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Development of an Al-based Image Analysis System to Calculate the Visit
Duration of a Green Blow Fly on a Strawberry Flower
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Pollinator insects are required to pollinate flowers in the production of some fruits and vegetables, and
strawberries fall into this category. However, the function of pollinators has not been clarified by quantitative
metrics such as the duration of pollinator visits needed by flowers. Due to the long activity time of pollinators
(approximately 10-h), it is not easy to observe the visitation characteristics manually. Therefore, we developed
software for evaluating pollinator performance using two types of artificial intelligence (AI), YOLOv4, which
is an object detection AL, and VGG16, which is an image classifier Al In this study, we used Phaenicia sericata
Meigen (green blow fly) as the strawberry pollinator. The software program can automatically estimate the
visit duration of a fly on a flower from video clips. First, the position of the flower is identified using YOLO,
and the identified location is cropped. Next, the cropped image is classified by VGG16 to determine if the
fly is on the flower. Finally, the results are saved in CSV and HTML format. The program processed 10 h of
video (collected from 07:00 h to 17:00 h) taken under actual growing conditions to estimate the visit durations
of flies on flowers. The recognition accuracy was approximately 97%, with an average difference of 550s.
The software was run on a small computer board (the Jetson Nano), indicating that it can easily be used
without a complicated Al configuration. This means that the software can be used immediately by distributing
pre-configured disk images. When the software was run on the Jetson Nano, it took approximately 11 min to
estimate one day of 2-h video. It is therefore clear that the visit duration of a fly on a flower can be estimated
much faster than by manually checking videos. Furthermore, this system can estimate the visit durations of
pollinators to other flowers by changing the YOLO and VGG16 model files.
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fly) has been used as an alternative pollinator to the

Introduction honey bee (Hanada et al., 2016).

Pollinators are necessary for the production of fruits
and vegetables. In fact, fruit, vegetable, or seed produc-
tion of 87 of the leading 125 global food crops depend
on animal pollination (Klein et al., 2007). The flowers
of many kinds of fruits, trees, and vegetables are polli-
nated by insects, including the strawberry. Pollinators
such as honey bees (Garibaldi et al., 2013) and bumble-
bees (Goulson, 2010) have been used, but recently, for
strawberries, Phaenicia sericata Meigen (green blow
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Many strawberry growers have used pollinators in
greenhouses, but it has been reported that these pollina-
tors do not work well and inadequate pollen levels
reduce marketable yields (Zebrowska, 1998). A decrease
in marketable yields is damaging to strawberry growers.
However, it is not clear how long strawberry pollinators
must visit a flower to pollinate and produce normal
fruits. Similarly, it is not known how long a fly must
visit a flower for normal fruit production. To determine
the duration and number of visits to a flower by flies,
we must capture these visits on video and watch the
whole video. In an experiment conducted in the month
of July by Karbassioon and Stanley (2023), pollinators
were observed to be active from approximately 08:00 h
to 20:00h, although there were differences among
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them. In our preliminary experiments, (unpublished
data) flies are active from 07:00 h to 17:00 h. Because
of these long hours of pollinator activity, it is not easy
to observe the visitation characteristics manually. In
contrast, if it were possible to have a computer do the
work, it would be easier to analyze the activities of the
pollinators.

In recent years, machine learning has been attracting
attention as computers become more powerful and
affordable. In particular, deep learning, which uses
three or more intermediate layers for learning, is used in
artificial intelligence (Al), and is widely used in the
fields of image classification and object detection. In
agriculture, Al (Uchimura et al., 2021) has been used
for image classification tasks, such as the classification
of strawberry fruit shapes (Ishikawa et al., 2018) and
the rapid over-softening and shelf life of persimmon
fruits (Suzuki et al., 2022), as well as for object detec-
tion tasks, such as blueberry fruit detection (Gonzalez
et al., 2019). For image classification, various models
have been developed (Simonyan et al., 2013; Singh
et al, 2018) using convolutional neural networks
(CNNs). Object detection models include You Only
Look Once (YOLO), which enables real-time object
detection (Redmon et al., 2016). In addition, some of
the libraries needed to create CNN are available as open
source. For example, the source code needed to create
YOLO was made publicly available (Bochkovskiy
et al., 2020), making it possible to create discriminators
cheaply. Recently, seven olive cultivars were classified
with 95.91% accuracy using image classification
(Ponce et al.,, 2019), and the number of leaves of
Arabidopsis thaliana could be detected with approxi-
mately 88% accuracy using Tiny-YOLOvV3 with object
detection (Buzzy et al., 2020). Very accurate models
using CNN for crop classification and YOLO for object
detection have been reported, proving that it is possible
to classify and detect target crops at a high level of
accuracy.

