constructed following the methods described in [3, 4] and “Sequencing and allele dosage estimation” section of the Materials and Methods in this study Initially, multiplex polymerase chain reaction (PCR) was performed using Multiplex PCR Assay Kit ver. 2 (TAKARA Bio Co. Ltd., Kusatsu, Japan) and primers (Table S1). Primers without degenerate oligonucleotide were used for MIG-seq, while primers with degenerate oligonucleotide at the fourth and fifth based from 3’ end were used for dpMIG-seq. The PCR conditions involved an initial denaturation step at 94°C for 1 min, followed by 25 cycles of denaturation at 94°C for 30 sec, annealing at 38°C for 1 min, extention at 72°C for 1 min, and a final extension at 72°C for 10 min. The resulting PCR product was diluted 50-fold to facilitate the second PCR step, which employed indexing primers [4] and PrimeSTAR GXL DNA Polymerase (TAKARA Bio Co. Ltd.). The second PCR conditions included an initial denaturation at 98°C for 30 sec, followed by 20 cycles of denaturation at 98°C for 10 sec, annealing at 54°C for 15 sec, extension at 68°C for 30 sec, and a final extension at 72°C for 10 min. Subsequently, the second PCR products were pooled, purified using AMPure XP (Beckman Coulter, Inc., CA, USA), and subjected to reconditioning PCR with conditions including at 98°C for 40 sec, 54°C for 15 sec, extension at 68°C for 30 sec, and a final extension at 72°C for 10 min. Following purification using AMPure XP, fragments of suitable length for sequencing were selected using SPRIselect (Beckman Coulter, Inc.).

ddRAD-seq library construction and sequencing
Sequencing library for ddRAD-seq was constructed following the methods described in Nishimura et al. (2024) [5], which was adapted from Peterson et al. (2012) [6] and Shirasawa et al. (2016) [7]. Initially, two single-stranded adapters (40µL each) were mixed and subjected to heat denaturation at 98°C, followed by a controlled temperature decrease to 15°C to facilitate adapter annealing. Three enzyme combinations were employed: PstI/EcoRI, EcoRI/HindIII, and PstI/MspI. Approximately 50 ng of DNA, quantified using a Nanodrop (Thermo Scientific, NanoDrop products, MA, USA), was digested with the respective restriction enzyme combinations at 37°C for 6 hours. The digested DNA was then mixed with the same volume of pre-annealed adapters. Adapter ligation was performed using the LigaFastTM Rapid DNA Ligation System (Promega, WI, USA) with a DNA mixture: ligase: ligation buffer ratio of 2:3:5. Ligation was carried out at 23°C for 5 min, followed by inactivation at 70°C for 30 min. Indexing PCR conditions were: initial denaturation at 94°C for 3 min, followed by 25 cycles of denaturation at 98°C for 10 sec, annealing at 55°C for 30 sec, extensions at 68°C for 15 sec, and a final extension at 68°C for 5 min, using indexing primers described in Nishimura et al [5] and OKD plus Neo (Toyobo Co. Ltd., Osaka, Japan).

Sequencing and SNP analysis
The obtained libraries were sequenced on the Illumina HiSeq X platform using 151-cycle paired-end runs. Using fastp software (version 0.20.1) [8], raw reads were filtered with default settings except reads with a base-quality Phred score of less than 20 and a read length of less than 35, which were discarded. At the same time, for reads from the MIG-seq and pdMIG-seq libraries, 17 base primer sequences in the first PCR of MIG-seq and dpMIG-seq [3, 4] were trimmed. Clean reads were aligned to the 12 largest chromosomes of each homologous set from the ‘Draper’ reference genome [9] using BWA-MEM (version 0.7.17-r1188) [10]. Single nucleotide polymorphism (SNP) calling was performed using the mpileup command in SAMtools program (version 1.13) [11] and the mpileup2snp command in VarScan (version 2.4.3) [12], and alignments with mapping quality less than 20 were discarded. SNPs were then filtered using VCFtools (0.1.16) [13] with the following criteria: (i) minor allele frequency of 0.05 (option --maf 0.05) and (ii) only biallelic loci. Depths of bases with a Phred score of 15 or greater were extracted per locus and per sample using vcfR (version 1.15.0) [14]. To compare SNP counts between MIG-seq, dpMIG-seq, and ddRAD-seq, depths were divided by the number of aligned reads per library and per sample, and then multiplied by 5 million for adjustment. Subsequently, SNPs with a depth of 20 or more across more than half of the samples were counted.
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