Therefore, we developed software that can analyze
video of flowers to monitor the activity of pollinators
using deep learning. Using the developed software, we
created an environment that enables the time a fly visits
a flower to be conveniently estimated. We confirmed
that a small computer board with a GPU can be used as
the hardware to run the software.

Materials and Methods

1. Al development and performance evaluation for the
developed software
1) Hardware specifications and sofiware libraries for
Al model development
The image classification and object detection Al
models were trained on a personal computer running
Windows 11 Pro (Microsoft Co., USA) with a CPU
(Intel Core 15-12400; Intel Co., USA) and GPU
(GeForce RTX 4080; NVIDIA, USA). The object

detection Al model was trained using the Python pro-
gramming language (version 3.7.9; Python Software
Foundation, USA) and several open-source libraries.
The open-source libraries OpenCV (version 4.7.0.72;
Intel Co.) and Pillow (version 9.4.0) were used for
image processing. CUDA (version 11.8; NVIDIA),
cuDNN (version 8.7.0; NVIDIA), and Darknet (Joseph
Redmon), which is an open-source framework for neu-
ral networks, were used as the execution environment.
YOLOv4 was used as the object detection Al model.
Python (version 3.9.16; Python Software Foundation)
and Keras (version 2.9.0) with a TensorFlow GPU (ver-
sion 2.9.2; Google Inc., USA) were used as the backend
for training the neural networks, and VGG16 (Simonyan
and Zisserman, 2014) was used to create the image
classification Al model.
2) Al Creation Method

The objective of this study was to create software
that can determine the duration a pollinator has perched
on a flower using two types of Al: YOLO, an object
detector, and the other is VGG16, an image classifier.

A video of flowers in bloom in a strawberry field for
a certain duration was used as input. YOLO detects the
position of the flowers in an image cropped from a cap-
tured video and acquires a partial area surrounding the
recognized object using a rectangle called a bounding
box (BB), and this was used to detect the positions of
the strawberry flowers and crop that area of the image,
even if the flowers moved. Strawberry bunches move
up and down slightly over time. The VGG16 was used
to classify the cropped images and determine if the
strawberry flowers were being visited by pollinators.

The open-source framework for neural networks
called Darknet was used to create the YOLO for object
detection. The YOLOv4 architecture was trained. The
training method was based on an official document
(https://github.com/Alexey AB/darknet#thow-to-train-to-
detect-your-custom-objects), and a data file and “cfg”
file were created. The data file specifies the folder paths
of the training and validation images. The cfg file speci-
fies the training conditions for the AI model. To
improve learning efficiency, the cfg file was modified
to specify 64 batches, 32 subdivisions, a momentum of
0.949, a learning rate of 0.001, and a max_batches of
6,000. For the VGG16, we used the open-source library
Keras and a pre-trained VGG16, and performed transfer
learning to train convolution layers 15 and above (in the
trained VGG16). The pre-trained model was trained
using ImageNet, a large training dataset. The basic
settings for the model were “SDG” for the solver, a
learning rate of 0.0001, and ‘“sparse categorical
crossentropy” for the loss function. For the “class
mode” argument of the training and validation images,
we adopted the “binary” option and specified 15
epochs. These changes were made for training.

To create the Al model, images for training and dis-
crimination were taken from October to December
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2021 and from October to December 2022 in a green-
house (Okayama City, Okayama Prefecture) where
strawberries were cultivated using flies as pollinators.
The greenhouse was operated by the Faculty of
Agriculture, Okayama University. A digital camera
(D5100; Nikon Co., Japan) and smartphone (iPhone 12
mini; Apple Inc., USA) were used to take most images.
Three types of objects were collected: a fly in a non-
flowering area (fly), a strawberry flower with no flies
(flower), and a fly on a flower (fly flower). A total of
4071 digital images in JPG format were acquired. For
the object detector (YOLO), the images were classified
into the three categories described above and annotated
using annotation software (Labellmg, MIT, Computer
Science and Artificial Intelligence Laboratory), and the
annotated images were randomly divided into a training
dataset (1,176 fly images, 1,053 flower images, and
1,028 fly flower images) and a test dataset (271 fly
images, 272 flower images, and 271 fly flower images).
Images of each of the three types are shown in Figure 1.

For the image classifier, 1,300 flower images and
1,145 fly flower images were selected from the same
images used to train YOLOv4, and these images were
replicated using OpenCV with the contrast and lumi-
nance changed (2,600 flower images, 2,290 fly flower
images). The images in each dataset were randomly
divided into two sets using a ratio of approximately 8:2
to obtain a training dataset (2,080 flower images, 1,936
fly flower images) and a test dataset (520 flower
images, 484 fly flower images).

For the performance evaluation, to verify whether the
trained YOLOv4 and trained VGG16 could be used in
the developed software, the accuracy, precision, recall,
F1-score, and ROC-AUC (VGG16 only) were obtained
on the test dataset. We evaluated these performance
metrics along with the confidence score, which was cal-
culated by YOLOv4. Confidence score thresholds of
0.5 and 0.75 were evaluated separately.

YOLOV4 can distinguish between flower and fly
flower images. However, in this study, YOLOv4 was
used to locate the flowers, and VGG16 was used to
accurately recognize images of a fly on a flower. There-
fore, it is only important for YOLOv4 to accurately
locate the flower and its performance evaluation should
focus only on the localization of flowers. To verify the
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Fig. 1. Examples of images used to train the AI models (Left: a pollinator (fly), Center: a strawberry flower (flower), Right: a fly on a straw-
berry flower (fly_flower)).

accuracy of BBs, we evaluated a case in which
YOLOvV4 detects either a flower or fly flower. In this
case, BB confidence scores (0.5 and 0.75) and IoU
confidence score (0.75) were used. In addition, the
flowerloU value of the original index was calculated
and evaluated separately. The flowerloU was calculated
regardless of whether the recognition result was correct
or incorrect when the Al created a BB of a flower or a
fly flower for an image of a flower or fly flower, and
the accuracy when cropping the image was verified by
taking the average.

To verify the accuracy of the two Al models, we used
YOLO to identify images cropped from the video and
VGGL16 to identify the cropped image of the area sur-
rounding the flower. The verification method for the
developed Al model’s performance is described below.
Preliminary experiments showed that the active time of
the pollinators was mostly between 07:00h and
17:00 h. Therefore, to create a test dataset, we used
videos taken in the greenhouse on three days: 2 Nov.,
16 Dec. 2022, and 17 Jan. 2023, using a digital video
camera (HC-VX992MS; Panasonic Co., Japan). The
videos were converted to MP4 format and included the
10 hours from 07:00 h to 17:00 h. An image for crop-
ping was automatically extracted from the video every
2 min, and the cropped image was saved. After object
detection with a trained YOLOv4, we defined an area
1.5 times larger than the recognition area, extracted the
area, and saved it. We used an area 1.5 times larger than
the recognition area because the size of the background
area of the test dataset images was almost the same as
that of the training dataset images used for VGGI16.
This area was updated every 30 min to adjust the flower
position because strawberry bunches move over time,
as mentioned above. All cropped and trimmed images
were saved in JPG format. From these images, 100
flower images and 100 fly flower images were ran-
domly selected (200 cropped images and 200 trimmed
images in total), and these were used as the test dataset.
The cropped and trimmed images were then classified
using YOLOv4 and VGGI16, respectively. We con-
firmed whether the decision of the Al was correct by
checking the images visually.
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Fig. 2. Overall system overview.

2. Software incorporating the developed Al
1) Development environment for the software

We developed software that incorporated the devel-
oped Al models, as mentioned in the previous section.
The software was created in the same environment as
that of the Al models. The software was designed with
a graphical user interface (GUI) so that anyone can
operate it, and Tkinter library, a Python standard, was
used as the GUI development tool.
2) Software summary

The user must prepare a video of strawberry flowers
in advance. The software roughly specifies the area
around the flower from the video, and the specified area
is cropped as an image at fixed intervals. Then, the
YOLOv4 embedded with the software is used at the
specified interval to locate the position of the flower. A
cropped image is further trimmed in an area slightly
larger than the Al-specified area to avoid cropping
some of the flowers in the areas identified by the Al
model. The trimmed image is classified by VGG16 to
determine whether a fly is on the flower in the image.
The software allows the user to specify the interval
(seconds) used to extract the images from the video, the
increase in the area for trimming, and the interval (min-
utes) used to acquire the flower area information using
YOLOV4. Because it takes some time for YOLOv4 to
recognize the location of a flower each time it is used,
the images are extracted at a certain interval to allow
the software to run faster. After the whole video has
been processed as described above, the date and time of
the cropped images, the VGGI16 recognition results,

Shooting start date and time

year month [ 0 v| day [0 v|hour [ 0 v| minute

Interval time{second) T Yol

Fig. 3.

Software configuration screen.

and the total duration of each flower visit are output to
CSV and HTML files (Fig. 2).
3) Hardware and operating environment for running
the software

We confirmed that a small computer board with a
GPU could be used as the hardware to run the software.
The computer board (Jetson Nano; NVIDIA) for
embedded use with a GPU was evaluated as the
machine for running the software. The software was
installed on a Jetson Nano Developer Kit BO1 (NVIDIA)
using Jetpack 4.6.3.

The software configuration screen is shown in
Figure 3. Users must enter the date of the captured
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video, trimming interval (in seconds), trimming magni-
fication, and the interval for obtaining the flower area
information by YOLOv4 (minutes). After selecting the
video to be used (MP4 format), the user selects which
region of the video should be cropped and classified by
the AI model. To make it easier to select an area, an
image is extracted from the video and the area can be
selected by dragging the mouse while checking the
image on the screen (Fig. 4). YOLOv4 can search flow-
er positions in this selected area. After entering all of
the above items, the “change” button is pushed to pre-
pare the software for operation, and then the “run” but-
ton is pushed to enable the Al to classify the input until
the end of the video. During the classification, the
results are output to the operation screen to confirm that
the classification is being performed. The cropped and
trimmed images are saved as time-stamped + JPG for-
mat for confirmation.

4) Software operation verification and performance
evaluation

To evaluate the performance of the software by actu-
ally running it, we used videos taken in the greenhouse
on 2, 17, 23, 29, and 30 Nov. 2022, and 7 Dec. 2022.
These videos were different from the ones used to
develop the Al. The software accuracy was calculated
by comparing the Al recognition results with the results
of visual inspection of each image. In addition, we
compared the visit duration of a fly to a flower con-
firmed by visual inspection of the video, with that
obtained using the image recognition Al model.

The visit duration of a fly to a flower confirmed by
visual inspection of a video was judged by the time a
fly flew to a flower up to the time it flew away. The Al
models used for both evaluations were the trained
YOLOV4 and trained VGG16. The interval for extract-
ing the images from the video was set to 30s, and
YOLOv4’s flower location information was updated
when the video advanced by 30 min. The duration of
the visit of a fly on a flower was the accumulated
cropped image interval over which VGG16 recognized
a fly on a flower (duration + 30 s). The trimming mag-
nification was set to 1.5 times the area of the YOLOv4-
specified region, and the confidence score was set to

Fig. 4. Selection of the cropped area.

0.5. To measure the differences in the estimated fly visit
duration obtained using different video clip intervals,
we calculated the results for each video using clip inter-
vals of 10, 20, and 30 s (changing the integration time
to 10, 20, and 30 s, respectively).

In addition, a 2-h video was prepared to measure the
time it takes for the software to run. The runtimes when
the sizes of the images cropped from the video were
200 x 200 pixels, 400 x 400 pixels, and 800 x 800 pix-
els were evaluated to determine whether the operating
time varied depending on the size of the cropped image
(interval = 30 s).

Results and Discussion

1. AI model development and performance evaluation

for use in software

The accuracy, precision, recall, and Fl-score of the
trained YOLOv4 were 56%, 0.73, 0.56, and 0.46,
respectively, when the confidence score was 0.5. They
were 53%, 0.8, 0.53, and 0.43, respectively, when the
confidence score was 0.75 (Table 1). For cherry fruit
detection using YOLOv4, the Fl-score of the model
was reported to be 0.935 (Gai et al., 2023), and hence
the accuracy of our developed object detection and
recognition model was low. Here, the trained YOLOv4
made errors in detection on the test dataset mostly
because it misidentified flower images as fly flower
images, and the Al was not able to clearly determine
the difference between the flower and fly flower class-
es. The results (Table 2) focusing only on the position
of the flowers showed that the accuracy, precision,
recall, Fl-score, and flowerloU values were 98.5%,
0.99, 0.99, 0.99, and 0.97, respectively, when the confi-
dence score was 0.5. Moreover, they were 84.5%, 0.99,
0.85, 0.92, and 0.97, respectively, when the confidence
score was 0.75. Hence, focusing only on the location of
the flowers resulted in a significant improvement in Al
accuracy. If the confidence score was increased, objects

Table 1. The accuracy, precision, recall, and F1-score of the trained
YOLOv4 model (for confidence score thresholds of 0.5 and

0.75).
Confidence Accuracy Precision Recall F1-score
Score (%)
0.5 56 0.73 0.56 0.46
0.75 53 0.8 0.53 0.43

Table 2. The accuracy, precision, recall, Fl-score, and flowerloU
of the trained YOLOv4 model when detecting only the posi-
tion of the flower (for confidence score thresholds of 0.5 and

0.75).
Confidence Accuracy Precision Recall Fl-score FlowerloU
Score (%)
0.5 98.5 0.99 0.99 0.99 0.97
0.75 84.5 0.99 0.85 0.92 0.97
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that had been detected became undetectable and the
detection accuracy and Fl-score decreased. The trained
YOLOV4 could determine the position of a strawberry
flower, but could not accurately classify whether the
image was a flower or fly flower image. Stark et al.
(2023) reported that YOLOv5nano, YOLOvSsmall,
and YOLOV7tiny could be used for object recognition
and classification of eight groups of flower-visiting
arthropods. When they set the confidence score for
YOLOvS5nano, YOLOvSsmall, and YOLOv7tiny to
0.2, 0.3, and 0.1, accuracies of 94.50%, 96.24%, and
95.08%, respectively, were achieved. This shows that
high accuracy can be achieved when the confidence
score is set relatively low. In this study, the accuracy
was highest when the confidence score was 0.5, which
is a value greater than that used in study by Stark et al.
(2023). However, the optimal confidence score is likely
to vary depending on the growing environment and
other factors. Therefore, it should also be possible to
change the confidence score in the software.

The discrimination accuracy, precision, recall, F1-
score, and ROC-AUC of the trained VGG16 were 95%,
0.96, 0.96, 0.95, and 0.97, respectively (Table 3).
Suzuki et al. (2022) reported a test set detection accura-
cy of 0.87 and an Fl-score of 0.85 for the detection of
over-softening in persimmons. The performance results
obtained in this study were more accurate than those
results. The trained YOLOv4 accuracy and F1-score
were 56% and 0.46, respectively. indicating the perfor-
mance of VGG16 improved by 39 percent points and
0.49 with respect to accuracy and F1-score than when
only YOLO used. Therefore, we consider it to be more
practical than using only YOLO. Two test set samples
that the trained VGG16 detected incorrectly are shown
in Figure 5. Flowers moved while the video is being
taken, so the Al can classify the image incorrectly when
the flower itself is oriented horizontally to the camera
or when part of the flower is hidden by a leaf.

Focusing only on flower localization, the trained
YOLOv4 was found to perform very well, with an
accuracy of 98.5% and an Fl-score of 0.99. Even with
the trained VGG16, high performance was observed,
with an accuracy of 95% and an F1-score of 0.95. The
trained VGG16 showed no difference in the classifica-
tion performance for both the flower and fly flower
images. Because both YOLOv4 and VGG16 were
found to be highly accurate when used for their intend-
ed purposes, we decided to create software using both
Al models.

Table 3. The accuracy, precision, recall, F1-score, and ROC-AUC
of the trained VGG 16 model.

Accuracy (%)  Precision Recall Fl-score ROC-AUC

95.5 0.96 0.96 0.95 0.97

2. Software incorporating the developed Al

For the developed software to work, a video of straw-
berry flowers in the greenhouse was used. The software
incorporating the Al models evaluated in the previous
section was tested to see if it could estimate the visit
durations of the flies.

To determine whether the software’s estimated visit
duration of flies on flowers was accurate, we compared
the Al-calculated daily visit durations with human visu-
al checks of the daily visit durations of flies on flowers
(Fig. 6). The visit durations per hour are shown in
Figure 7. The percentage errors of the AI models with
respect to visual confirmation were 4.3%, 15.4%, 5.8%,
0.9%, 1.7%, and 5.1%, for videos taken on 2, 17, 23,
29, and 30 Nov., and 7 Dec. 2022, respectively, and the
average percentage error over the six days was 5.5%. In
contrast, the average rate of trimmed images that the
software correctly recognized over the six days was
approximately 97%. The differences between the over-
all visit duration of the flies on flowers visually con-
firmed by video and calculated using software were
426, 1,527, 580, 86, 166, and 506 s, respectively. The
average value was 549 s.

The data from Nov. 17, when recognition accuracy
was the lowest, was examined to analyze the software
performance in the actual growing environment. We
found that the flowers were hidden by the strawberry
leaves due to movement of the flowers, which prevent-

Fig. 5. An example of a trained VGG16 detecting incorrectly on a
test dataset. (Left: part of the flower is occluded by a leaf.

Right: the flower is oriented horizontally to the camera).
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ed accurate recognition. Other misrecognized images
showed that the flowers were oriented horizontally, and
in most cases, the colors of the flowers were changed
by strong natural light. Overall, differences in the visit
duration of flies on flowers were not substantial (Max:
730s, Min: 8 s, Avg: 131 s, Fig. 7), and it was clear that
there were no large changes in the error of the visit
durations at any times of the day.

Visit duration was estimated by changing the video
cropping interval (10, 20, and 30 s) and comparing with
the results visually confirmed by video (Fig. 8). With
the exception of the data for 29 Nov. and 7 Dec., when
comparing the results for the various interval times the
maximum error was 370s, and the average error was
225s. The percentage error times for image cropping
intervals of 10, 20, and 30 s relative to visual confirma-
tion by video were 6.4%, 5.9%, and 5.5%, respectively.
Thus, when the video cropping interval was varied, no
noteworthy effect was observed in the estimate of the

visit duration or the percentage error with respect to
visual confirmation. When estimating the visit duration,
it was not expected for a video cropping interval lower
than 30 s to have an effect on the software.

The time required to run the software was approx-
imately 11 min for a 2-h movie, regardless of the image
size (200 x 200 pixels, 400 x 400 pixels, or 800 x 800
pixels). This suggests that the software can run at a
nearly constant speed regardless of the image size.

Considering that the estimation time was approxi-
mately 11 min for a 2-h movie and that the error in the
estimated visit duration obtained by image recognition
Al is not very large, it was clear that the software can
be used to estimate the time that pollinators visit flow-
ers much faster than by visual confirmation. Therefore,
the software can automatically estimate the visit dura-
tion of a fly to a flower, which reduces the effort com-
pared with doing it manually.

The performance of an Al model is determined by
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Fig. 8. Comparison of the visit duration of a fly to a flower obtained by visual confirmation and by the image recognition Al model (for video

intervals of 10's, 20's, and 30 s).

the weights file generated after training per 1,000
epochs (Takayama et al., 2021). Al performance can be
modified by changing the weights file used by this soft-
ware. A feature of this software is that the Al used can
be changed only by changing the file specifications, so
this software is very flexible. Moreover, this software
the confidence score, crop area, and interval time used
by the Al model can be adjusted. Hence, users can easi-
ly find the best settings for estimating the duration of
visits by pollinators on flowers. Moreover, using the
weights file created using images of other flowers and
other pollinators, the software could be used to estimate
the visit durations for other pollinators to other flowers
quantitatively.

The hardware, the Jetson Nano, installs its OS from
a microSD card. Therefore, image files with pre-
configured YOLOv4 and VGG16 models and software
executables can be installed on it. It is possible to dis-
tribute this image file. In general, building an Al envi-
ronment is quite challenging. However, if the image file
can be distributed as described above, anyone could use
this software by downloading the image file to a
microSD card in the recommended manner.

Conclusion

The developed software, which uses a trained
YOLOV4 to acquire flower location information and a
trained VGG16 to classify cropped images to estimate
the visit duration of pollinators to strawberry flowers,
had a recognition accuracy of 97%, and the average rate
of the error was 5.5%. If this recognition accuracy is
acceptable, we believe that this software is worth using.
Furthermore, the inference time was approximately
11 min for a 2-h video. This means that inference can
be performed much faster and automatically as opposed
to being done manually.

Because of the software design, it is possible to esti-
mate the visit durations of other pollinators and other
flowers by changing the files used for the YOLO and
VGG16 models. Moreover, the use of the Jetson Nano

hardware makes it easy to estimate the visit durations of
pollinators to other flowers.
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